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Abstract

Hematopoietic stem cell (HSC) chemotaxis,
adhesion, proliferation, quiescence and differ-
entiation are regulated by interactions with
bone marrow (BM) niches. Two niches have
been identified in the adult BM: the endosteal
(close to the bone) and the perivascular niche
(close to blood vessels). A vast body of litera-
ture has revealed the molecular basis for the
interaction of HSCs with the two niches.
However, the signals that regulate the commu-
nication between the two niches have not been
well defined. Taking in consideration several
clinical and experimental arguments this
review highlights the molecular cues, involved
in the communication between the BM niches,
which regulate the basic properties of HSCs in
physiological and malignant conditions. As
such, it aims at clarifying the most important
advances in basic and clinical research focus-
ing on the role of different factors in the regu-
lation of the BM microenvironment.

Introduction

Hematopoietic stem cells reside in bone
marrow niches, which regulate their fate

Hematopoietic stem cells (HSCs) are self-
renewing cells which give rise to all types of
mature blood cells. HSCs can be subdivided
into long-term HSCs (LT-HSCs) and in short-
term (ST-HSCs). LT-HSCs can give rise to all
blood lineages and have unlimited self-renew-
al capacity. LT-HSCs produce ST-HSCs which
are still multipotent but with limited self-
renewal capacity. ST-HSCs differentiate fur-
ther into lineage-committed progenitor cells
which are responsible for the large-scale pro-
duction of mature blood cells.'

The bone marrow (BM) is the major site of
adult hemopoiesis, but, in pathological condi-
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tions, hemopoiesis can also occur in extra-
medullary sites like thymus, spleen and liver.

HSCs are localized in specialized microenvi-
ronments within hematopoietic tissues called
niches.*® Within the BM, two anatomical and
functional niches have been proposed, the
endosteal niche™ and the perivascular niche."
It has been suggested that about 60% of bone-
marrow HSCs are adjacent to perivascular
niches and up to 20% of HSCs localize in the
endosteal niches; the remaining HSCs are
believed to be scattered throughout the BM."*

Endosteal niches, located at the inner bone
surface, contain quiescent HSCs, character-
ized by a low proliferative rate; whereas acti-
vated HSCs, which undergo differentiation and
ultimately mobilization to the peripheral circu-
lation, are in close contact to sinusoids of the
BM microvasculature in the perivascular
niche'"** Endosteal niches may thus repre-
sent a reserve of HSCs, while perivascular
niches connect HSCs to the blood stream.

The endosteal niche mainly comprises
endosteal cells, osteoblasts and osteoclasts,
while the perivascular niche contains mainly
endothelial cells. Stromal cells, including retic-
ular and mesenchymal cells, are common com-
ponents of both niches. They are scattered
throughout the trabecular space of the BM and
surround the endothelial cells. As these cells
are a component of both endosteal and vascu-
lar niches, they may serve as a cellular link
between them.” The cellular components of
the niches interact with each other to support
HSC adhesion, quiescence, chemotaxis and, in
the case of the vascular niche, differentia-
tion. 0116171921 Thys, the HSC properties and
functional responses depend on specific inter-
action with BM niches (Table 1).

