
energies

Article

Efficient Energy Consumption Scheduling:
Towards Effective Load Leveling

Yuan Hong 1,*, Shengbin Wang 2 and Ziyue Huang 3

1 Department of Information Technology Management, University at Albany, SUNY, 1400 Washington Ave.,
Albany, NY 12222, USA

2 Department of Marketing Transportation & Supply Chain, North Carolina A&T State University,
1601 E. Market St., Greensboro, NC 27411, USA; swang@ncat.edu

3 Department of Information & Supply Chain Management, University of North Carolina at Greensboro,
1400 Spring Garden St., Greensboro, NC 27412, USA; z_huang4@uncg.edu

* Correspondence: hong@albany.edu

Academic Editors: Pierluigi Siano and Miadreza Shafie-khah
Received: 7 November 2016; Accepted: 12 January 2017; Published: 17 January 2017

Abstract: Different agents in the smart grid infrastructure (e.g., households, buildings, communities)
consume energy with their own appliances, which may have adjustable usage schedules over a
day, a month, a season or even a year. One of the major objectives of the smart grid is to flatten
the demand load of numerous agents (viz. consumers), such that the peak load can be avoided
and power supply can feed the demand load at anytime on the grid. To this end, we propose two
Energy Consumption Scheduling (ECS) problems for the appliances held by different agents at the
demand side to effectively facilitate load leveling. Specifically, we mathematically model the ECS
problems as Mixed-Integer Programming (MIP) problems using the data collected from different
agents (e.g., their appliances’ energy consumption in every time slot and the total number of required
in-use time slots, specific preferences of the in-use time slots for their appliances). Furthermore,
we propose a novel algorithm to efficiently and effectively solve the ECS problems with large-scale
inputs (which are NP-hard). The experimental results demonstrate that our approach is significantly
more efficient than standard benchmarks, such as CPLEX, while guaranteeing near-optimal outputs.

Keywords: smart grid; scheduling; load leveling; demand response; demand side management

1. Introduction

The smart grid integrates the communication network into the existing power grid and provides
operational intelligence via analyzing data collected from different agents on the grid [1], including
power suppliers (e.g., utilities) and energy consumers (e.g., households, factories, universities and
hospitals). For instance, smart meters are installed at the power consumer end to monitor the energy
usage in a real-time fashion; the meter readings are continuously transmitted to the electric utility with
a time interval as frequent as 15 min [1]. Analyzing such fine-grained meter readings (viz. the energy
demand) functions for many applications for electric utilities and consumers on the grid, such as load
forecasting [2], billing [3], regional statistics [4] and energy theft detection [5].

The time series power usage of different consumers directly generates the demand load (also time
series) of the power supply. In reality, the demand load of both residential and commercial buildings
highly fluctuates at different times [6], e.g., peak vs. off-peak times. Such fluctuation would result in
many issues on the power grid. For instance, it makes it difficult for the utilities to always balance their
power supply and demand load within a tight margin, then the energy transmission and production
might not be optimal. Furthermore, power blackouts may occur if the power supply cannot feed the
demand load over time. At the same time, the power quality (e.g., volts) of individual consumers might

Energies 2017, 10, 105; doi:10.3390/en10010105 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/journal/energies


Energies 2017, 10, 105 2 of 27

be affected at peak times. Therefore, the smart grid has begun to develop techniques that can flatten
the demand load of different buildings, communities or geographical areas. Specifically, many utilities
try to incentivize a flattened demand load of the consumers by adopting dynamic pricing plans for
the energy consumption times (e.g., time-of-use plan http://www.pge.com/: lower price at off-peak,
higher at on-peak and highest at critical peak). Furthermore, the ABB Group (Automation and Power
Technologies) (http://new.abb.com/substations/energy-storage-applications/load-leveling) provides
a power storage-based solution (e.g., an energy bank or battery) to store the excessive energy during
periods of light load and deliver it at peak times. More recently, a series of intelligent load management
techniques [7–10] was proposed for smart homes to automatically implement the dynamic schedules
for appliances, e.g., turning off unnecessary lights, changing the time for washing clothes, such that
the peak electricity demand can be flattened to some extent.

However, most of the existing load leveling techniques have some drawbacks or limitations. First,
the dynamic pricing plans highly rely on the behavioral response from each consumer to flatten the
demand load. In the case that the consumers do not care about the high price of energy consumption
at peak times, the plan would not be effective for load leveling. Since the response is somewhat
random from the consumers, it is also challenging to quantify the effectiveness of load leveling.
Second, the energy storage-based techniques require additional devices or facilities to implement
the scheme and extra maintenance cost. Finally, the intelligent load management techniques [7–10]
only relatively flatten the peak demand towards an optimal goal; however, the proposed solutions
neither quantitatively measure the optimum nor converge towards the optimal objectives in their
approaches. Meanwhile, their implementation is limited for only one household (a single smart home),
rather than multiple consumers.

To address the above concerns, we propose a novel agent-based approach to flatten the demand
load by optimally scheduling the usage times for appliances held by a single or multiple agent(s) (agent
refers to an energy consumer in this context), motivated as follows. Agents (e.g., smart homes [7,10]) may
have many appliances with adjustable usage schedules. For instance:

1. When to use some appliances or machines is not strictly tied to fixed time slots everyday.
For instance, the air conditioner can be programmed to run at different times; washing clothes
can be postponed to a certain time [10]; in a factory, machines may have adjustable schedules to
manufacture and assemble parts in the morning or afternoon of a day or different days.

2. A rechargeable battery is attached with an increasing number of appliances such as electric
vehicles, laptops, cordless vacuum cleaners, cell phones, tablets, etc. The batteries can be charged
at any time, whereas the appliances can be used at other different times. In these cases, the battery
charging time will be recorded as power consumption time by the meters.

More specifically, we focus on a single or multiple agents’ appliances, each of which has a set of
possible in-use time slots, and optimize their schedules to align the time series power usage in the
specified time slots (involved in scheduling) to a flattened or fixed amount. For instance, Figure 1
presents a real-world household’s time series power consumption over 3 h [11] (which fluctuates with
several peak loads). We formulate a mathematical model to produce an optimal energy consumption
schedule for all of the appliances (note that some appliances have adjustable usage schedules, while
some other appliances may have fixed usage schedules; we consider both in our model, as discussed in
Section 7.1), which lays the time series aggregated energy consumption (of all of the appliances) close
to an ideal fixed amount, i.e., the horizontal line in Figure 1. Notice that, although the optimal solution
of the scheduling problem may not be able to get the exact horizontal line, the overall deviation is
minimized as a small number close to zero, as shown in the experiments.

Given p agents (each agent holds some appliances), the scheduling problem can be applied to:
(1) each agent’s appliances; or (2) all of the agents’ appliances together. For Case (1), each agent locally
formulates and solves the scheduling problem where p = 1. Then, each agent’s demand load at
different times can be flattened with its own scheduling solution, and the overall demand load of



Energies 2017, 10, 105 3 of 27

all p agents (e.g., households in a community) can be automatically flattened to a stable aggregated
amount. For Case (2), the overall demand load can be directly flattened using the scheduling solution
(jointly derived from all p agents). Thus, while demanding a fixed amount of load from the grid at
different times, our scheduling-based load leveling technique can greatly improve the reliability of
power supply from the electric utility.

0

200

400

600

800

1000

1200

1400

1600

1800
5:

00
 P

M

5:
04

 P
M

5:
08

 P
M

5:
12

 P
M

5:
17

 P
M

5:
21

 P
M

5:
25

 P
M

5:
29

 P
M

5:
34

 P
M

5:
38

 P
M

5:
42

 P
M

5:
46

 P
M

5:
51

 P
M

5:
55

 P
M

5:
59

 P
M

6:
03

 P
M

6:
08

 P
M

6:
12

 P
M

6:
16

 P
M

6:
20

 P
M

6:
25

 P
M

6:
29

 P
M

6:
33

 P
M

6:
37

 P
M

6:
42

 P
M

6:
46

 P
M

6:
50

 P
M

6:
54

 P
M

6:
59

 P
M

7:
03

 P
M

7:
07

 P
M

7:
11

 P
M

7:
16

 P
M

7:
20

 P
M

7:
24

 P
M

7:
28

 P
M

7:
33

 P
M

7:
37

 P
M

7:
41

 P
M

7:
45

 P
M

7:
50

 P
M

7:
54

 P
M

7:
58

 P
M

P
ow

er
 C

on
su

m
pt

io
n 

(W
at

ts
)

Without Scheduling

Ideal SchedulingOven
Dryer

TV

Microwave

Range Hood

Kettle

Figure 1. Energy consumption without scheduling vs. ideal scheduling.

In this paper, we define such a scheduling problem for load leveling as the Energy Consumption
Scheduling (ECS) problem. Notice that the ECS problem can be integrated into both the Demand
Response (DR) programs [9,12] and the Demand Side Management (DSM) programs [13–17] in shifting
load to off-peak times so as to benefit both electricity consumers and utilities. More specifically, if the
automated control systems are in place, our ECS problem can be implemented as a DR program
that encourages energy consumers to make short-term reductions in energy demand and consume
the electricity at the off-peak times. Similarly, our ECS problem can be also implemented as a DSM
program to pursue energy efficiency from a long-term point of view with possible facility upgrade,
such as building automation upgrades.

The ECS problem will be formulated among one or multiple agents (e.g., households), any of
which (or a trusted-third party) can be the problem solver and owns the scheduling facility to derive
the optimal schedule with inputs from all of the agents. Specifically, all of the agents are expected to
send the information of their appliances (e.g., consumption rate) and the possible time slots of their
appliances to the problem solver, which then formulates and solves the optimization problem to obtain
the optimal consumption times of all of each agent’s involved appliances. After solving the problem,
the problem solver will distribute the optimal solution to the corresponding agents for running their
appliances per their optimal schedules. In the real-world Internet of Things (IoT), formulating and
solving the ECS problem, as well as the communication among agents can be implemented in the
current smart grid infrastructure [1], which enables communication among entities on the existing
power grid (viz. agents with computation capacity, such as smart homes [7,10]). The optimal solution
can be implemented in two different ways: manual and automatic. For the former one, each agent
will receive a message of the optimal running times of its appliances. Then, each agent can manually
turn on their appliances per the scheduled times. For the latter one, each agent’s share of the optimal
solution (the scheduled times of its appliances) can be automatically implemented in the existing DR
or DSM devices (e.g., a load control switch). In addition, the next generation smart grid would enable
households or buildings (i.e., a smart home [7,10]) to automatically switch their appliances on and off
at pre-scheduled time slots; the optimal solutions of our ECS problem can be directly implemented in
such a smart home environment. Thus, our scheduling problem can be smoothly integrated into the
IoT to function as load leveling at the demand side.

Note that the ECS problem is a fundamental energy consumption scheduling problem, which
outputs a specific time to turn on each appliance. Then, the output schedules can be implemented in
different power grid infrastructures (e.g., Asia, Europe and North America), as long as different agents
can communicate with each other. Although the layouts and configurations in the load connection and



Energies 2017, 10, 105 4 of 27

power distribution of such systems are quite different, each agent (e.g., a household) in such systems
can manually or automatically turn on its appliances according to the received scheduling time in the
optimal solution. In summary, the main contributions of this paper are given as follows:

• We propose a novel Energy Consumption Scheduling (ECS) problem for a single or multiple
(energy demand) agents to flatten their demand load.

• We extend the ECS problem to a more generalized form (the GECS problem) by enabling each agent
to specify a range of usage time for each of their appliances. This can complete the scheduling as
the appliances’ required usage times are unknown at the scheduling stage.

• Both ECS and GECS problems are mathematically modeled as Mixed-Integer Programming (MIP)
problems. We develop a novel effective algorithm (temporal decomposition) for efficiently solving
them. Note that the algorithm can return a near-optimal solution for the ECS/GECS problem with
∼1,000,000 variables in reasonable time.

• The experimental results demonstrate that our algorithm is significantly more efficient than the
standard benchmarks (e.g., IBM ILOG CPLEX 12.2), while ensuring near-optimal solutions.

