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Abstract:



At present, the research is still in the primary stage in the process of fault disturbance energy transfer in the multilevel modular converter based high voltage direct current (HVDC-MMC). An urgent problem is how to extract and analyze the fault features hidden in MMC electrical information in further studies on the HVDC system. Aiming at the above, this article analyzes the influence of AC transient disturbance on electrical signals of MMC. At the same time, it is found that the energy distribution of electrical signals in MMC is different for different arms in the same frequency bands after the discrete wavelet packet transformation (DWPT). Renyi wavelet packet energy entropy (RWPEE) and Renyi wavelet packet time entropy (RWPTE) are proposed and applied to AC transient fault feature extraction from electrical signals in MMC. Using the feature extraction results of Renyi wavelet packet entropy (RWPE), a novel recognition method is put forward to recognize AC transient faults using the information fusion technology. Theoretical analysis and experimental results show that the proposed method is available to recognize transient AC faults.
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1. Introduction


Conventional HVDC usually adopts line commuted converter high voltage direct current (LCC-HVDC) technology. Power transmission of LCC-HVDC system is based on thyristor. However, thyristor does not have the capacity to turn off itself, and it has low switching frequency, which causes low performance for converters. In an LCC-HVDC system, receive port must be a high-capacity power system as to provides commutation current. Only in this way can power be transmitted to the grid. Because thyristor does not have the capacity of inverter commutation by itself, and LCC-HVDC system does not work when receive port is a low-capacity power system or commutation current is not fully provided. MMC-HVDC is developed on the basis of conventional HVDC, so it has the advantages of conventional HVDC [1]. MMC based on insulated gate bipolar transistor (IGBT) is a new technology that is widely used in voltage-source converters [2,3]. As a new HVDC technology, MMC-HVDC introduces fully controlled power electronics devices and PWM technology, and solves many problems that exist in conventional HVDC [4,5,6,7,8]. Large amounts of researches have been conducted on MMC-HVDC, so it widely applies in many areas such as the large-capacity power delivery, asynchronous networks and island power transmission [9,10,11,12]. According to the topology structure of MMC, reference [13] analyzes fault characteristics of typical transient faults, and the electromagnetic transient model of AC side of MMC is derived under the condition of unbalance AC grid. The control strategies are designed to reduce current circulation in MMC. In reference [14], the structure and principle of MMC are discussed. Then, the internal bus faults are reviewed, and a protection strategy focusing on single-phase ground fault is proposed. In reference [15], the positive sequence and negative sequence components of AC are separated, and the mathematical model of MMC-HVDC system is established. Then its fault features under three-phase unbalance fault are analyzed, which include the changing processes of AC, DC, SM capacitance voltage, and the internal current, and a protection strategy is also proposed. In references [16,17,18], the structure and principle of MMC are discussed. Then, characteristic of faults are analyzed, and the corresponding protection strategy is proposed.



Although a number of researches have been conducted, the research is still in initial stage on process of evaluation of operation state and AC-DC interaction for MMC-HVDC system. Meanwhile, the in-depth researches are also needed to improve the extraction, induction and analysis technologies of the fault characteristics hidden in MMC electrical information. For the above, on basis of Renyi wavelet packet energy entropy (RWPEE) and Renyi wavelet packet time entropy (RWPTE) proposed, a transient feature extraction method is proposed and applied to the recognition of transient faults on AC side of MMC. This method provides theoretical supportfor theevaluation of operation state and AC-DC interaction for MMC-HVDC system. The theoretical analysis and experimental results prove the effectiveness of the proposed method.




2. Influence of AC Transient Faults on MMC


A MMC consists of three-phase six-arm circuits, in which each arm is united by several sub-modules (SM), the equivalent inductance is [image: there is no content] and the equivalent resistance is [image: there is no content] in series. Upper and lower arms compose a phase unit, as shown in Figure 1.


Figure 1. Equivalent circuit of a multilevel modular converter (MMC).



[image: Energies 10 00023 g001]






In each SM, [image: there is no content] and [image: there is no content] can be controlled with “on” and “off” to change the output. By controlling the SM’s of upper and lower arms, multilevel waveform is output to AC side of MMC.