Chemotaxis

Bone marrow niches recruit hematopoietic
stem cells

HSC chemotaxis towards the endosteal
niche has been suggested to be mediated by
osteoponin (Opn) and calcium ion concentra-
tion ([Ca*]0).” Opn, a glycoprotein expressed
on endosteal bone surface by osteoblasts, pro-
motes HSC migration, as shown in vivo stud-
ies with Opn” mice. In these mice, there is a
long-term engraftment defect after transplan-
tation with wild-type Lineage Sca1*c-Kit* cells
and a compromised ability of the Opn” BM
microenvironment to sustain hematopoiesis.
These effects seem to be indirect, since there
is no evidence, in vitro, of a chemotactic role
for Opn on HSCs. Moreover, the high extracel-
lular [Ca*]°, maintained by the osteoclasts
activity, promotes HSC localization to the
endosteal niche, through calcium-sensing
receptor (CaR): CaR* HSCs show a defect in
the binding to collagenase I present at the
bone endosteal surface.
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Migration of HSCs from the endosteal to the
perivascular niche is regulated by c-kit/Stem
Cell Factor (SCF); CXC chemokine receptor 4
(CXCR4)/stromal-cell derived factor-1 (SDF-1)
and granulocyte colony-stimulating factor (G-
CSF), pathways.”**# Endothelial cells and
reticular cells have been shown to produce
SDF-1, generating a gradient from the perivas-
cular to the endosteal niche, which may thus
promote HSCs migration, since CXCR4 is
expressed on HSC.** Mobilization of HSCs
from the endosteal to the vascular niche is
essential for hemopoietic recovery following
myeloablation. In this case, the soluble form of
membrane stem cell factor (sSCF), released
from osteoblasts after cleavage by SDF-1-
induced matrix metalloproteinase-9, promotes
HSC homing to the perivascular niche by inter-
acting with its receptor c-Kit."* G-CSF, pro-
duced by osteoblasts, promotes the mobiliza-
tion of HSCs into the peripheral blood by up-
regulating CXCR4 expression on HSCs and
decreasing SDF-1 expression in the BM. G-
CSF, in fact, induces the expression of prote-
olytic enzymes such as elastase, cathepsin G,
MMP-2, and MMP-9, which cleave SDF-1.%#

Adhesion

Bone marrow niche promotes hematopoietic
stem cells adhesion

HSC adhesion to the endosteal niche is reg-
ulated by different molecular interactions
including N-cadherin/B-catenin; Tie-2/Angio-
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poietin-1 (Ang-1); Osteopontin (Opn)/&1 inte-
grin; Annexin II (Anxa2)/Anxa2 receptor
(Anxa2r) and CaR-collagen I pathways.""*#3
The asymmetrical distribuition of N-
cadherin/B-catenin on the cell surface of HSCs
and osteoblasts, respectively, and, in particu-
lar, the localization of these molecules at the
site of interaction of LT-HSC with spindle-
shaped N-cadherin*CD45  osteoblastic (SNO)
cells, suggested a role for N-cadherin/-
catenin in HSCs adhesion on the endosteal
niches." Studies performed by Kiel and collab-
orators failed to show significant numbers of
N-cadherin expressing HSCs, questioning
whether HSC adhesion to osteoblasts is medi-
ated by N-cadherin."

Tie2, a receptor tyrosine kinase expressed
by a small fraction of BM cells highly enriched
for HSC activity in adult murine BM, binds its
ligand, Ang-1, expressed by osteoblasts at the
surface of trabecular bone.” Regarding Opn,
its expression is restricted to the endosteal
bone surface and contributes to HSCs adhe-
sion to the endosteal region via 81 integrin
expressed by HSC.” Osteoblasts also express
high levels of Anxa2, a calcium-dependent
phospholipid-binding protein, and it has been
shown, both in vitro and in vivo, that Anxa2
regulates HSCs homing and binding to the
endosteal niche, through the binding to its lig-
and Anxa2r.®

Adhesion of HSCs to the perivascular niche
is mediated by cu1f! integrin/vascular cell adhe-
sion moleculel (VCAM1) and o+E-selectin
interaction.®** a4} integrins, expressed by
HSCs, interact with VCAM-1, constitutively
expressed on BM endothelial cells.” Since
inactivation of E-selectin and o+ integrin
reduces drastically hematopoietic progenitor
and stem cell (HPSC) homing into lethally
irradiated mice, it has been proposed that E-
selectin ligands and o integrin cooperate in
HSC adhesion to perivascular niches.”