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature.
Sections 3 and 4 present the Energy Consumption Scheduling (ECS) problem and the Generalized
Energy Consumption Scheduling (GECS) problem, respectively. Then, Section 5 illustrates our novel
algorithm for solving the ECS and GECS problems. Section 6 demonstrates the experimental results,
and Section 7 gives some discussions. Finally, Section 8 concludes the paper and discusses the
future work.

2. Related Work

The smart grid overlays the power distribution network with a communication network [1],
collects massive sensor data and develops automation technologies to improve the grid performance [9].
As a critical component in smart grid infrastructure, demand response management [18] aims
at optimizing the power consumption at the demand side: electricity consumers. Specifically,
Demand-Side Management (DSM) enables operational intelligence at the single home level and
utilizes the home area network to interact with the power grid. For instance, the power usage of each
appliance can be monitored in the smart home [7,10]. An increasing number of appliances, such as
lights, HVACs (Heating, Ventilating and Air Conditioning) and refrigerators, can be programed to
optimize the energy consumption, cut down the utility bill (e.g., automatically shutting down heating
as temperature is high) and support the Internet of Things (IoT).

The proposed agent-based energy consumption scheduling in this paper pursues load leveling by
further optimizing the in-use schedule of the appliances. Besides our agent-based model, some other
approaches were adopted in the industry and academia, including the time-of-use energy pricing plan,
storing electricity at light load and delivering it at peak times (e.g., ABB Group), and home automation
(e.g., a least slack first policy/algorithm proposed by Barker et al. [10] in the SmartCap application).
In addition, load leveling problems are also solved in some specific environments, such as reducing
T & Dline losses [19], fault-tolerant distributed computing systems [20] and system-wide demand
response management [21]. As discussed in Section 1, our agent-based energy consumption scheduling
is different from the prior work, primarily in two ways. First, our scheduling solution could converge
towards an optimal or near-optimal load leveling from the global point of view (multi-agents) while
being subjected to the constraints derived from the in-use schedule of the appliances. Second, with the
participation of multiple agents, the demand load can be flattened to a stable amount with reduced
deviation of the original routine schedule of the appliances (as discussed in Section 7).

Furthermore, scheduling problems have been studied for different applications in the smart grid
infrastructure. For example, Lin and Tsai [22] proposed a home energy management system facilitated
by non-intrusive load monitoring techniques to save on electricity bills via scheduling. Lu et al. [23]
proposed a multi-objective energy consumption scheduling to minimize the total energy consumption



Energies 2017, 10, 105 5 of 27

cost and maximize the social utility. Paterakis et al. [24] mathematically formulated the problem of
distribution network reconfiguration to determine the optimal radial configuration by minimizing
the active power losses and a set of commonly-used reliability indices w.r.t. the number of customers.
Chetto [25] studied the scheduling for real-time jobs, which are executed on a uniprocessor system
supplied by a renewable energy source. Wang et al. [26] studied the energy-aware data allocation
and task scheduling problem on multiprocessor system for real-time applications. Lin et al. [27]
studied the problem of scheduling co-design for reliability and energy by minimizing total energy
while guaranteeing reliability constraints. Ahmed et al. [28] proposed a hybrid Lightning Search
Algorithm (LSA)-based Artificial Neural Network (ANN) to predict the optimal on/off status for
residential appliances, which can provide inputs (e.g., estimated some candidate running time slots
for appliances) to function as our ECS problems.

Finally, since the current centralized model of production and transmission is incredibly inefficient
and places the grid under great pressure [29,30], novel multi-agent systems [31] have significantly
advanced the development of the smart grid recently, especially demand response [21,28,32].
For example, Cha et al. [32] proposed a multi-agent system to perform scheduling for maximum
benefit in response to the electricity prices. Agrawal et al. [33] studied the decentralized power
supply restoration problem in the case that line failure occurs. The proposed multi-agent scheme can
optimally cover different sub-regions and in turn lead to the agent-based decentralized control [33].
Cerquides [29] presented a multi-agent framework for microgrids on the power grid to trade their
local electricity on the energy market. A network of households with solar panels or other distributed
energy resources are able to sell the excess electricity to other households, which demand extra energy
from the main grid. To deal with uncertainty in the microgrids’ energy generation, Strawser et al. [34]
developed a multi-agent power market for selling electricity, which can price reliability.

3. Energy Consumption Scheduling

We first study the ECS problem where each appliance’s overall energy consuming (“in-use”) time
is predetermined, e.g., the washer should be continuously running for 2 hours (specified by the agent
for scheduling). Some frequently-used notations are given in Table 1.

Table 1. Frequently-used notations.

p number of agents
n number of equally-divided time slots for scheduling
mi agent i’s number of appliances
i ∈ [1, p] agent index
j ∈ [1, mi] agent i’s appliance index
k ∈ [1, n] time slot index
eij the energy consumption of agent i’s j-th appliance in any time slot (if in-use)
cij agent i’s j-th appliance’s number of in-use time slots
∆i agent i’s overall consumption
xijk agent i’s j-th appliance is “on” or “off” in time slot k

3.1. Objective Function

As shown in Table 1, we denote the number of time slots as n, and agent i’s j-th appliance’s
number of in-use time slots as cij where cij ≤ n, i ∈ [1, p] and j ∈ [1, mi]. Letting eij be agent i’s
j-th appliance’s consumed energy in a single time slot, ∀i ∈ [1, n], all of agent i’s appliances’ overall
consumption in all of the time slots is a constant: ∆i = ∑mi

j=1(eijcij), where cij out of n time slots are
“on” for agent i’s j-th appliance.

Then, we can aggregate all of the p agents’ overall consumption in n time slots as ∆ = ∑
p
i=1 ∆i.

In addition, all agents’ overall average energy consumption within any single time slot (averaging
by time) is ∆

n . Recall that the goal of our model is to allocate all of the agents’ appliances’ energy



Energies 2017, 10, 105 6 of 27

consuming time slots, such that their total power consumption within every time slot is equal to or
close to ∆

n at all times. In other words, the sum of deviations between all of the agents’ overall energy
consumption within each time slot and ∆

n should be minimized. In addition, we define binary variables
∀i ∈ [1, p], ∀j ∈ [1, mi], ∀k ∈ [1, n], xijk ∈ {0, 1} as whether agent i’s j-th appliance is “on” or “off” in
time slot k. If xijk = 1, agent i’s j-th appliance is “on” in time slot k; otherwise, it is “off”. Thus, we
have the objective function:

min :
n

∑
k=1
|

p

∑
i=1

mi

∑
j=1

(xijkeij)−
∆
n
| (1)

Note that the length of time slots can be short to make every appliance be completely on or off in
every time slot, then the overall power consumption would be relatively stable in every time slot. If the
above objective value equals zero, the demand profile will be exactly a horizontal line (as shown in
Figure 1). In most cases, the optimal objective value cannot reach zero since the variables are discrete.
In those cases, we will pursue a minimum deviation close to zero, such that the demand profile would
be flattened towards the horizontal line ∆

n .

3.2. Constraints

3.2.1. Fixed Number of In-Use Time Slots

Essentially every agent’s each appliance (∀i ∈ [1, p] and ∀j ∈ [1, mi]) has an equality constraint:
the corresponding total number of in-use time slots (“on”) in the schedule is specified as cij:

s.t.
n

∑
k=1

xijk = cij (2)

Here, we have ∑
p
i=1 mi equality constraints in total.

3.2.2. Running Appliances in Continuous Time Slots

In the real world, many appliances might be on in continuous time slots, especially in the case
where the time slot is very short (e.g., 15 min or less). Then, meeting the following constraints is
equivalent to making all of the appliances running in continuous time slots (details are given in
Appendix A).

∀i ∈ [1, p], ∀j ∈ [1, mi] :

s.t.



xij1cij ≤ ∑
cij
k=1 xijk

xij2(2cij − 1) ≤ ∑
cij
k=1 xijk + ∑

cij+1
k=2 xijk

xij3(3cij − 3) ≤ ∑
cij
k=1 xijk + ∑

cij+1
k=2 xijk + ∑

cij+2
k=3 xijk

xij4(4cij − 6) ≤ ∑
cij
k=1 xijk + ∑

cij+1
k=2 xijk + ∑

cij+2
k=3 xijk

...
...

...

xij(n−2)(3cij − 3) ≤ ∑n−2
k=n−cij−1 xijk + ∑n−1

k=n−cij
xijk + ∑n

k=n−cij+1 xijk

xij(n−1)(2cij − 1) ≤ ∑n−1
k=n−cij

xijk + ∑n
k=n−cij+1 xijk

xijncij ≤ ∑n
k=n−cij+1 xijk

(3)

3.2.3. Agents’ Preferences of the In-Use Time Slots

If any agent has preferences for the usage time of their appliances, e.g., an agent intends to use
the washer for one hour in the morning instead of the whole day (scheduling is done for all of the
appliances over one day), then some local constraints can be derived for such partially adjustable
schedule. For instance, the ECS problem schedules n time slots, and agent i’s j-th appliance has a



Energies 2017, 10, 105 7 of 27

partially adjustable schedule (running cij continuous time slots between time slot n1 and time slot n2

where 0 < n1 < n2 < n and cij ≤ n2 − n1. A set of constraints can be given by letting ∀k ∈ [1, n1 − 1]
and ∀k ∈ [n2 + 1, n], xijk = 0. Similarly, xijk = 1 can be also specified by agent i based on its preferences.

Indeed, such constraints could reduce the complexity of the ECS problem. We can denote this
kind of constraint as “xijk = 0 or 1 if specified by agent i” in the mathematical models.

3.3. Problem Formulation

As a result, after combining the objective function (Equation (1)) and constraints (Equality
Constraints (2) and Inequality Constraints (3)), we can mathematically formulate our ECS problem
as below:

min :
n

∑
k=1
|

p

∑
i=1

mi

∑
j=1

(xijkeij)−
∆
n
|

∀i ∈ [1, p], ∀j ∈ [1, mi] :

s.t.



∑n
k=1 xijk = cij

xij1cij ≤ ∑
cij
k=1 xijk

xij2(2cij − 1) ≤ ∑
cij
k=1 xijk + ∑

cij+1
k=2 xijk

xij3(3cij − 3) ≤ ∑
cij
k=1 xijk + ∑

cij+1
k=2 xijk + ∑

cij+2
k=3 xijk

xij4(4cij − 6) ≤ ∑
cij
k=1 xijk + ∑

cij+1
k=2 xijk + ∑

cij+2
k=3 xijk

...
...

...

xij(n−2)(3cij − 3) ≤ ∑n−2
k=n−cij−1 xijk + ∑n−1

k=n−cij
xijk + ∑n

k=n−cij+1 xijk

xij(n−1)(2cij − 1) ≤ ∑n−1
k=n−cij

xijk + ∑n
k=n−cij+1 xijk

xijncij ≤ ∑n
k=n−cij+1 xijk

∀k ∈ [1, n], xijk ∈ {0, 1}(xijk = 0 or 1 if specified by agent i)

(4)

where constant ∆ = ∑
p
i=1 ∑mi

j=1(cijeij). Letting ∀k ∈ [1, n], yk = |∑p
i=1 ∑mi

j=1(xijkeij) − ∆
n | (overall

deviation in time slot k), the problem can be transformed into the following Mixed-Integer
Programming (MIP) problem (details are given in Appendix B):

min :
n

∑
k=1

yk

s.t.



∀i ∈ [1, p], ∀j ∈ [1, mi], ∑n
k=1 xijk = cij

∀k ∈ [1, n], ∑
p
i=1 ∑mi

j=1(xijkeij)− ∆
n ≤ yk

∀k ∈ [1, n],−∑
p
i=1 ∑mi

j=1(xijkeij) +
∆
n ≤ yk

∀k ∈ [1, n], yk ≥ 0

∀i ∈ [1, p], ∀j ∈ [1, mi] :

xij1cij ≤ ∑
cij
k=1 xijk

xij2(2cij − 1) ≤ ∑
cij
k=1 xijk + ∑

cij+1
k=2 xijk

xij3(3cij − 3) ≤ ∑
cij
k=1 xijk + ∑

cij+1
k=2 xijk + ∑

cij+2
k=3 xijk

xij4(4cij − 6) ≤ ∑
cij
k=1 xijk + ∑

cij+1
k=2 xijk + ∑

cij+2
k=3 xijk

...
...