The point v is AC input of the converter, which can connect with AC system by transformer. The voltage and input current of v is [image: there is no content] and [image: there is no content] respectively. [image: there is no content] is DC voltage and [image: there is no content] is DC current. The arm voltages of six controlled voltage sources are [image: there is no content] and [image: there is no content]. At the same time, the arm currents are [image: there is no content] and [image: there is no content]. Among them, the subscripts p and n represent upper arm and lower arm respectively, and o is the neutral point. Reference direction is as shown in Figure 1 [19].



As shown in Figure 1, according to Kirchhoff current theory,


[image: there is no content]



(1)







The current in the arms in the j-th phase unit is regarded as [20],


[image: there is no content]



(2)







[image: there is no content] and [image: there is no content] represent DC component and AC component in the current of arms. Therefore, the upper and lower arm currents in j phase are regarded as,


[image: there is no content]



(3)






[image: there is no content]



(4)







According to Kirchhoff current theory, the equilibrium equations for upper and lower arms in j phase are regarded as [21]


[image: there is no content]



(5)






[image: there is no content]



(6)







Adding Equations (5) to (6), it is derived as


[image: there is no content]



(7)







Therefore, Equation (7) can also be rewritten as the form of three-phase system


[image: there is no content]



(8)







Equation (8) describes the dynamic characteristics of AC side in MMC. Equation (6) is subtracted from Equation (5), it is obtained as


[image: there is no content]



(9)







The current on DC side can be obtained as


[image: there is no content]



(10)







Equations (9) and (10) describe the dynamic characteristics of DC side in MMC. Dynamic mathematical model of MMC by using Kirchhoff theory is applied not only in normal conditions but also in fault conditions. When transient fault occurs on AC transmission line, the internal arm voltages [image: there is no content] will change because of the fluctuation of [image: there is no content]. The voltages of arm will be adjusted by control strategy of MMC, which leads to the fluctuation of reactive power and the change of [image: there is no content], eventually the fluctuation of [image: there is no content] and [image: there is no content] on DC bus. In order to verify the theoretical analysis above, simulation model, 2-terminal 51-level MMC station, is built on RT-LAB (11.0) and MATLAB (2013a) simulation platform. As AB-phase ungrounded short circuit fault occurs on AC transmission line, the original electrical signals are as shown in Figure 2 and Figure 3. From Figure 2 and Figure 3, it can be found that the voltage and current of arm and DC bus fluctuate significantly when the fault occurs.


Figure 2. The upper arm signals when AB-phase ungrounded short circuit fault occurs. (a) A-phase current; (b) B-phase current; (c) C-phase current; (d) ABC-phase voltage.



[image: Energies 10 00023 g002]





Figure 3. The voltage of DC bus when AB-phase ungrounded short circuit fault occurs.



[image: Energies 10 00023 g003]







3. Time Frequency Analysis of Arm Current under Transient Fault Condition


According to the above analysis of the influence of AC transient faults on MMC, the voltage and current of arms and DC bus in MMC will be changed when AC transient faults occur on AC transmission line. However, because of the system damping, circulating-current restrain and control strategy, it is difficult to determine the AC fault types and fault phases directly according to the change of time-domain current and voltage in MMC.



Based on the MMC-HVDC model, arm currents in MMC can be obtained by simulating AB-phase grounding short circuit fault. By comparison of Figure 2 and Figure 4, there are not the obvious differences in the fault current between AB-phase grounding short circuit fault and AB-phase ungrounded short circuit fault. It is difficult to determine fault types and fault phases directly only according to the current waveform in time domain.


Figure 4. The upper arm signals when AB-phase grounding short circuit fault occurs. (a) A-phase current; (b) B-phase current; (c) C-phase current.



[image: Energies 10 00023 g004]






DWPT can capture the local information in time-frequency domain. At the same time, it is an optical choice for analysis and detection on transient signals and non-stationary signals [22,23,24]. Based on the above analysis, when AB-phase ungrounded short circuit fault occurs, the arm currents in MMC is taken as an example, and it is split into different frequency components with DWPT in 0–112 Hz. Through analyzing, there are significant differences in the energy distribution of three-phase arm currents in 14–28 Hz when the fault occurs on AC transmission line, as shown in Figure 5.


Figure 5. The upper arm current when AB-phase grounding short circuit fault occurs (14–28 Hz). (a) A-phase current; (b) B-phase current; (c) C-phase current.