Proliferation versus quiescence

Endosteal niches promote HSC quiescence
The balance between HSC proliferation and
quiescence is likewise regulated by several
pathways. In the endosteal niche several inter-
actions, involved in the maintenance of HSC
quiescence, have been identified: Tie-
2/Angiopoietin-1 (Ang-1); thrombopoietin
(THPO)/MPL; Opn/OpnR; parathyroid hormone
(PTH)/PTH receptor (PTHr) and
Notchl/Jaggedl. #5354 Tje2 which is
expressed by SP-HSCs, binds Ang-1* expressed
on osteoblasts and induces HSC quiescence.**
LT-HSCs expressing MPL, the THPO receptor,
are closely associated with THPO-producing
osteoblasts. The THPO/MPL pathway is
involved in HSC quiescence through activation
of genes coding for negative regulators of cell
cycle, such as p12°" and p57**, and inhibition
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Table 1. HSC properties are regulated by molecular cues conveyed by the bone marrow

endosteal and vascular niches.

Chemotaxis
Opn®
CaR/Ca?
c-Kit/SCF*
Adhesion N-cadherin/B-catenin®

Tie2/Ang1"
rintegrin/Opn®
Anxa2/Anxa2r *

CXCR4/SDF-1**
G-CSF*

o1 integrin/VCAM1*
a4 integrins/E-selectin”

CaR/Collagen [®
Quiescence / proliferation MPL/THPO
Tie2/Ang1#*
Notch1/Jagged1#* wnt/p catenin™*
OPHQS,Z!)
PTH/PTHr"
Differentiation FGF-4"

SDF-1/CXCR4®
oufdr integrin/VCAM®
VE-Cadherin®
Notch1/Delta**!

of positive regulators, such as c-myc.* This
pathway is also involved in promoting HSCs
proliferation in the perivascular niche.**
Thus, THPO/MPL pathway exerts distinct func-
tions on HSC, depending on cell localization.
Opn/OpnR, instead, contributes to the mainte-
nance of HSC quiescence either by inhibiting,
in a dose-dependent manner, the entry into cell
cycle and/or by reducing cell apoptosis.”* A
mouse genetic model, in which the gene PTHr
is constitutively active in osteoblasts, showed
an increase in HSCs along with osteoblasts.
Moreover, there was high expression of Notch
I ligand, Jagged, on osteoblasts, suggesting
that the PTH/PTHr pathway can promote HSC
proliferation through activation of Notch.“
Several gain- and loss-of-function experiments
of Notch target genes and ligands have sug-
gested a role for Notch in HSC quiescence and
self-renewal.” However, recently Maillard et al.
have demonstrated rather conclusively that
inactivation of the Notch pathway in HSCs
does not interfere with their self-renewal;
transplantation of hematopoietic progenitors
with inhibited Notch signaling induced stable
long-term reconstitution of irradiated hosts
and a normal frequency of progenitor fractions
enriched for LT-HSCs.*

Perivascular niches promote hematopoietic
stem cells proliferation and self-renewal

In the vascular niche, HSC proliferation is
associated with (THPO)/c-mpl and Wnt/p
catenin pathway. THPO is expressed on BM
stromal cells and acts synergistically with ery-
thropoietin to promote erythroid progenitors
and megakaryocytes proliferation. THPO stim-
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ulates c-myc mRNA expression through a
PI3K- and MAPK-dependent pathway, thereby
promoting HSC proliferation.””* Wnt proteins
are expressed by BM stromal cell and exposure
to Wnt was shown to stimulate proliferation
and self-renewal of HSCs in vitro."*