...

xij(n−2)(3cij − 3) ≤ ∑n−2
k=n−cij−1 xijk + ∑n−1

k=n−cij
xijk + ∑n

k=n−cij+1 xijk

xij(n−1)(2cij − 1) ≤ ∑n−1
k=n−cij

xijk + ∑n
k=n−cij+1 xijk

xijncij ≤ ∑n
k=n−cij+1 xijk

∀i ∈ [1, p], ∀j ∈ [1, mi], ∀k ∈ [1, n], xijk ∈ {0, 1}
(xijk = 0 or 1 if specified by agent i)

(5)



Energies 2017, 10, 105 8 of 27

3.4. Measures of Evaluating Scheduling Solutions

The objective value of the ECS problem would not be zero in general, and solving any ECS
problem using different algorithms may result in different optimal solutions (due to the NP-hard
nature of the mixed integer programming problem). Therefore, we define a measure to evaluate the
accuracy of the optimal scheduling solutions obtained by different algorithms, the deviation ratio,
which is defined as the minimum overall deviations (in the optimal solution) divided by the overall
consumption in all of the time slots:

DevRatio =
∑n

k=1 y∗k
∆

=
∑n

k=1 y∗k
∑

p
i=1 ∑mi

j=1(cijeij)
(6)

Hence, we can use the above measure to compare the accuracy of different algorithms used to
solve the ECS problems. In addition, the ECS problem minimizes the overall deviation. Thus, we can
normalize the overall deviation with the initial overall deviation to examine how much deviation has
been reduced in the optimal solution or other solutions in the problem solving process. To this end,
we normalize the overall deviation into [0,1] using the following formula:

Normalized Deviation =
∑n

k=1 yk(Any Solution)
∑n

k=1 yk(Initial Solution)
(7)

In Section 6, we demonstrate the experimental results using the above two measures.

4. Generalized ECS Problem

In this section, we extend the ECS problem to a more general form in which the overall
consumption of each appliance (i.e., agent i’s j-th appliance) is a variable in range [aij, bij] rather than
fixing it as cij. This extension works in the case that some appliances’ total number of required in-use
time slots is still unknown at the scheduling stage. If we let ∀i ∈ [1, p], ∀j ∈ [1, mi], aij = bij = cij, the
new problem is then reduced to the original ECS problem. Thus, we name this more general problem
as the GECS problem.

In the GECS problem, given cij and zij, we denote agent i’s j-th’s appliance’s total number of
in-use time slots as xij. Thus, we have xij = ∑n

k=1 xijk, and the overall energy consumptions are:

∆ =
p

∑
i=1

∆i =
p

∑
i=1

mi

∑
j=1

(eijxij) =
p

∑
i=1

mi

∑
j=1

(eij

n

∑
k=1

xijk) (8)

where ∆ is a variable rather than a constant in the GECS problem. Similar to the ECS problem, we can
derive the objective function and constraints as below.

4.1. Objective Function

Replacing ∆ in the ECS problem’s objective function (Equation (1)), we thus have the objective
function of the GECS problem:

min :
n

∑
k=1
|

p

∑
i=1

mi

∑
j=1

(xijkeij)−
1
n

p

∑
i=1

mi

∑
j=1

(eij

n

∑
k=1

xijk)| (9)

4.2. Constraints

Similar to the ECS problem, we derive the constraints for the number of in-use time slots, running
appliances in continuous time slots and agents’ preferences of the in-use time slots (if available).



Energies 2017, 10, 105 9 of 27

4.2.1. Number of Running Time Slots

Note that in the GECS problem, the total number of in-use time slots for each appliance is a
variable xij ∈ [aij, bij]. Then, we have the following two groups of constraints:{

∀i ∈ [1, p], ∀j ∈ [1, mi], ∑n
k=1 xijk ≥ aij

∀i ∈ [1, p], ∀j ∈ [1, mi], ∑n
k=1 xijk ≤ bij

(10)

4.2.2. Running Appliances in Continuous Time Slots

Similar to the ECS problem, we can obtain all of the inequality constraints for running appliances
in continuous time slots as below (details are given in Appendix C):

∀i ∈ [1, p], ∀j ∈ [1, mi] :

s.t.



xij1 ∑n
k=1 xijk ≤ ∑

cij
k=1 xijk

xij2(2 ∑n
k=1 xijk − 1) ≤ ∑

∑n
k=1 xijk

k=1 xijk + ∑
∑n

k=1 xijk+1
k=2 xijk

xij3(3 ∑n
k=1 xijk − 3) ≤ ∑

∑n
k=1 xijk

k=1 xijk + ∑
∑n

k=1 xijk+1
k=2 xijk + ∑

∑n
k=1 xijk+2

k=3 xijk

xij4(4 ∑n
k=1 xijk − 6) ≤ ∑

∑n
k=1 xijk

k=1 xijk + ∑
∑n

k=1 xijk+1
k=2 xijk + ∑

∑n
k=1 xijk+2

k=3 xijk
...

...
...

xij(n−2)(3 ∑n
k=1 xijk − 3) ≤ ∑n−2

k=n−∑n
k=1 xijk−1 xijk + ∑n−1

k=n−∑n
k=1 xijk

xijk + ∑n
k=n−∑n

k=1 xijk+1 xijk

xij(n−1)(2 ∑n
k=1 xijk − 1) ≤ ∑n−1

k=n−∑n
k=1 xijk

xijk + ∑n
k=n−∑n

k=1 xijk+1 xijk

xijn ∑n
k=1 xijk ≤ ∑n

k=n−∑n
k=1 xijk+1 xijk

(11)

where ∀i ∈ [1, p], ∀j ∈ [1, mi], xij = ∑n
k=1 xijk.

4.3. Problem Formulation

Similar to the optimization model of the ECS problem (Equation (4)), we can mathematically
formulate the GECS problem as below:

min :
n

∑
k=1
|

p

∑
i=1

mi

∑
j=1

(xijkeij)−
1
n

p

∑
i=1

mi

∑
j=1

(eij

n

∑
k=1

xijk)|

∀i ∈ [1, p], ∀j ∈ [1, mi] :

s.t.



∑n
k=1 xijk ≥ aij

∑n
k=1 xijk ≤ bij

xij1 ∑n
k=1 xijk ≤ ∑

cij
k=1 xijk

xij2(2 ∑n
k=1 xijk − 1) ≤ ∑

∑n
k=1 xijk

k=1 xijk + ∑
∑n

k=1 xijk+1
k=2 xijk

xij3(3 ∑n
k=1 xijk − 3) ≤ ∑

∑n
k=1 xijk

k=1 xijk + ∑
∑n

k=1 xijk+1
k=2 xijk + ∑

∑n
k=1 xijk+2

k=3 xijk

xij4(4 ∑n
k=1 xijk − 6) ≤ ∑

∑n
k=1 xijk

k=1 xijk + ∑
∑n

k=1 xijk+1
k=2 xijk + ∑

∑n
k=1 xijk+2

k=3 xijk
...

...
...

xij(n−2)(3 ∑n
k=1 xijk − 3) ≤ ∑n−2

k=n−∑n
k=1 xijk−1 xijk + ∑n−1

k=n−∑n
k=1 xijk

xijk + ∑n
k=n−∑n

k=1 xijk+1 xijk

xij(n−1)(2 ∑n
k=1 xijk − 1) ≤ ∑n−1

k=n−∑n
k=1 xijk

xijk + ∑n
k=n−∑n

k=1 xijk+1 xijk

xijn ∑n
k=1 xijk ≤ ∑n

k=n−∑n
k=1 xijk+1 xijk

∀k ∈ [1, n], xijk ∈ {0, 1}(xijk = 0 or 1 if specified by agent i)

(12)

where ∀i ∈ [1, p], ∀j ∈ [1, mi], xij = ∑n
k=1 xijk. Similar to the ECS problem, we can denote the sum

of absolute values by additional variables y1, . . . , yn. Therefore, after removing the absolute values
(similar to Equation (5)), the GECS problem can be transformed to:



Energies 2017, 10, 105 10 of 27

min :
n

∑
k=1

yk

s.t.



∀i ∈ [1, p], ∀j ∈ [1, mi], ∑n
k=1 xijk ≤ bij

∀i ∈ [1, p], ∀j ∈ [1, mi],−∑n
k=1 xijk ≤ −aij

∀k ∈ [1, n], ∑
p
i=1 ∑mi

j=1(xijkeij − 1
n (eij ∑n

k=1 xijk))− yk ≤ 0

∀k ∈ [1, n],−∑
p
i=1 ∑mi

j=1(xijkeij − 1
n (eij ∑n

k=1 xijk))− yk ≤ 0

∀k ∈ [1, n], yk ≥ 0

∀i ∈ [1, p], ∀j ∈ [1, mi] :

∑n
k=1 xijk ≥ aij

∑n
k=1 xijk ≤ bij

xij1 ∑n
k=1 xijk ≤ ∑

cij
k=1 xijk

xij2(2 ∑n
k=1 xijk − 1) ≤ ∑

∑n
k=1 xijk

k=1 xijk + ∑
∑n

k=1 xijk+1
k=2 xijk

xij3(3 ∑n
k=1 xijk − 3) ≤ ∑

∑n
k=1 xijk

k=1 xijk + ∑
∑n

k=1 xijk+1
k=2 xijk + ∑

∑n
k=1 xijk+2

k=3 xijk

xij4(4 ∑n
k=1 xijk − 6) ≤ ∑

∑n
k=1 xijk

k=1 xijk + ∑
∑n

k=1 xijk+1
k=2 xijk + ∑

∑n
k=1 xijk+2

k=3 xijk
...

...
...

xij(n−2)(3 ∑n
k=1 xijk − 3) ≤ ∑n−2

k=n−∑n
k=1 xijk−1 xijk + ∑n−1

k=n−∑n
k=1 xijk

xijk + ∑n
k=n−∑n

k=1 xijk+1 xijk

xij(n−1)(2 ∑n
k=1 xijk − 1) ≤ ∑n−1

k=n−∑n
k=1 xijk

xijk + ∑n
k=n−∑n

k=1 xijk+1 xijk

xijn ∑n
k=1 xijk ≤ ∑n

k=n−∑n
k=1 xijk+1 xijk

∀i ∈ [1, p], ∀j ∈ [1, mi], ∀k ∈ [1, n], xijk ∈ {0, 1}(xijk = 0 or 1 if specified by agent i)

(13)

where ∀i ∈ [1, p], ∀j ∈ [1, mi], xij = ∑n
k=1 xijk.

5. Algorithms

In this section, we first describe the overview of the energy consumption scheduling and then
present an efficient algorithm for one or multiple agents to effectively solve the ECS (or GECS) problem
and implement the optimal scheduling solution for load leveling.

5.1. Overview

As described in Section 1, all of the agents first send their appliances’ consumption rates and
estimated running times to the problem solver, which can be any agent or a trusted-third party. If the
appliances’ running times are given as a fixed number of time slots, then an ECS problem will be
formulated (as shown in Section 3); if the appliances’ running times are given as ranges of time slots,
then an GECS problem will be formulated (as shown in Section 4).

For the ECS problem, we propose a novel algorithm denoted as the Temporal Decomposition (TD)
to let the problem solver efficiently solve it. The details of the TD algorithm are given in Section 5.2.
For the GECS problem, the problem solver first utilizes Linear Programming (LP) relaxation to find
out the optimal consumption amount of each appliance. Then, considering the optimal solution of the
LP problem as the fixed consumption amount for each appliance, the GECS problem can be converted
to an ECS problem, which can be solved using the TD algorithm by the problem solver. The details of
solving the GECS problem are given in Section 5.3.