[image: Energies 10 00023 g005]






From Figure 5, we can see that there is a significant change of current in AB-phase when fault occurs, but slight fluctuations in C-phase. The further work reveals that the energy distribution is different among different phases and frequency bands when different transient faults occur on AC transmission line. Only by using DWPT to obtain the information in each band, the amount of information is huge and the fault features are not significant because of the complexity of transient signals in different phases and frequency bands. Therefore, it is unable to exactly identify the type and phase of fault. In the basis of the multi-resolution of DWPT, a novel method of transient signal analysis can be proposed combining with entropy statistics. The further data mining can be performed to make the fault features easy to recognize with the proposed method.




4. Feature Extraction of AC Transient Faults Based on Renyi Wavelet Packet Entropy


4.1. The Definition of Renyi Entropy


Renyi entropy is an extension of Shannon entropy, Renyi entropy is equivalent to Shannon when [image: there is no content]. Because of the adjustable parameters [image: there is no content] introduced by Renyi entropy, the parameter [image: there is no content] can be adjusted according to the signal feature from the prior knowledge. Renyi entropy is defined as follows [25].


[image: there is no content]



(11)








4.2. The Statistical Properties of Renyi Entropy


The selection of [image: there is no content] plays an important role in the statistical properties of Renyi entropy. Taking a three-level system as the analysis object, according to Equation (11), the statistical results are calculated, and the corresponding relation between Renyi entropy with [image: there is no content] and the probability distribution are shown in Figure 6. According to Figure 6, when [image: there is no content] and [image: there is no content], with the increase of [image: there is no content], the statistical range of Renyi entropy will expand for the system state of small probability event, and the statistical sensitivity for the small probability event will reduce correspondingly. In contrast, with the decrease of [image: there is no content], the statistical range of small probability event is reduced, and the statistical sensitivity increases [26].


Figure 6. Relation between Renyi entropy with different values of [image: there is no content] and probability distribution. (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]; (d) [image: there is no content].



[image: Energies 10 00023 g006]






For a signal containing transient components, the components of the signal are considered as the small probability event. Therefore, Renyi entropy can get better results in extracting the signal feature with the appropriate [image: there is no content], and [image: there is no content] should be smaller than 0.5. Based on principles above, [image: there is no content] should be limited in 0.1–0.3 according to the energy distribution of measured signal in each frequency band.




4.3. Renyi Wavelet Packet Energy Entropy


DWPT can get much richer time-frequency local information. It is better applied to analyze and detect the saltation of signals. Therefore, DWPT is introduced. The DWPT is listed as follows [27,28].


[image: there is no content]



(12)




where [image: there is no content] is a high-pass filter, [image: there is no content] is a low-pass filter, [image: there is no content] is the reconstructed signal of the node k on the layer i by DWPT, DWPT is to divide each sub-band into two parts and transmit them to the lower levels until each sub-band corresponds to a frequency component of signal.



Decomposing signal into i layers. Then, the node coefficient of discrete wavelet packet or reconstructed signals are obtained to build the matrix [image: there is no content], L is the length of [image: there is no content]. A sliding window is defined as [image: there is no content] on [image: there is no content], w is the window width, [image: there is no content] is the sliding factor. This sliding window is shown as follows [29],


[image: there is no content]



(13)







In the above equation, [image: there is no content], [image: there is no content], [image: there is no content] is the k-th node coefficient or reconstructed signal of wavelet packet nodes (i, j). k is the position variables of node coefficient or reconstructed signal, N is the upper limit of decomposition level, M is the length of RWPEE. The operation process of RWPEE is listed as follows.



[image: there is no content] is the energy sum of [image: there is no content] wavelet packet coefficient set or reconstructed signal energy. The wavelet packet coefficient set and reconstructed signal energy are on scale i of the sliding window which is centered on the time [image: there is no content] and with a window width of [image: there is no content]. [image: there is no content] is the energy sum of the j-th wavelet packet coefficient set or reconstructed signal energy. The wavelet packet coefficient set and reconstructed signal energy are on scale i of the sliding window which is centered on the time [image: there is no content] and with a window width of [image: there is no content].