Differentiation

Perivascular niches mediate hematopoietic
stem cell differentiation

Differentiation of HSCs occurs only in the
perivascular niches and is mediated by FGF-4;
SDF-1; VCAM-1/0:4R ; VE-cadherin and Notchl
pathway.®##*# SDF-1 is necessary for
myelopoiesis and B-lymphopoiesis, as shown
by the severe reduction of B-lymphopoiesis
and lack of BM myelopoiesis in CXCR4- and
SDF-1 deficient mice. SDF-1 and FGF-4 pro-
mote megakaryocyte maturation and platelet
production: FGF-4 supports the adhesion of
megakaryocytes to sinusoidal BM endothelial
cells (BMECs), thereby enhancing their sur-
vival and maturation, while SDF-1 augments
platelet production by promoting their migra-
tion across BMECs."*** VCAM-1 enhances the
interaction of cuf: integrin * megakaryocytes
with BMECs. VE-cadherin is essential for
VCAM-1 expression in BMECs, which in turn is
required for FGF-4 mediated adhesion and
SDF-1-induced transendothelial migration of
megakaryocytes. Neutralizing antibodies to
VE-cadherin decrease the localization of
megakaryocytes to the vascular niche and dis-
rupt megakaryocyte maturation and throm-
bopoiesis."” Notchl seems to provide a key reg-
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ulatory signal in determining T- versus B-lym-
phoid lineage commitment. Mice transplanted
with BM, transfected for retroviruses encoding
a constitutively active form of Notchl, three
weeks after transplantation showed immature
CD4+CD8* T cells in the BM and a block in
early B-cell lymphopoiesis.” Notch1 activation
seems to be driven by Delta-1-expressing stro-
mal cells.**

Hemopathies require the support of aber-
rant bone marrow niches

Several hemopathies are characterized by a
pre-malignant phase that progresses to a
malignant phase. The molecular basis of this
progression remains poorly understood. The
data in the literature suggest the likelihood of
such progression is very low and a malignant
clone can remain “stable” for years. Moreover,
in several diseases both phases are character-
ized by virtually the same genetic changes.™*
Taking in consideration these aspects, it is
legitimate to speculate that the genetic
changes are necessary for the immortalization
of a malignant clone but insufficient to pro-
mote the progression to a malignant phase. So
other factors must take part in the progression.

The role of the hematopoietic BM microen-
vironment in malignant progression has been
studied extensively and its importance was
well illustrated in recent, in vivo, studies.
Widespread inactivation of retinoblastoma pro-
tein (Rb) resulted in myeloproliferative dis-
ease, characterized by extramedullary hemo-
poiesis and increased mobilization and differ-
entiation of HSCs from the BM. The phenotype
was not recapitulated upon inactivation of Rb
in HSCs maintained in wild-type environ-
ment.”®  Moreover, Mx-Cre*Pten’/*Cmice
develop rapid and aggressive myeloprolifera-
tion that progressed to leukemia in 4-5 weeks
post deletion. When Pten deletion was active in
the context of a wild-type BM microenviron-
ment, phenotypic and functional HSCs were
lost without evidence of myeloproliferation or
transformation.** Finally, BM from wild-type
mice transplanted into mice with a deficient
retinoic acid receptor y (RARy) microenviron-
ment rapidly develop myeloproliferative syn-
dromes (MPS).* These results strongly sup-
port the notion that the progression of the
hemopathies is not entirely cell autonomous
but depends on interactions between malig-
nant cells and the BM microenvironment
(BMM). As described above, BM niches sup-
port HSC properties such as adhesion, quies-
cence, chemotaxis and differentiation, and
regulate the balance between self-renewal and
differentiation. The idea outlined in this
review is that alteration of the two BM niches,
triggered by the aberrant expression of key
molecules or cellular cues between the
endosteal and the perivascular niche, impairs
HSC responses, contributing to the progres-
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sion of hemopathies. In chronic myeloid
leukemia (CML), myelodysplastic syndromes
(MDS) and multiple myeloma (MM) circulat-
ing endothelial cells (CECs), mobilized from
the BM, share chromosomal aberrations with
the malignant hematopoietic cells.”* These
malignant CECs suggest the presence of aber-
rant niches in the BMM. Moreover, in B-cell
lymphomas, identical genetic aberration could
be found both in malignant cells and in the
microvascular BM endothelial cells.”*!