Finally, the problem solver distributes the shares of the optimal solution to the corresponding
agents, which are their appliances’ specific running time slots. As a result, all of the agents can turn on
their appliances in the specific running time slots in the optimal scheduling solution: for all xijk = 1,
agent i turns on its j-th appliance in time slot k. Figure 2 demonstrates the flow diagram of the energy
consumption scheduling for load leveling (both ECS and GECS problems).



Energies 2017, 10, 105 11 of 27

Agent 1 (m1 Appliances):
Each Appliance’s consumption 

rate, and running time (time slots 
#, or a range of time slots #)

Problem Solver 
(Any agent or a trusted-

third party)

Agent 2 (m2 Appliances):
Each Appliance’s consumption 

rate, and running time (time slots 
#, or a range of time slots #)

Agent p (mp Appliances):
Each Appliance’s consumption 

rate, and running time (time slots 
#, or a range of time slots #)

…

Agent 1 (m1 Appliances):
Turn on each appliance in the specific 

running time slots in the Optimal Solution

…

Solve the 
Problem 
using TD

ECS Problem 
(time slots #)

Solve the 
Problem using 
LP Relaxation 

and TD

GECS Problem 
(a range of time 
slots #)

Optimal 
Solution

Agent 2 (m2 Appliances):
Turn on each appliance in the specific 

running time slots in the Optimal Solution

Agent p (mp Appliances):
Turn on each appliance in the specific 

running time slots in the Optimal Solution

Figure 2. Overview of the energy consumption scheduling for load leveling.

5.2. Solving the ECS Problem with Temporal Decomposition

The ECS problem involves 2n global constraints with respect to ∑
p
i=1[mi(n + 1)] variables shared

by all p agents, while ∀i ∈ [1, p], agent i holds mi local equality constraints and min local inequality
constraints with respect to mi × n variables. Since such a Mixed-Integer Programming problem (MIP)
includes an overwhelming majority of binary variables with a number of ∑

p
i=1(min), the commercial

solvers, such as CPLEX or GUROBI [35], cannot produce an optimal solution within reasonable time
as ∀i ∈ [1, p], mi, p and/or n are large. Thus, we design an efficient heuristic algorithm to effectively
and efficiently generate optimal or near-optimal solutions.

Specifically, we decompose the ECS problem into n subproblems for n different time slots in
the scheduling. The algorithm begins with solving the subproblem regarding the first time slot
k = 1, and solves all of the subproblems in a temporal sequence. Thus, we denote the algorithm as
“temporal decomposition”.

Since the constant ∆
n represents the optimal overall consumption amount for every time slot,

the process of optimizing all p agents’ appliances’ overall consumption in n different time slots is
relatively independent. In each subproblem, ∀k ∈ [1, n], the objective function is simply given as yk,
which is time slot k’s share in the ECS problem’s original objective function, the deviation between all
agents’ appliances’ consumption in time slot k and the constant optimal amount ∆

n .
More specifically, in the ECS problem, n pairs of global constraints are given for representing

the deviation of n different time slots’ consumption and ∆
n , respectively, which are independent of

each other; n pairs of global constraints do not have any overlapped variables. Thus, ∀k ∈ [1, n]
the k-th subproblem only needs to involve a pair of global constraints (corresponding to time slot k).
We can first formulate n decomposed subproblems with only global constraints. ∀k ∈ [1, n], the k-th
subproblem is:

min : yk

s.t.


∑

p
i=1 ∑mi

j=1(xijkeij)− yk ≤ ∆
n

−∑
p
i=1 ∑mi

j=1(xijkeij)− yk ≤ ∆
n

yk ≥ 0, ∀i ∈ [1, p], ∀j ∈ [1, mi], xijk ∈ {0, 1}
(xijk = 0 or 1 if specified by agent i)

(14)

where the variables in the k-th subproblem are a subset of variables in the ECS problem, which
correspond to time slot k. We denote its optimal solution as ∀i ∈ [1, p], ∀j ∈ [1, mi], x∗ijk, the optimal
values indicating whether all of p agents’ appliances are on or off in time slot k. In the meantime,
deviation yk is minimized to y∗k .



Energies 2017, 10, 105 12 of 27

Furthermore, we also have to take into account the ECS problem’s local constraints. Recall that
each local constraint is created with two criteria:

1. agent i’s j-th appliance’s total number of in-use time slots is cij in the scheduling.
2. all cij in-use time slots are continuous.

Then, we can simplify all of the local constraints according to two groups of rules that assign
values for variables ∀i ∈ [1, p], j ∈ [1, mi], k ∈ [1, n], xijk in all n decomposed subproblems in which
xijk represents the on/off status of agent i’s j-th appliance in time slot k. Specifically, in time slot
k, 1 ≤ k ≤ n’s subproblem (note that k− 1 subproblems have been solved):

• Rules of the number of in-use time slots. For agent i’s j-th appliance:

– Rule 1.1: if ∑k−1
u=1 x∗iju = cij, then all of the binary variables ∀u ∈ [k + 1, n], xiju in the remaining

(n− k + 1) subproblems (including the current subproblem) must be zero. This rule means
that if an appliance has been on for cij time slots in the past (k− 1) time slots, it must be off in
all of the remaining time slots.

– Rule 1.2: if cij −∑k−1
u=1 x∗iju = n− (k− 1), then all of the binary variables ∀u ∈ [k, n], xiju in the

remaining (n− k + 1) subproblems (including the current subproblem) must be one. This rule
means that if an appliance has been off for (n− cij) time slots in the past (k− 1) time slots,
it must be on in all of the remaining time slots.

– Rule 1.3: if 0 < cij −∑k−1
u=1 x∗iju < n− (k− 1), then all of the binary variables ∀u ∈ [1, n], xiju in

the remaining (n− k + 1) subproblems (including the current one) can remain as either zero
or one. This rule means that if an appliance has neither been on for cij time slots nor been off
for (n− cij) time slots in the past (k− 1) time slots, it can be either on or off in the following
time slots.

• Rules of continuous in-use time slots. For agent i’s j-th appliance:

– Rule 2.1: if ∑k−1
u=1 x∗iju = cij, then the binary variable xijk in the current subproblem and the

binary variables ∀u ∈ [k + 1, n], xiju in all of the remaining subproblems must be zero (the
same as Rule 1.1). This rule means that if an appliance has been continuously on for cij time
slots in the past (k− 1) time slots, it must be off in all of the remaining time slots.

– Rule 2.2: if ∑k−1
u=1 x∗iju < cij and x∗ij(k−1) = 1, then the binary variable xijk in the current

subproblem, and the binary variables ∀u ∈ [k + 1, k + cij − ∑k−1
u=1 x∗iju − 1], xiju in the

following (cij−∑k−1
u=1 x∗iju− 1) subproblems must be one(the binary variables in cij continuous

subproblems are one). This rule means that if an appliance is on in the most recent time slot
and has not been on for cij time slots in the past (k− 1) time slots yet, it must be on in the
following (cij −∑k−1

u=1 x∗iju − 1) time slots.
– Rule 2.3: if ∑k−1

u=1 x∗iju < cij and x∗ij(k−1) = 0 (no in-use time slot yet), then the binary variable
xijk in the current subproblem can be either zero or one. This rule means that if an appliance
has not been on for cij time slots in the past (k− 1) time slots, it must be off in all of the past
time slots (due to the characteristics of continuous running). Then, it can be either on or off in
the following time slots.

Note that all six rules will be applied to n decomposed subproblems from a global perspective.
Since the first group of rules ensures that agent i’s j-th appliance’s total number of consumption time
slots equals cij and the second group of rules ensures that such cij in-use time slots are continuous, the
compliance of the above two groups of rules is equivalent to meeting all of the local constraints in the
ECS problem.

After solving the n subproblems (notice that: (1) without loss of generality, any agent or a
centralized site can be the solver; (2) ∀k ∈ [1, n], the k-th subproblems is jointly formulated by all the p
agents; ∀i ∈ [1, p], agent i inputs its share of the problem corresponding to time slot k; (3) each agent



Energies 2017, 10, 105 13 of 27

utilizes all six rules and its local constraints to examine the possible values of their variables in every
subproblem), the optimal solutions of all of the subproblems can directly form the optimal solution of
the original ECS problem: optimal value y∗1 + y∗2 + · · ·+ y∗n; optimal solution ∀x∗ijk. The details of the
temporal decomposition are presented in Algorithm 1 and Figure 3, and the accuracy of the temporal
decomposition algorithm is validated in Section 6.

Algorithm 1: Temporal decomposition.

1 forall the time slot k ∈ [1, n] do
2 retrieve the optimal values in the previously solved k− 1 subproblems: ∀i ∈ [1, p],

∀j ∈ [1, mi], ∀u ∈ [1, k− 1], x∗iju
3 check two groups of rules: Rules 1.1, 1.2, 1.3 and 2.1, 2.2, 2.3 with the following values to

decide the available binary values for the variables in the current subproblem (k-th):

• ∀i ∈ [1, p], ∀j ∈ [1, mi], cij
• ∀i ∈ [1, p], ∀j ∈ [1, mi], ∀u ∈ [1, k− 1], x∗iju

solve the k-th subproblem with formulation shown in Equation (14) to obtain the optimal
solution ∀i ∈ [1, p], ∀j ∈ [1, mi], x∗ijk and y∗k

4 return all of the optimal solutions in all k subproblems

Time Slots/Subproblems: 1 2 k n

xij1* xij2* xijk* xijn*Optimal values: , 

In the kth subproblem

1. Load the optimal values in the previous (k-1) subproblems and check 

two groups of rules (6 in total) to determine the available values for its 

binary variables xijk

2. Solve the current (kth) subproblem

Figure 3. Temporal decomposition.

5.3. Solving the GECS Problem with Linear Programming Relaxation and Temporal Decomposition

Since the constant optimal consumption amount of any time slot ∆
n in the ECS problem has been

changed into 1
n ∑

p
i=1 ∑mi

j=1(eij ∑n
k=1 xijk) in the GECS problem (which is not a constant), Algorithm 1

cannot be directly applied to solve the GECS problem. To tackle this issue, we propose a two-phase
approach to solve the GECS problem: (1) find the optimal consumption amount for each of the
appliances; and (2) solve the scheduling problem with the optimal consumption amounts (fixed).

In Phase (1), the problem solver relaxes ∀k ∈ [1, n], xijk from binary variable {0, 1} to continuous
range [0, 1] in the GECS problem and defines new integer variables ∀i ∈ [1, p], ∀j ∈ [1, mi],
ωij = ∑n

k=1 xijk to approximate each appliance’s total number of in-use time slots (similar to cij in the
ECS problem). Then, the problem solver can formulate and solve the following LP relaxation problem:



Energies 2017, 10, 105 14 of 27

min :
n

∑
k=1

yk

s.t.



∑m1
j=1[x1j1 − 1

n ω1j]e1j + · · ·+ ∑
mp
j=1[xpj1 − 1

n ωpj]epj − y1 ≤ 0

−∑m1
j=1[x1j1 − 1

n ω1j]e1j − · · · −∑
mp
j=1[xpj1 − 1

n ωpj]epj − y1 ≤ 0
...

...
...

∑m1
j=1[x1jn − 1

n ω1j]e1j + · · ·+ ∑
mp
j=1[xpjn − 1

n ωpj]epj − yn ≤ 0

−∑m1
j=1[x1jn − 1

n ω1j]e1j − · · · −∑
mp
j=1[xpjn − 1

n ωpj]epj − yn ≤ 0

∀i ∈ [1, p], ∀j ∈ [1, mp], ωij = ∑n
k=1 xijk

∀i ∈ [1, p], ∀j ∈ [1, mp], aij ≤ ωij ≤ bij

yk ≥ 0, ∀i ∈ [1, p], ∀j ∈ [1, mi], 0 ≤ xijk ≤ 1

(15)

After solving the above LP relaxation problem, ∀i ∈ [1, p], ∀j ∈ [1, mi], ωij can be fixed as constants
with the optimal values in the LP relaxation problem ∀ω∗ij (which are rounded to integers ∀bω∗ijc).
Therefore, the optimal value ω∗ij can serve as the (optimal) total energy consumption of agent i’s j-th
appliance. As a result, the GECS problem is transformed into an ECS problem.