When [image: there is no content] and [image: there is no content], RWPEE at [image: there is no content] is shown as follow,


[image: there is no content]



(14)








4.4. Renyi Wavelet Packet Time Entropy


Decomposing signal into i layers. Then, the node coefficient of discrete wavelet packet or reconstructed signals are obtained to build the matrix [image: there is no content], L is the length of [image: there is no content]. A sliding window is defined on the j-th wavelet packet coefficient set or reconstructed signal energy, w is the window width, [image: there is no content] is the sliding factor. This sliding window is shown as follows,


[image: there is no content]



(15)







In the above equation, [image: there is no content], [image: there is no content]. We break up the [image: there is no content] into R intervals,


[image: there is no content]



(16)







In this equation, [image: there is no content], [image: there is no content] and [image: there is no content].



Let [image: there is no content] as the wavelet coefficients (reconstruction signal) [image: there is no content] probability which dropping into interval [image: there is no content]. The probability equals to the ratio of the number of the wavelet coefficients (reconstruction signal) [image: there is no content] which dropping into interval [image: there is no content] to the total number of which in the sliding window [image: there is no content]. Therefore, RWPTE at [image: there is no content] in j-th scale is shown as,


[image: there is no content]



(17)








4.5. ContrastAnalysisof RWPE and SWPE


Although Shannon wavelet packet entropy (SWPE) is widely applied in a power system, when the measured signal is more complex and contains a lot of random signals, there is severe energy leakage and frequency aliasing in the wavelet coefficients (or reconstructed signals) with increasing of the wavelet decomposition scale. It reduces accuracy of feature extraction and could cause that feature extraction is submerged in the background noise [30]. Due to adjustable parameter [image: there is no content] of Renyi, based on the feature of measured signals, [image: there is no content] is adjusted to reduce the effect of wavelet aliasing on accuracy of feature extraction. Based on the above analysis, A-phase grounded short circuit fault on AC transmission line is taken as an example to verify the theoretical analysis. Here, the fault occurs at 1 s. The RWPEE proposed and Shannon wavelet packet energy entropy (SWPEE) are used to extract fault feature from DC bus voltage. The results of feature extraction are shown in Figure 7. By analyzing Figure 7, RWPEE can extract effectively feature of transient fault, and the accuracy of feature extraction is better than SWPEE. Then, feature extraction results of RWPTE also are superior to Shannon wavelet packet time entropy (SWPTE). Therefore, comparing SWPE, RWPE proposed have high accuracy in feature extraction of AC transient faults.


Figure 7. Feature extraction of fault feature from DC bus voltage. (a) SWPEE; (b) RWPEE.



[image: Energies 10 00023 g007]






In term of computation complexity, complexity of RWPE algorithm is affected by computation of Mallat wavelet transform and Renyi entropy. RWPE is as an example to analyze complexity of RWPE algorithm based on Db4 wavelet transform. Mallat algorithm is that discrete wavelet is transformed into high-pass and low-pass filters to repeatedly filter for signals. Coefficients of low-pass filters with Db4 wavelet transform are known. According to the mathematical relationship (Equation (18)) between decomposition filters and reconstruction filters, coefficients of high-pass filters are acquired.


[image: there is no content]



(18)







[image: there is no content] is low-pass decomposition filter, [image: there is no content] is high-pass decomposition filter, [image: there is no content] is low-pass reconstruction filter, [image: there is no content] is high-pass reconstruction filter. Therefore, z-transform of filter banks is expressed as follows.


[image: there is no content]



(19)




where, [image: there is no content] is z-transform of high-pass filter, [image: there is no content] is z-transform of low-pass filter. For convenience, Equation (19) is transformed into recurrence relation as follows.


{d(n)=−0.2304x(n−1)+0.7148x(n)−0.6309x(n+1)−0.0280x(n+2)+0.1870x(n+3)+0.0308x(n+4)−0.0329x(n+5)−0.0106x(n+6)a(n)=0.0106x(n−7)+0.0329x(n−6)+0.0308x(n−5)−0.10870x(n−4)−0.0280x(n−3)+0.6309x(n−2)+0.7148x(n−1)+0.2034x(n)



(20)




where [image: there is no content] is time series of measured signal. Based on Equation (20), Db4 wavelet decomposition needs 16M + 14A operations in a single computation (M is multiplication, and A is addition). If a branch signal is decomposed into the reconstructed signals, the computation of the branch signal will be doubled. According to the Renyi entropy equation, it is necessary to compute a Renyi entropy with Nx (A + P) + M + Q operations (Q is logarithm and P is exponentiation) when the numbers of probability are Nx. According to the above analysis, based on Db4 wavelet basis function, RWPE with operation complexity are shown in Table 1. Compared with the SWPE algorithm that is widely applied to feature extraction of transient faults, RWPE is superior to SWPE in complexity.