Irradiation and chemotherapy can change
the BMM inducing hematopoietic and
endothelial injury and allowing cells, proteins
and cytokines to move between the vascular
and endosteal niches.” Radiation-induced
injury can also contribute to cell damage in the
microenvironment in an indirect way, as a con-
sequence of an inflammatory-type response.®
Moreover, it has been shown that ionizing irra-
diation results in altered osteoblast differenti-
ation ability of BM mesenchymal stem cells,
destruction of the endosteal niche and conse-
quently hematopoietic injury.” Another possi-
bility is that malignant cells through direct and
indirect signaling can modify the features of
the vascular niche. For example, factors pro-
duced by acute lymphoblastic leukemia (ALL)
cells can induce proliferation, migration and
morphogenesis of human BM vascular
endothelial cells.**" The tumor-derived factor
VEGF and tumor necrosis factor-o (TNF-at)
produced in the tumor microenvironment have
been shown to modify the phenotype of
endothelial cells inhibiting ICAM-1 and VCAM-
1 clustering on endothelial surfaces with
implications for immune-cell trafficking.®
Moreover, our own data suggests TNF-a is cru-
cial for the onset and also for the progression
of BM dysfunction, such as in MDS (Cachaco
et al., 2009, unpublished data).

The possible mechanisms by which aberrant
BM niches modify HSCs properties are dis-
cussed.

Migration/chemotaxis

Aberrant niches may promote recruitment
of malignant hematopoietic stem cells

The perivascular niche expresses unique
combinations of cell adhesion molecules
and/or chemokines capable of attracting malig-
nant HSCs. For example, it has been shown, in
vitro and in vivo, that E-selectin and SDF-1 are
expressed in vascular “hot spots” correspon-
ding to the regions that attract leukemic
cells.*" Distruption of the interaction between
SDF-1 and its receptor CXCR4 inhibits the
homing of Nalm-6 cells, an acute lymphoblastic
leukemia cell line, to the vascular niche.”
These observations raise the possibility that E-
selectin and /or SDF-1 can regulate malignant
cell homing. Moreover, BM endothelial and
stromal cells seem involved in the migration of
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ALL cells beneath BM fibroblast layers: both
cell types produce SDF-1, thereby enhancing
the adhesion molecules involved in the migra-
tion and homing of these cells to the BM.™"

Adhesion

Aberrant niches mediate cell-adhesion-
mediated drug resistance (CAM-DR)

It has been demonstrated, in vitro and in
vivo, that cell-cell adhesion between hemato-
poietic cells and components of the BM niches,
such as stromal cells, is involved in drug resist-
ance in AML."" AML resistance to chemother-
apy seems to be promoted by the adhesion-
dependent secretion of WNT antagonists by
osteoblasts.” CAM-DR is mediated by integrins
o+ and 1, as shown in MM, CML and AML cell
lines.™ Direct correlation has been found
between the expression of integrins that medi-
ate adhesion to FN and drug resistance.

Coculture of ALL cells lines with BM stroma
cells (BMSCs) resulted in reduced apoptosis
induced by etoposide. In this stroma model,
drug resistance required direct cell-cell con-
tact, since it could not be conferred by the addi-
tion of stromal conditioned media.* Moreover,
the presence of BMSCs during treatment of
myeloma cell lines significantly decreases the
apoptosis during exposition of mitoxantrone,
an inhibitor of topoisomerase IL* Notch-1 sig-
naling seems to be involved in protection of
MM from drug-induced apoptosis: overexpres-
sion of Notch-1 in Notch-1(-) myeloma cells
up-regulated p21 and resulted in protection
from drug-induced apoptosis.” BM niches may
provide a survival advantage for malignant
cells following initial drug exposure and facili-
tate the acquisition of acquired drug resist-
ance, determining disease relapse following
chemotherapy.