In Phase (2), the problem solver applies temporal decomposition (Algorithm 1) to solve the
transformed GECS problem with the optimal consumption amounts of the appliances (derived from
Phase (1)). The GECS problem (viz. an ECS problem) is formulated as below:

min :
n

∑
k=1
|

p

∑
i=1

mi

∑
j=1

(xijkeij)−
∆
n
|

s.t.



∀i ∈ [1, p], ∀j ∈ [1, mi], ∑n
k=1 xijk = bω∗ijc

∀i ∈ [1, p], ∀j ∈ [1, mi] :

xij1bω∗ijc ≤ ∑
bω∗ijc
k=1 xijk

xij2(2bω∗ijc − 1) ≤ ∑
bω∗ijc
k=1 xijk + ∑

bω∗ijc+1
k=2 xijk

xij3(3bω∗ijc − 3) ≤ ∑
bω∗ijc
k=1 xijk + ∑

bω∗ijc+1
k=2 xijk + ∑

bω∗ijc+2
k=3 xijk

xij4(4bω∗ijc − 6) ≤ ∑
bω∗ijc
k=1 xijk + ∑

bω∗ijc+1
k=2 xijk + ∑

bω∗ijc+2
k=3 xijk

...
...

...

xij(n−2)(3bω∗ijc − 3) ≤ ∑n−2
k=n−bω∗ijc−1 xijk + ∑n−1

k=n−bω∗ijc
xijk + ∑n

k=n−bω∗ijc+1 xijk

xij(n−1)(2bω∗ijc − 1) ≤ ∑n−1
k=n−bω∗ijc

xijk + ∑n
k=n−bω∗ijc+1 xijk

xijnbω∗ijc ≤ ∑n
k=n−bω∗ijc+1 xijk

∀i ∈ [1, p], ∀j ∈ [1, mi], ∀k ∈ [1, n], xijk ∈ {0, 1}(xijk = 0 or 1 if specified by agent i)

(16)

where constant ∆ = ∑
p
i=1 ∑mi

j=1(eijbω∗ijc). Note that ∀bω∗ijc will be loaded into the two groups of rules
as agent i’s i-th appliance’s overall consumption time in n time slots (viz. cij in the ECS problem)
for satisfying all of the local constraints. Similar to the ECS problem, after solving the problem, the
problem solver distributes the optimal solution to each agent. For all xijk = 1 in the optimal solution,
agent i turns on its j-th appliance in time slot k.

6. Experimental Results

In this section, we conduct experiments to compare our temporal decomposition algorithm with
the commercial software IBM ILOG CPLEX 12.2 on solving the ECS/GECS problems.



Energies 2017, 10, 105 15 of 27

6.1. Dataset

Richardson et al. [36] collected 22 dwellings’ power consumption over two years in East Midlands,
U.K. In the real dataset, each of the 22 smart meters is associated with 33 appliances with
1,051,200 readings (one reading per minute). We randomly select p ∈ [1, 10] smart meters (each
of which is an agent) and aggregate the readings for every 10 min within two months to generate our
experimental data: 2× 30× 24× 60

10 = 8640 time slots can be generated (10 min each).
Then, our experiments are conducted on mixed sets of real and synthetic data. Each appliance’s

consumption amount within any single time slot ∀eij and total number of in-use time slots ∀cij are
available in the dataset. On the other hand, we randomly select 30%–50% of the appliances as
appliances with an adjustable schedule, where the schedule ranges are randomly generated from all of
the n time slots. For instance, an appliance (which has adjustable schedule) runs cij = 2× 6 time slots
(2 h) out of n = 24× 6 time slots (24 h). We randomly generate a subset of time slots (rather than all
of the time slots in 24 h), as the appliance’s in-use time slots range specified by the agents with their
preferences, e.g., the time slots in the first 8 h. Note that such a synthetic schedule range is expanded
from the appliance’s in-use time (randomly for 5–10 times) in the real data. In the GECS problem, the
range of in-use time slots number [aij, bij] is randomly generated with the criterion ∀i, ∀j, aij ≤ cij ≤ bij,
where cij is available in the dataset.

6.2. Settings

We implemented the Mixed-Integer Programming (MIP) solver, IBM ILOG CPLEX (Version 12.2),
using MATLAB (version R2015a). In addition, we coded our TD algorithm using the same software
MATLAB and also invoked CPLEX while solving any decomposed MIP subproblem. Thus, the
comparison between the pure CPLEX solver and our TD algorithm was done in the same coding
environment. We denote directly solving the MIP problems using CPLEX as “CPLEX” and our
temporal decomposition algorithm as “TD” (in which all of the decomposed subproblems are solved
by CPLEX), respectively.

In both ECS and GECS problems, each variable has three different dimensions: p ∈ [1, 10] (number
of agents), m1, . . . , mp ∈ [1, 33] (number of appliances held by each agent) and n ∈ [1, 8640] (number of
time slots). We test the results in three groups of experiments as below:

• Group 1 (small/medium): testing the accuracy in case that CPLEX can find the exact optimal
solutions within reasonable time. Then, (p, mi, n) is specified as (1, 20, 12), (1, 20, 24), (2, 20, 12),
(2, 20, 24), (5, 5, 12), (5, 5, 24), (5, 5, 48), (5, 10, 12), (5, 10, 24) and (5, 15, 12), respectively.

• Group 2 (large): testing the efficiency/scalability and accuracy on varying number of time slots
and the number of appliances per agent. Fixing p = 3 agents, each agent has 11, 12, 13, . . . , 30
appliances, and the number of time slots varies from 1500–6000. The largest MIP problem in this
group includes 540,000 binary variables.

• Group 3 (large): testing the efficiency/scalability and accuracy on the varying number of time
slots and the number of agents. Fixing the number of appliances held by each agent as 20, the
number of agents varies in the range [1, 10], while the number of time slots varies from 1500–6000.
The largest MIP problem in this group includes 1,200,000 binary variables.

We run each test for five times and average the results. Notice that only the testing cases in
Group 1 could find the optimal solution within 1 h, which is a meaningful stopping point adopted in
many other computational studies [37]. Indeed, in Groups 2 and 3, CPLEX failed to find the optimal
solution within 5 h. For such cases, we consider the best feasible CPLEX solutions obtained within the
5-h time limit as a surrogate for the optimal solution. Note that we did try to let CPLEX run longer in
many cases, but the solution quality provided by CPLEX after 6–10 h had no significant difference in
its result in 5 h. If we let CPLEX run even longer, say 48 h, it occasionally could offer a slightly better
solution, but the empirical error gap [37] (simply defined as TD result—CPLEX result

CPLEX result ) is still mainly within



Energies 2017, 10, 105 16 of 27

±10%. More importantly, in practice, it might be unnecessary to wait for CPLEX to provide us with a
slightly better solution with greatly increased runtime.

6.3. Accuracy

In practice, we can consider the optimal solution obtained by the commercial tool CPLEX as the
exact optimal solution and then compare the optimal solution returned by our algorithm to that of
CPLEX. However, CPLEX can only return the optimal solution for a small or a medium size of the ECS
problems (e.g., the experimental Group 1) within reasonable time. We then first look at the deviation
ratios (defined in Equation (6)) of the exact solutions (by CPLEX) presented in Table 2. In these cases,
our algorithm (TD) can return optimal solutions extremely close to the exact optimal solutions obtained
by CPLEX: out of 10 pairs of results, seven pairs are identical, and CPLEX performs slightly better in
three pairs.

For large-scale ECS problems, we plot two algorithms’ deviation ratios in the experimental Groups
2 and 3 in Figure 4 and conclude the following observations. The deviation ratio decreases as the
problem size increases with greater p and/or greater m1, . . . , mp and/or greater n, since it is more
likely to further level the overall consumptions in different time slots when more agents and/or more
appliances (with adjustable running schedules) and/or more time slots are involved in the scheduling.
In these two groups of experiments, the number of variables falls into [30,000, 1,200,000]. Since CPLEX
could not find the optimal solution in 5 h, the returned best feasible solution by CPLEX is slightly
worse than the near-optimal solution returned by our TD algorithm, as shown in Figure 4.

Convergence of deviation: As shown in Figure 5, we plot the normalized deviation (defined in
Equation (7)) of some selected iterations in our TD algorithm, applied to three ECS problems with
different sizes (small: 240 binary variables; medium: 3600 binary variables; large: 24,000 binary
variables). We can observe the convergence of the deviation minimization process from one to a small
number close to zero as below.

Accuracy vs. total number of appliances: Notice that, in the ECS problems, if multiple agents are
involved in the scheduling (p > 1), they can communicate with each other to schedule their appliances
to flatten the overall power consumption. Therefore, given a fixed number of time slots for scheduling,
the performance of the accuracy is dependent on the number of overall appliances, regardless of
the number of agents and the numbers of appliances held by each agent. This also applies to the
GECS problems.

Table 2. Small/medium-scale ECS problem (Group 1): TD vs. CPLEX.

(p, mi, n) # of Binary Variables
Deviation Ratio (%) Runtime (s)

CPLEX TD CPLEX TD

(1, 20, 12) 240 12.3 12.3 1815.12 9.27
(1, 20, 24) 480 7.09 7.09 2440.11 23.26
(2, 20, 12) 480 6.83 6.83 2621.88 21.51
(2, 20, 24) 960 2.27 2.27 3275.5 58.34
(5, 5, 12) 300 10.36 10.41 317.65 12.31
(5, 5, 24) 600 6.11 6.18 1216.44 34.57
(5, 5, 48) 1200 1.83 1.83 2351.01 37.82
(5, 10, 12) 600 8.44 8.52 1490.31 33.75
(5, 10, 24) 1200 2.67 2.67 3215.67 68.19
(5, 15, 12) 900 3.01 3.01 2903.87 52.78



Energies 2017, 10, 105 17 of 27

0

0.02

0.04

0.06

0.08

0.1

11 13 15 17 19 21 23 25 27 29

O
p

ti
m

a
l 

D
ev

ia
ti

o
n

 R
a

ti
o

Number of Appliances per Agent (3 Agents)

CPLEX (n=1500)
CPLEX (n=3000)
CPLEX (n=6000)
TD (n=1500)
TD (n=3000)
TD (n=6000)

(a)

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6 7 8 9 10

O
p

ti
m

a
l 

D
ev

ia
ti

o
n

 R
a
ti

o

Number of Agents (20 Appliances per Agent)

CPLEX (n=1500)
CPLEX (n=3000)
CPLEX (n=6000)
TD (n=1500)

TD (n=3000)
TD (n=6000)

(b)

Figure 4. ECS problem (Groups 2 and 3): TD vs. CPLEX (accuracy). (a) Group 2 (up to 540,000 variables);
(b) Group 3 (up to 1,200,000 variables).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180

N
or

m
al

iz
ed

 D
ev

ia
ti

on

Selected Iterations in the Temporal Decomposition Algorithm

24000 Variables 3600 Variables 240 Variables

Figure 5. Normalized deviation vs. iterations (temporal decomposition).

6.4. Case Study

Besides the experimental results of deviation, we also conduct a case study to demonstrate
the effectiveness of load leveling via our energy consumption scheduling approach. The power
consumption data are selected from the dataset collected by Richardson et al. [36] in the U.K. We select
a sample house from the 22 houses in the dataset, which includes 30 electric appliances. Out of all of
the appliances, we study the load leveling in two cases: (1) all of the appliances can have adjustable
schedules; and (2) only 20 appliances can have adjustable scheduling. The power consumption in the
dataset has been aggregated from 1 min per reading to 15 min per reading, then we have 15 min as the
time slot length for scheduling.

In the experiments, we study the scheduling problems over two time ranges [12:00 a.m.–
12:00 p.m.] (midnight to noon) and [12:00 a.m.–12:00 p.m.] (noon to midnight), respectively. Thus, we
have 4× 12 = 48 time slots in each scheduling problem. After solving the four ECS problems by our



Energies 2017, 10, 105 18 of 27

TD algorithm (two time ranges and two cases of appliances’ schedules), we demonstrate the results in
Figure 6a,b, respectively. In both figures, “ECS (30)” and “ECS (20)” represent the ECS problem (solved
by the TD algorithm) with all 30 appliances involved in the scheduling and with only 20 appliances
involved in the scheduling, respectively. “Original” and “ideal” means the original consumption
without scheduling and the ideal scheduling (consumption equals the average amount all of the time),
respectively. As a result, we can have two observations: (1) the demand load (energy consumption)
can be flattened by our ECS problem at different times: for both ECS (30) and ECS (20) and (2) if more
appliances have adjustable schedules for the scheduling (e.g., ECS (30)), the demand load (energy
consumption) curve can be flattened closer to the ideal case.

0

1

2

3

4

5

6

12:00
AM

1:00
AM

2:00
AM

3:00
AM

4:00
AM

5:00
AM

6:00
AM

7:00
AM

8:00
AM

9:00
AM

10:00
AM

11:00
AM

P
ow

er
 C

on
su

m
pt

io
n 

(k
W

) Original

ECS (30)
ECS (20)
Ideal

(a)

0

1

2

3

4

5

6

7

8

9

12:00
PM

1:00
PM

2:00
PM

3:00
PM

4:00
PM

5:00
PM

6:00
PM

7:00
PM

8:00
PM

9:00
PM

10:00
PM

11:00
PM

P
ow

er
 C

on
su

m
pt

io
n 

(k
W

) Original
ECS (30)

ECS (20)
Ideal

(b)

Figure 6. Load leveling (power consumption with scheduling vs. power consumption without
scheduling). (a) 12:00 a.m.–12:00 p.m. (48 time slots); (b) 12:00 p.m.–12:00 a.m. (48 time slots).

6.5. Efficiency and Scalability

Figure 7 shows the runtime for two algorithms (TD and CPLEX) with varying p, m1,. . . , mp

and n to solve large-scale ECS problems. CPLEX fails to provide optimal solutions in all of the
cases within 5 h. Instead, our algorithm remarkably outperforms CPLEX on efficiency and scalability
since it can return a near-optimal solution in significantly less time in almost all of the cases. As the
problem size increases along three different dimensions (by increasing values of p, mi, n), the runtime
of temporal decomposition increases extremely slow with a linear trend. On the contrary, the runtime
of CPLEX increases exponentially as p, m1, . . . , mp and/or n increases, as shown in Table 2 (note that
the runtime of CPLEX in Figure 7 exceeds 10,800 s: 5 h in all of the cases in experimental Groups 2 and
3, then CPLEX is terminated at that point).

In our TD algorithm, for each testing case, the number of times of invoking IBM ILOG CPLEX is
fixed (which is the number of time slots n and also the number of subproblems). In other words, the
convergence against the solving step number (based on invoking CPLEX) is fixed for every scheduling
problem. In the meantime, each time when CPLEX is invoked, the overhead time of interfacing is less
than 0.00001 s. Even with large-scale problems, such as n = 8640, the total overhead time of interfacing



Energies 2017, 10, 105 19 of 27

is still less than 0.1 s, which can be negligible comparing to the overall solving time in those testing
cases. Furthermore, the runtime required for solving each subproblem in sequence decreases as the
time slot number k increases from 1–n. Take the testing case (p = 5, mi = 10, n = 12) as an example,
solving 12 subproblems using CPLEX requires 5.92, 4.78, 3.89, 3.38, 2.79, 2.45, 2.29, 2.02, 1.85, 1.54, 1.48
and 1.33 s, respectively. Note that the overall interfacing time takes only ∼0.00012 s.

0

4000

8000

12000

16000

20000

11 13 15 17 19 21 23 25 27 29

R
u

n
ti

m
e
 (

se
c)

Number of Appliances per Agent (3 Agents)

CPLEX (n=1500)
CPLEX (n=3000)
CPLEX (n=6000)
TD (n=1500)
TD (n=3000)
TD (n=6000)

(a)

0

4000

8000

12000

16000

20000

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e 

(S
ec

)

Number of Agents (20 Appliances per Agent)

CPLEX (n=1500)
CPLEX (n=3000)
CPLEX (n=6000)
TD (n=1500)
TD (n=3000)
TD (n=6000)

(b)

Figure 7. ECS problem (Groups 2 and 3): TD vs. CPLEX (runtime). (a) Group 2 (up to 540,000 variables);
(b) Group 3 (up to 1,200,000 variables).

The highly efficient and scalable feature of our TD algorithm is more practical and accessible on the
smart grid since scheduling should be implemented online among multiple agents and accomplished
in a very short time. Indeed, online scheduling cannot wait for a couple of days to derive the optimal
solution by CPLEX.

6.6. Experimental Results for the GECS Problem

For the GECS problem, we conducted another group of experiments using a similar dataset
and obtained a similar set of experimental results. As shown in Table 3, we can draw similar
observations for our temporal decomposition algorithm as the ECS problem. For large-scale problems
(e.g., 900,000 binary variables), our algorithm only takes 13,423.81 s to obtain an accurate near-optimal
solution. However, if we use CPLEX to solve the same GECS problem, the feasible solution obtained
after 5 h is still worse than TD’s near optimal solution (deviation ratio 0.049% vs. 0.043%).



Energies 2017, 10, 105 20 of 27

Table 3. The Generalized Energy Consumption Scheduling (GECS) problem: TD vs. CPLEX.

(p, mi, n) # of Binary Variables
Deviation Ratio (%) Runtime (s)

CPLEX TD CPLEX TD

(5, 10, 100) 5000 3.15 2.99 18,000 734.77
(5, 20, 100) 10,000 2.89 2.82 18,000 983.54
(5, 10, 200) 10,000 2.74 2.68 18,000 889.02
(5, 20, 200) 20,000 2.35 2.36 18,000 1593.89

(10, 20, 400) 80,000 1.87 1.91 18,000 2656.12
(10, 30, 400) 120,000 1.56 1.52 18,000 3478.93
(10, 20, 800) 160,000 1.29 1.17 18,000 4348.62
(10, 30, 800) 240,000 0.98 0.93 18,000 5569.11

(15, 20, 1000) 300,000 0.524 0.491 18,000 6156.33
(15, 30, 1000) 450,000 0.235 0.227 18,000 7609.45
(15, 20, 2000) 600,000 0.116 0.114 18,000 9182.6
(15, 30, 2000) 900,000 0.049 0.043 18,000 13,423.81

7. Discussions

7.1. Appliance Categories in Scheduling

Ciabattoni et al. [38] has categorized the residential appliances based on their usage patterns:
(1) continuous use appliances (e.g., refrigerator); (2) periodical use appliances without human
interaction (e.g., oven and microwave); (3) periodical use appliances with human interaction
(e.g., vacuum); (4) multimedia appliances; and (5) lighting. In the real world, different appliances
and their usage patterns may influence the scheduling process, as well as implementing the optimal
schedules.

First, some appliances may have non-adjustable schedules (e.g., continuous use appliances, such
as refrigerator). In this case, when we formulate the ECS or GECS problems, the binary variables
derived for the appliances will be fixed as constants based on the given range of time slots. Then,
the overall consumption of all of the appliances held by different agents in every time slot will
be optimized towards ∆

n . Notice that, since our approach is based on scheduling the usage times
for appliances with adjustable usage schedules, if there are too many appliances with fixed usage
schedules, the optimal demand profile (time series consumption) may not be extremely close to the
perfectly flattened consumption amount (but still better than the demand profile without scheduling).
This is a possible limitation of our proposed approach.

Second, some appliances have adjustable schedules (e.g., periodical use appliances with human
interaction, such as a vacuum), but their available time slots in the scheduling are unknown beforehand.
For instance, if the optimal scheduling is derived for the next day, the energy consumer does not know
when to use the vacuum in the next day. In such a case, non-intrusive load monitoring [39] can help
identify the usage patterns of the appliance and suggest a range of running time for the appliance
(then, a GECS problem should be formulated).

In our studied problem, we assume that the usage time or a range of usage time should be
specified prior to the scheduling and try to flatten the demand load based on scheduling the existing
appliances that have an estimated running time. If any agent would like to turn on an appliance that
has not been involved in the scheduling, we assume that such an appliance does not affect the load
significantly in this paper. If such an appliance can lead to an extremely high demand load, all of the
agents can communicate with each other and implement the scheduling again immediately, since our
algorithm is highly efficient to solve the optimization problem.

7.2. Number of Binary Variables and Load Leveling Performance

Recall that the agent-based ECS and GECS problems are formulated by p agents with
m1, . . . , mp appliances, respectively (e.g., each agent represents a household). In general, as more



Energies 2017, 10, 105 21 of 27

appliances with an adjustable schedule are involved in the scheduling (each agent holds more
appliances with an adjustable schedule or more agents are involved in the scheduling), the performance
of load leveling would become better with less aggregated deviation between the actual consumption
and the ideal amount ∆

n in all n time slots. This is simply because more appliances with adjustable
schedule (held by different agents) could enlarge the feasible region of optimization problem (which can
be transformed to a mixed integer programming problem with linear constraints). In the experiments,
we will validate this observation using both temporal decomposition algorithm and the standard
solver CPLEX.

7.3. Running Multiple Times

In reality, each time slot can be either long or short, e.g., as long as one day and as short as
5 min [1]. The proposed ECS and GECS problems assume all of the appliances are continuously on in
a specified number of time slots. Occasionally, an agent may intend to turn on an appliance multiple
times out of the entire n time slots; for instance, in a 12-h scheduling (n = 12 and 1 h each time slot),
if agent i plans to run the washer (its j-th appliance) for 4 h in total, but 2 h in the morning (k ∈ [1, 4])
and 2 h in the evening (k ∈ [9, 12]). We can formulate two sets of constraints for such appliance in the
scheduling as ∀k ∈ [1, 4], ∑4

k=1 xijk = 2 and ∀k ∈ [9, 12], ∑4
k=1 xijk = 2. Such additional constraints can

be formulated without affecting the efficiency of solving the ECS and GECS problems.

7.4. Short-Term Scheduling

Through tuning the length of each time slot to a short time (e.g., 1 min), our ECS/GECS problems
and the TD algorithm can also efficiently identify the optimal schedule for appliances in a real-time
manner since the performance of the algorithm is dependent on the number of time slots rather than
the length of the time slots. Therefore, in short-term scheduling with real-time requirements, we can
specify a reasonable number of time slots in each scheduling and iteratively execute the TD algorithm
and scheduling to implement load leveling in real time.

8. Conclusions and Future Work

In this paper, we studied the agent-based ECS problem on the smart grid, which flattens the
demand load for a single agent or multiple agents via scheduling the usage of agents’ appliances at the
demand side. We also extended the ECS problem to a more general format, the GECS problem in which
each every agent’s appliance can have an unknown number of in-use time slots at the scheduling
stage. After mathematically modeling these two ECS problems as Mixed-Integer Programming (MIP)
problems, we proposed a novel decomposition algorithm to efficiently and accurately solve them.
We compared our algorithm with the standard benchmark CPLEX in experiments. As demonstrated
in the experimental results (e.g., deviation ratios in the optimal solutions, rate of convergence and
runtime), our algorithm is proven to be significantly more practical and accessible (highly efficient and
accurate) than CPLEX.