Aberrant niches show impaired adhesive
capacity, leading to a loss of quiescence
and consequently to expansion of
malignant hematopoietic stem cells

It has been hypothesized that HSC mobiliza-
tion results from impaired adhesion to BM
niches, allowing their migration into the
peripheral blood, spleen and other extra-
medullary sites. This could explain the
increase in circulating CD34* cells reported in
primary myelofibrosis (PMF) patients.®*

The impaired adhesion could be explained
by several mechanisms.

Altered expression of membrane adhesion
molecules and integrins. For example, HSCs of
CML patients have reduced adhesion mole-
cules expression including L-selectin, CD44
and N-cadherin. This decrease correlates with,
in vitro, reduced adhesive capacity of HSCs
from CML patients.*

A disruption of CXCR4/SDF-1 axis. In idio-
pathic myelofibrosis (IM) the constitutive
mobilization of CD34- cells could be the conse-

OPEN aACCESS



press

N

quence of the creation of a proteolytic
microenvironment within the BMM. It has
been shown that malignant cells and the BMM
produce metalloproteinase.*™® Thus, the
increased production of metalloproteinase-9
might disrupt adhesive interaction between
CD34+ HSCs and BM niches through degrada-
tion of SDF-1 or cleavage of its receptor
CXCR4, leading to the release of the HSCs into
the peripheral blood.”*

Proliferation vs. quiescence

Aberrant niches determine an imbalance
between proliferation and quiescence,
accelerating the onset and progression of
malignancy

BM cells display a different set of adhesion
molecules, extracellular matrix elements,
growth factors and chemokines. Spleen fibrob-
lasts isolated from PMF patients, in contrast to
primary fibroblasts purified from the spleen of
healthy subjects, are able to support the prolif-
eration of autologous patient CD34* cells, but
not that of their normal counterparts.”
Moreover, it has been shown that somatic
mutations that occur in BM stromal cells, such
as p53 mutations, render these cells supportive
of ALL growth.” Finally, aberrant vascular nich-
es produce several factors, such as VEGF; IL-6;
granulocyte-macrophage and granulocyte
colony-stimulating factors, that are able to sup-
port malignant hemopoiesis.”* For example, it
has been shown that coculture of AML cells
with microvascular endothelial cells increases
proliferation and inhibits apoptosis of AML
cells.”

Providing self-renewing and proliferative
cues to malignant HSCs. ALL stromal cells reg-
ulate self-renewal and proliferation of a
Philadelphia-chromosome positive (Ph*)/VE-
cadherin* subpopulation of leukemia cells by
promoting the expression of VE-cadherin, sta-
bilizing 3 catenin and up-regulating BCR-abl
transcripts.” This way, due to the stromal sup-
port, malignant cells circumvent the require-
ment of exogenous Wnt signaling for self-
renewal. Human MM cells also become inde-
pendent of the IL-6/gp130/STAT3 survival path-
way when cocultured in the presence of
BMSCs.* This evidence confirms the idea that
BMSCs can provide alternative survival and
proliferative signals to BM malignant cells.

Angiogenesis, the branching of new
microvessels from pre-existent blood vessels,
is kept at set point in which there is a balance
between pro- and anti-angiogenic molecules.
The angiogenic switch, unbalanced set point
in favor of pro-angiogenic molecules, favors
the production of new microvessels.”
Increased angiogenesis has been described in
a number of hemopathies.”" The extent of
BM neo-vessel formation correlates also with
patient prognosis and these hemopathies are
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sensitive to anti-VEGF and VEGF receptor
treatments."*'” The expanded BM endotheli-
um may support malignant HSC growth by pro-
tecting them from chemotherapy-induced
apoptosis and/or promoting their proliferation
in a paracrine way through the release of fac-
tors such as G-CSF, IL-10, IL-6 and vascular
endothelial growth factor-C (VEGF-C)."""'"

Aberrant vascular niches can induce
quiescence in malignant cells playing a role
in tumor maintenance

Adhesion of malignant HSCs to BMSCs may
induce quiescence by inhibiting cell prolifera-
tion. For example, Notch-1 activation in MM
cells, after incubation on BMSCs, results in the
accumulation of the cells in G0/G1 phase of cell
cycle.**'™ Aberrant niches may thus contribute
to the maintenance of a malignant pool of
HSCs.