In the future, we will extend the studies of energy consumption scheduling (ECS) problems
for load leveling in two ways. On the one hand, we will try to study the bound of our temporal
decomposition algorithm and theoretically examine the accuracy of our proposed efficient solver.
On the other hand, while solving the ECS and GECS problems, multiple agents on the grid have to
share their input data (e.g., each agent’s appliances, total number of in-use time slots) and output
(i.e., specific agent’s usage schedule of their appliances in the optimal solution) to jointly formulate and
solve the MIP-based ECS/GECS problems. Such information disclosure would explicitly compromise
the consumers’ privacy on the power grid [40,41]. We will explore privacy-preserving schemes [42,43]
to effectively formulate and efficiently solve the ECS/GECS problem among multiple agents on the
smart grid with limited disclosure [44,45]. Furthermore, we will extend the agent-based ECS problems
for appliances to the entities with renewable energy sources [46,47], considering each agent and its
appliances as a microgrid (which both consumes and generates electricity). Two categories of research



Energies 2017, 10, 105 22 of 27

problems will be investigated by integrating the scheduling and microgrids. First, one or multiple
agents can schedule not only consumption, but also generation for different applications, such as
load leveling [21], power flow analysis and optimization [48,49]. Second, the faults in power flow
and the distribution network [50–53] may lead to specific constraints in the scheduling problem.
After incorporating such constraints in the ECS problems, we can propose the fault-tolerant scheduling
problems for both energy consumption and generation in the context of microgrids.

Acknowledgments: This work is partially supported by the National Science Foundation under Grant
No. CNS-1618221 and the FRAP-B Grant in the University at Albany, SUNY. We thank the anonymous reviewers
for their constructive comments.

Author Contributions: Yuan Hong formulated the optimization models for the ECS and GECS problems;
Shengbin Wang and Yuan Hong designed the TD algorithm for efficiently solving the scheduling
problems; Yuan Hong and Shengbin Wang conceived and designed the experiments; Shengbin Wang and
Ziyue Huang performed the experiments; Ziyue Huang analyzed the data; Shengbin Wang contributed
reagents/materials/analysis tools; Yuan Hong and Shengbin Wang wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Running Appliances in Continuous Time Slots (ECS)

Per Equation (2) (the equality constraints), agent i’s j-th appliance should be in-use for cij time
slots out of n time slots where cij ≤ n. Recall that xijk = 1 means the appliance is on in time slot k while
xijk = 0 means the appliance is off. Then, we can represent all of the possibilities of the cij continuous
time slots in Table A1:

Table A1. cij continuous time slots: (n− cij + 1) different possibilities.

Time Slots 1 2 3 . . . cij cij + 1 . . . n − cij + 1 . . . n

Possibility 1 xij1 xij2 xij3 . . . xijcij

Possibility 2 xij2 xij3 . . . xijcij xij(cij+1)
Possibility 3 xij3 . . . xijcij xij(cij+1) xij(cij+2)

...
...

...
...

...
...

...
...

...
...

...
Possibility (n− cij + 1) . . . xij(n−cij+1) . . . xijn

As shown in Table A1, there are (n− cij + 1) different possibilities for cij continuous time slots
(one possibility per row). Then, there are a set of constraints: if any variable xijk = 1, then all of the
variables in exactly one out of all of the possibilities (one out of (n− cij + 1) rows in Table A1) should
be equal to one. More specifically,

• If xij1 = 1, then ∑
cij
k=1 xijk = cij must hold (only one possibility). This ensures that such an

appliance is continuously on in the first cij time slots. This constraint is equivalent to:

xij1cij ≤
cij

∑
k=1

xijk (A1)

If xij1 = 0, the inequality always holds (no constraint); otherwise xij1 = 1, we have ∑
cij
k=1 xijk = cij

(cannot be greater than cij).

• If xij2 = 1, then ∑
cij
k=1 xijk = cij or ∑

cij+1
k=2 xijk = cij (exactly one out of two equalities) should

hold since there are exactly two possibilities to form cij continuous time slots. This ensures that

such an appliance is continuously on in time slots [1, cij] or [2, cij + 1]. Indeed, if ∑
cij
k=1 xijk = cij



Energies 2017, 10, 105 23 of 27

holds, then ∑
cij+1
k=2 xijk = cij − 1 and vice versa. Hence, we can combine them together: ∑

cij
k=1 xijk +

∑
cij+1
k=2 xijk = 2cij − 1; and we formulate the constraint as:

xij2[cij + (cij − 1)] ≤
cij

∑
k=1

xijk +

cij+1

∑
k=2

xijk (A2)

• Similarly, if xij3 = 1, then ∑
cij
k=1 xijk = cij, ∑

cij+1
k=2 xijk = cij or ∑

cij+2
k=3 xijk = cij (exactly one out holds).

This ensures that such an appliance is continuously on in time slots [1, cij], [2, cij + 1] or [3, cij + 2].
Then, we derive the constraint as:

xij3[cij + (cij − 1) + (cij − 2)] ≤
cij

∑
k=1

xijk +

cij+1

∑
k=2

xijk +

cij+2

∑
k=3

xijk (A3)

• For time slot s = 4, . . . , n− 1, the corresponding constraint can be formulated as:

xijs[scij −
s

∑
k=1

(k− 1)] ≤
cij

∑
k=1

xijk +

cij+1

∑
k=2

xijk + · · ·+
cij+s−1

∑
k=s

xijk (A4)

• If xijn = 1 (last time slot), then ∑n
k=n−cij+1 xijk = cij holds. This ensures that such an appliance is

continuously on in the last cij time slots. Then, we can formulate the constraint as:

xijncij ≤
n

∑
k=n−cij+1

xijk (A5)

In summary, there are (n− cij + 1) new inequality constraints derived to ensure running agent
i’s j-th appliance in cij continuous time slots. The ECS problem should include all of the constraints
(Inequalities (A1)–(A5)) for agent i’s appliance j. Thus, for all of the agents i ∈ [1, p], each of their
appliances ∀j ∈ [1, mi] has such a set of constraints (Inequalities (A1)–(A5)) to ensure running such an
appliance in continuous time slots (cij in total).

Appendix B. Problem Transformation (ECS)

First, the objective function can be converted (replacing every |∑p
i=1 ∑mi

j=1(xijkeij)− ∆
n | with yk in

the objective function):

min :
n

∑
k=1
|

p

∑
i=1

mi

∑
j=1

(xijkeij)−
∆
n
| ⇐⇒ min :

n

∑
k=1

yk (B1)

Then, some additional constraints must be added (ensuring that minimizing ∑n
k=1 yk can also

minimize ∑n
k=1 |∑

p
i=1 ∑mi

j=1(xijkeij)− ∆
n |):

s.t.


∀k ∈ [1, n], |∑p

i=1 ∑mi
j=1(xijkeij)− ∆

n | ≤ yk

∀k ∈ [1, n], yk ≥ 0

∀i ∈ [1, p], ∀j ∈ [1, mi], ∀k ∈ [1, n], xijk ∈ {0, 1}
(B2)

which are equivalent to:



Energies 2017, 10, 105 24 of 27

s.t.


∀k ∈ [1, n], ∑

p
i=1 ∑mi

j=1(xijkeij)− ∆
n ≤ yk

∀k ∈ [1, n],−∑
p
i=1 ∑mi

j=1(xijkeij) +
∆
n ≤ yk

∀k ∈ [1, n], yk ≥ 0

∀i ∈ [1, p], ∀j ∈ [1, mi], ∀k ∈ [1, n], xijk ∈ {0, 1}

(B3)

Finally, combining the original constraints (Equation (4)) and extra constraints required for
problem transformation (Equation (B3)), we can obtain the Mixed-Integer Programming (MIP) problem
form for our ECS problem (Equation (5)).

Appendix C. Running Appliances in Continuous Time Slots (GECS)

For agent i’s j-th appliance, again its total number of in-use time slots xij = ∑n
k=1 xijk will replace

cij in the ECS problem. Similar constraints (similar to the discussions in Appendix A) can be derived
as below:

• If xij1 = 1, then ∑
xij
k=1 xijk = xij must hold (only one possibility). This ensures that such an

appliance is continuously on in the first xij time slots. This constraint is equivalent to:

xij1xij ≤
xij

∑
k=1

xijk (C1)

If xij1 = 0, the inequality always holds (no constraint); otherwise xij1 = 1, we have ∑
xij
k=1 xijk = xij

(cannot be greater than xij).

• If xij2 = 1, then ∑
xij
k=1 xijk = xij or ∑

xij+1
k=2 xijk = xij (exactly one out of two equalities) should hold

since there are exactly two possibilities to form xij continuous time slots. This ensures that such an

appliance is continuously on in time slots [1, xij] or [2, xij + 1]. Indeed, if ∑
xij
k=1 xijk = xij holds, then

∑
xij+1
k=2 xijk = xij− 1 and vice versa. Hence, we can combine them together: ∑

xij
k=1 xijk +∑

xij+1
k=2 xijk =

2xij − 1, and formulate the constraint as:

xij2[xij + (xij − 1)] ≤
xij

∑
k=1

xijk +

xij+1

∑
k=2

xijk (C2)

• Similarly, if xij3 = 1, then ∑
xij
k=1 xijk = xij or ∑

xij+1
k=2 xijk = xij or ∑

xij+2
k=3 xijk = xij (exactly one out of

three equalities holds). This ensures that such an appliance is continuously on in time slots [1, xij],
[2, xij + 1] or [3, xij + 2]. Then, we can formulate the constraint as:

xij3[xij + (xij − 1) + (xij − 2)] ≤
xij

∑
k=1

xijk +

xij+1

∑
k=2

xijk +

xij+2

∑
k=3

xijk (C3)

• for time slot s = 4, . . . , n− 1, the corresponding constraint can be formulated as:

xijs[sxij −
s

∑
k=1

(k− 1)] ≤
xij

∑
k=1

xijk +

xij+1

∑
k=2

xijk + · · ·+
xij+s−1

∑
k=s

xijk (C4)

• if xijn = 1 (last time slot), then ∑n
k=n−xij+1 xijk = xij holds. This ensures that such an appliance is

continuously on in the last xij time slots. Then, we can formulate the constraint as:

xijnxij ≤
n

∑
k=n−xij+1

xijk (C5)



Energies 2017, 10, 105 25 of 27

Similar to the ECS problem, there are (n− xij + 1) new inequality constraints derived to ensure
running agent i’s j-th appliance in xij continuous time slots. The GECS problem should include all of
the constraints (Inequalities (C1)–(C5)) for agent i’s appliance j. Thus, for all of the agents i ∈ [1, p],
each of its appliances ∀j ∈ [1, mi] has such a set of constraints (Inequalities (C1)–(C5)) to ensure
running such an appliance in continuous time slots (xij in total).

References

1. Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart Grid—The New and Improved Power Grid: A Survey.
IEEE Commun. Surv. Tutor. 2012, 14, 944–980.

2. Aung, Z.; Toukhy, M.; Williams, J.R.; Sanchez, A.; Herrero, S. Towards Accurate Electricity Load Forecasting
in Smart Grids. In Proceedings of the 4th International Conference on Advances in Databases, Knowledge,
and Data Applications, Saint-Gilles, Belgium, 29 February–5 March 2012.

3. Lin, H.Y.; Tzeng, W.G.; Shen, S.T.; Lin, B.S.P. A Practical Smart Metering System Supporting Privacy
Preserving Billing and Load Monitoring. In Proceedings of the 10th International Conference (ACNS 2012),
Singapore, 26–29 June 2012; pp. 544–560.

4. Chu, C.K.; Liu, J.K.; Wong, J.W.; Zhao, Y.; Zhou, J. Privacy-preserving Smart Metering with Regional
Statistics and Personal Enquiry Services. In Proceedings of the 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security (ASIACCS 2013), Hangzhou, China, 8–10 May 2013; pp. 369–380.

5. Salinas, S.; Li, M.; Li, P. Privacy-preserving Energy Theft Detection in Smart Grids: A P2P Computing
Approach. J. Sel. Areas Commun. 2013, 31, 257–267.

6. Masters, G.M. Renewable and Efficient Electric Power Systems, 2nd ed.; Wiley: Hoboken, NJ, USA, 2013.
7. Davidoff, S.; Lee, M.K.; Yiu, C.; Zimmerman, J.; Dey, A.K. Principles of Smart Home Control.

In Proceedings of the 8th International Conference on Ubiquitous Computing, Orange County, CA, USA,
17–21 September 2006; pp. 19–34.

8. Ullah, M.N.; Mahmood, A.; Razzaq, S.; Ilahi, M.; Khan, R.D.; Javaid, N. A Survey of Different Residential
Energy Consumption Controlling Techniques for Autonomous DSM in Future Smart Grid Communications.
J. Basic Appl. Sci. Res. 2013, 3, 1207–1214.

9. Lee, J.; Kim, H.-J.; Park, G.-L.; Kang, M. Energy Consumption Scheduler for Demand Response Systems in
the Smart Grid. J. Inf. Sci. Eng. 2011, 27, 197–211.

10. Barker, S.; Mishra, A.; Irwin, D.; Shenoy, P.; Albrecht, J. SmartCap: Flattening peak electricity demand
in smart homes. In Proceedings of the 2012 IEEE International Conference on Pervasive Computing and
Communications (PerCom 2012), Lugano, Switzerland, 19–23 March 2012; pp. 67–75.

11. Barker, S.; Mishra, A.; Irwin, D.; Cecchet, E.; Shenoy, P.; Albrecht, J. Smart*: An Open Data Set and Tools
for Enabling Research in Sustainable Homes. In Proceedings of the ACM 2012 Workshop on Data Mining
Applications in Sustainability, Beijing, China, 12 August 2012.

12. Maharjan, S.; Zhu, Q.; Zhang, Y.; Gjessing, S.; Basar, T. Dependable Demand Response Management in the
Smart Grid: A Stackelberg Game Approach. IEEE Trans. Smart Grid 2013, 4, 120–132.

13. Albadi, M.; El-Saadany, E. Demand Response in Electricity Markets: An Overview. In Proceedings of the
2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–5.

14. Logenthiran, T.; Srinivasan, D.; Shun, T.Z. Demand Side Management in Smart Grid Using Heuristic
Optimization. IEEE Trans. Smart Grid 2012, 3, 1244–1252.

15. Paterakis, N.G.; Erdinc, O.; Bakirtzis, A.G.; Catalao, J.P.S. Optimal Household Appliances Scheduling
Under Day-Ahead Pricing and Load-Shaping Demand Response Strategies. IEEE Trans. Ind. Inf. 2015, 11,
1509–1519.

16. Paterakis, N.G.; Tascikaraoglu, A.; Erdinc, O.; Bakirtzis, A.G.; Catalao, J.P.S. Assessment of
Demand-Response-Driven Load Pattern Elasticity Using a Combined Approach for Smart Households.
IEEE Trans. Ind. Inf. 2016, 12, 1529–1539.

17. Liu, W.; Wu, Q.; Wen, F.; Ostergaard, J. Day-Ahead Congestion Management in Distribution Systems
Through Household Demand Response and Distribution Congestion Prices. IEEE Trans. Smart Grid 2014,
5, 2739–2747.

18. Sarker, M.R.; Ortega-Vazquez, M.A.; Kirschen, D.S. Optimal Coordination and Scheduling of Demand
Response via Monetary Incentives. IEEE Trans. Smart Grid 2015, 6, 1341–1352.



Energies 2017, 10, 105 26 of 27

19. Nourai, A.; Kogan, V.I.; Schafer, C.M. Load Leveling Reduces T & D Line Losses. IEEE Trans. Power Deliv.
2008, 23, 2168–2173.

20. Patnaik, L.M.; Iyer, K.V. Load-leveling in Fault-tolerant Distributed Computing Systems. IEEE Trans.
Softw. Eng. 1986, SE-12, 554–560.

21. Safdarian, A.; Fotuhi-Firuzabad, M.; Lehtonen, M. A Distributed Algorithm for Managing Residential
Demand Response in Smart Grids. IEEE Trans. Ind. Inf. 2014, 10, 2385–2393.

22. Lin, Y.; Tsai, M. An Advanced Home Energy Management System Facilitated by Nonintrusive Load
Monitoring With Automated Multi-objective Power Scheduling. IEEE Trans. Smart Grid 2015, 6, 1839–1851.

23. Lu, H.; Zhang, M.; Fei, Z.; Mao, K. Multi-Objective Energy Consumption Scheduling in Smart Grid Based on
Tchebycheff Decomposition. IEEE Trans. Smart Grid 2015, 6, 2869–2883.

24. Paterakis, N.G.; Mazza, A.; Santos, S.F.; Erdinc, O.; Chicco, G.; Bakirtzis, A.G.; Catalao, J. Multi-Objective
Reconfiguration of Radial Distribution Systems using Reliability Indices. In Proceedings of the 2016
IEEE/PES Transmission and Distribution Conference and Exposition (TD), Dallas, TX, USA, 3–5 May 2016;
p. 1.

25. Chetto, M. Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing Systems. IEEE Trans.
Emerg. Top. Comput. 2014, 2, 122–133.

26. Wang, Y.; Li, K.; Chen, H.; He, L.; Li, K. Energy-Aware Data Allocation and Task Scheduling on
Heterogeneous Multiprocessor Systems With Time Constraints. IEEE Trans. Emerg. Top. Comput. 2014, 2,
134–148.

27. Lin, M.; Pan, Y.; Yang, L.T.; Guo, M.; Zheng, N. Scheduling Co-Design for Reliability and Energy in
Cyber-Physical Systems. IEEE Trans. Emerg. Top. Comput. 2013, 1, 353–365.

28. Ahmed, M.S.; Mohamed, A.; Homod, R.Z.; Shareef, H. Hybrid LSA-ANN Based Home Energy Management
Scheduling Controller for Residential Demand Response Strategy. Energies 2016, 9, 716.

29. Cerquides, J.; Picard, G.; Rodríguez-Aguilar, J.A. Designing a Marketplace for the Trading and Distribution
of Energy in the Smart Grid. In Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2015), Istanbul, Turkey, 4–8 May 2015; pp. 1285–1293.

30. Nijs, F. Dynamic Capacity Control and Balancing in the Medium Voltage Grid. In Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2015), Istanbul, Turkey,
4–8 May 2015; pp. 1979–1980.

31. Gomez-Sanz, J.J.; Garcia-Rodriguez, S.; Cuartero-Soler, N.; Hernandez-Callejo, L. Reviewing Microgrids
from a Multi-Agent Systems Perspective. Energies 2014, 7, 3355-3382.

32. Cha, H.J.; Won, D.J.; Kim, S.H.; Chung, I.Y.; Han, B.M. Multi-Agent System-Based Microgrid Operation
Strategy for Demand Response. Energies 2015, 8, 14272–14286.

33. Agrawal, P.; Kumar, A.; Varakantham, P. Near-Optimal Decentralized Power Supply Restoration in Smart
Grids. In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2015), Istanbul, Turkey, 4–8 May 2015; pp. 1275–1283.

34. Strawser, D.; Williams, B.; Inam, W. A Market for Reliability for Electricity Scheduling in Developing World
Microgrids. In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Istanbul, Turkey, 4–8 May 2015; pp. 1833–1834.

35. Gurobi Optimization, I. Gurobi Optimizer Reference Manual; Gurobi Optimization Inc.: Houston, TX,
USA, 2015.

36. Richardson, I.; Thomson, M.; Infield, D.; Clifford, C. Domestic Electricity Use: A high-Resolution Energy
Demand Model. Energy Build. 2010, 42, 1878–1887.

37. Lei, L.; Pinedo, M.; Qi, L.; Wang, S.; Yang, J. Personnel Scheduling and Supplies Provisioning in Emergency
Relief Operations. Ann. Oper. Res. 2015, 235, 487.

38. Ciabattoni, L.; Ferracuti, F.; Grisostomi, M.; Ippoliti, G.; Longhi, S. Fuzzy Logic Based Economical Analysis
of Photovoltaic Energy Management. Neurocomput 2015, 170, 296–305.

39. Hart, G.W. Nonintrusive Appliance Load Monitoring. Proc. IEEE 1992, 80, 1870–1891.
40. Hong, Y.; Goel, S.; Liu, W. An Efficient and Privacy Preserving Scheme for Energy Exchange among Smart

Microgrids. Int. J. Energy Res. 2016, 40, 313–331.
41. Sankar, L.; Rajagopalan, S.R.; Mohajer, S.; Poor, H.V. Smart Meter Privacy: A Theoretical Framework.

IEEE Trans. Smart Grid 2013, 4, 837–846.



Energies 2017, 10, 105 27 of 27

42. Hong, Y.; Vaidya, J.; Lu, H.; Karras, P.; Goel, S. Collaborative Search Log Sanitization: Toward Differential
Privacy and Boosted Utility. IEEE Trans. Dependable Secure Comput. 2015, 12, 504–518.

43. Hong, Y.; Vaidya, J.; Wang, S. A Survey of Privacy-aware Supply Chain Collaboration: From Theory to
Applications. J. Inf. Syst. 2014, 28, 243–268.

44. Hong, Y.; Vaidya, J.; Lu, H. Secure and Efficient Distributed Linear Programming. J. Comput. Secur. 2012, 20,
583–634.

45. Hong, Y.; He, X.; Vaidya, J.; Adam, N.; Atluri, V. Effective Anonymization of Query Logs. In Proceedings
of the 18th ACM Conference on Information and Knowledge Management (CIKM), Hong Kong, China,
2–6 November 2009; pp. 1465–1468.

46. Hong, C.M.; Ou, T.C.; Lu, K.H. Development of Intelligent MPPT (Maximum Power Point Tracking) Control
for a Grid-Connected Hybrid Power Generation System. Energy 2013, 50, 270–279.

47. Ou, T.C.; Hong, C.M. Dynamic Operation and Control of Microgrid Hybrid Power Systems. Energy 2014, 66,
314–323.

48. Ou, T.C.; Tsao, T.P.; Lin, W.M.; Hong, C.M.; Lu, K.H.; Tu, C.S. A Novel Power Flow Analysis for
Microgrid Distribution System. In Proceedings of the 2013 IEEE 8th Conference on Industrial Electronics
and Applications (ICIEA), Melbourne, Australia, 19–21 June 2013; pp. 1550–1555.

49. Ou, T.C.; Su, W.F.; Liu, X.Z.; Huang, S.J.; Tai, T.Y. A Modified Bird-Mating Optimization with Hill-Climbing
for Connection Decisions of Transformers. Energies 2016, 9, 671.

50. Ou, T.C. Ground Fault Current Analysis with A Direct Building Algorithm for Microgrid Distribution. Int. J.
Electr. Power Energy Syst. 2013, 53, 867–875.

51. Ou, T.C. A Novel Unsymmetrical Faults Analysis for Microgrid Distribution systems. Int. J. Electr. Power
Energy Syst. 2012, 43, 1017–1024.

52. Ou, T.C.; Chuang, S.J.; Hong, C.M.; Wu, R.C.; Tsao, T.P.; Chen, C.Y. Self-Regulation Ground Faults Model for
Microgrid Distribution. ICIC Express Lett. Part B Appl. 2015, 6, 3225–3230.

53. Lin, W.M.; Ou, T.C. Unbalanced distribution network fault analysis with hybrid compensation. IET Gener.
Transm. Distrib. 2011, 5, 92–100.

c© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Energy Consumption Scheduling
	Objective Function
	Constraints
	Fixed Number of In-Use Time Slots
	Running Appliances in Continuous Time Slots
	Agents' Preferences of the In-Use Time Slots

	Problem Formulation
	Measures of Evaluating Scheduling Solutions

	Generalized ECS Problem
	Objective Function
	Constraints
	Number of Running Time Slots
	Running Appliances in Continuous Time Slots

	Problem Formulation

	Algorithms
	Overview
	Solving the ECS Problem with Temporal Decomposition
	Solving the GECS Problem with Linear Programming Relaxation and Temporal Decomposition

	Experimental Results
	Dataset
	Settings
	Accuracy
	Case Study
	Efficiency and Scalability
	Experimental Results for the GECS Problem

	Discussions
	Appliance Categories in Scheduling
	Number of Binary Variables and Load Leveling Performance
	Running Multiple Times
	Short-Term Scheduling

	Conclusions and Future Work
	Running Appliances in Continuous Time Slots (ECS)
	Problem Transformation (ECS)
	Running Appliances in Continuous Time Slots (GECS)