Differentiation

Aberrant niches can induce malignant
transformation of normal hematopoietic
stem cells

The donor cell leukemia (DCL), a hemopa-
thy following hemopoietic cell transplation, is
apparently the result of malignant transforma-
tion of normal donor hematopoietic cells in the
transplant recipient.'” One of the hypotheses
is that the host microenvironment in which
the original malignancy developed may trigger
malignant transformations in donor cells,
favored by the immunocompromised status
after transplantation and by perturbation of
the host BMM following multiple rounds of
chemotherapy.

Studies in Drosophila Melanogaster, by Kai
et al., suggest that a vacant niche can engage
ectopic cells, normal hematopoietic and non-
hematopoietic cells, with a resultant change in
phenotype. Depending on the specific system,
it seems that non-stem cells can acquire either
a more proliferative phenotype or revert to a
stem cell-like condition. These findings
strongly support the possibility that BM niches
can contribute to hemopathies, inducing aber-
rant transformation of normal cells, including
HSCS'IID,III

Bone marrow niches as therapeu-
tic target

Based on the idea that the BMM has a rele-
vant role in the progression of hemopathies,
novel therapeutic approaches are being devel-
oped to revert the malignant phenotype by tar-
geting environmental cues. The strategies
used until now can be summarized into three
categories.

The first strategy is to modify the niche
itself. For example, Ballen and colleagues
have tested the hypothesis to use parathyroid
hormone (PTH) to augment the engraftment
efficiency of cord blood transplant, modifying
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the receptivity of the endosteal niche."* PTH,
acting also on the perivascular niche, can be
used for the treatment of ischemic vascular
disease." Moreover, it has recently been
shown that pharmacological use of PTH
increases the number of HSCs mobilized into
the peripheral blood for stem cell harvests,
protects stem cells from repeated exposure to
cytotoxic chemotherapy and expands stem
cells in transplant recipients."*

The second strategy is to abrogate the
interaction between malignant HSCs and BM
niches, by blocking their physical binding or
the growth factors secreted by the BMM. As
described before, the chemokine axis SDF-
1/CXCR4 is involved in the retention of HSCs
within the BM. Thus, destruction of this inter-
action allows the mobilization of HSCs from
the BM to the peripheral blood. This approach
has been established clinically using G-CSF or
antibody against CXCR4."*'" The combination
of both result in an enhancement of HSC
mobilization from the BM."® The proteasome
inhibitor PS-341, currently used in MM thera-
py, blocks the growth of MM cells by decreas-
ing their adherence to BMSCs and the related
protection against drug-induced apoptosis.'
Another strategy is the inhibition of TNF-a
production by BM cells, with a monoclonal
antibody against the extracellular domain of
TNF-a,, called infliximab. Two studies have
investigated the use of infliximab in patients
with low-risk MDS. In both reports, the drug
showed a limited but significant activity and
no particular side-effects.’®

Another recently approved therapeutic
approach involves inhibiting angiogenesis;
several inhibitors of VEGF are currently used
in the treatment of different hemopathies.'™ '

The concept behind most of these thera-
peutic approaches implies that to increase
therapeutic efficacy it is necessary to use a
strategy in which the seed (malignant HSCs)
and the soil (altered BMM) must be targeted
simultaneously.

Conclusions

This paper highlights the key data demon-
strating that changes in the signals delivered
by BM endosteal and/or perivascular niches
may lead to an impairment of survival, differ-
entiation and proliferation of HSCs. Thus,
aberrant BM niches participating in HSC regu-
lation contribute in a crucial way to the pro-
gression of hemopathies. Therefore, the
molecular cues that contribute towards BM
niches alteration during the onset and devel-
opment of hemopathies represent a new chal-
lenging therapeutic target.
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