Table 1. Complexity of algorithm.







	
Entropy

	
Complexity of RWPE Algorithm

	
Complexity of SWPE Algorithm

	
Computational Cost Savings






	
Time Entropy

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Energy Entropy

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]








[image: there is no content] is the width of sliding window, [image: there is no content] is the length of original data, [image: there is no content] is the slide factor. [image: there is no content] is the operation of time matrix, [image: there is no content] is the operation of energy matrix, [image: there is no content] is the number of data interval, [image: there is no content] is the number of wavelet scale, J is the logic judgment of Shannon entropy.









4.6. Feature Extraction of Transient Faults with RWPEE


According to the MMC-HVDC model proposed in the Section 6, short circuit faults are be set at 30 km from the generator, which include A-phase grounding fault, AB-phase grounding short circuit fault, AB-phase ungrounded short circuit fault and three-phase short circuit fault. Then, RWPEE and RWPTE are used to extract the features of transient disturbances hidden in MMC electrical information. Here, the fault occurs at 1 s and the duration is 0.02 s, data acquisition time is 2 s, [image: there is no content] is 0.1 and grounding resistance is 10 [image: there is no content]. It is found that the variation tendency of currents and voltages in each frequency band are similar in upper and lower arms of MMC when transient disturbance occurs on AC transmission line. In order to reduce computation and improve the operation efficiency, the upper arm currents and DC bus voltage are selected as the initial data.



The DC bus voltage of A-phase grounding fault, AB-phase grounding short circuit fault, AB-phase ungrounded short circuit fault and three-phase short circuit fault are respectively chosen, where the sampling frequency is 800 Hz. Then, reconstruction signals are computed by RWPEE, the operation results are shown in Figure 8. From Figure 8, when the multi-phase faults occur on AC transmission line, the value of RWPEE is 8–14 times more than that in other time. When A-phase grounding fault occurs, it is about 1.7 times more than that in other time.


Figure 8. RWPEE when short circuit fault occurs. (a) A-phase grounding fault; (b) AB-phase grounding short circuit fault; (c) AB-phase ungrounded short circuit fault; (d) ABC-phase short circuit fault.



[image: Energies 10 00023 g008]







4.7. Feature Extraction of Transient Faults with RWPTE


According to the frequency-domain analysis of arm currents under transient fault condition, when the different transient faults occur on AC transmission line, the energy distribution is different in each frequency band among three phases. Accordingly, RWPTE can be used to extract the feature of transient component in each phase and each frequency band.



When A-phase grounding fault occurs on the AC transmission line, the upper arm currents are respectively sampled with 112 Hz on MMC. Then, reconstruction signal is computed in 42–49 Hz by RWPTE, the operation results are shown in Figure 9. In Figure 9, there are no any significant changes in RWPTE of A-phase, but the change occurs in B-phase and C-phase as shown in Figure 8.


Figure 9. RWPTE when A-phase grounding fault occurs. (a) A-phase; (b) B-phase; (c) C-phase.



[image: Energies 10 00023 g009]






When three-phase short circuit fault occurs on the AC transmission line, the upper arm currents are respectively sampled with 112 Hz on MMC. Then, reconstruction signal is computed in 14–28 Hz by RWPTE, and the results are shown in Figure 10. As seen in Figure 10, the significant change occurs in the RWPTE of ABC-phase.


Figure 10. RWPTE when three-phase short circuit fault occurs. (a) A-phase; (b) B-phase; (c) C-phase.



[image: Energies 10 00023 g010a][image: Energies 10 00023 g010b]






When AB-phase grounding short circuit fault occurs on the AC transmission line, the upper arm currents are respectively sampled with 112 Hz. Then, reconstruction signal is computed in 14–28 Hz by RWPTE, and the results are shown in Figure 11a–c. As seen in Figure 11a–c, there are no any significant changes in RWPTE of C-phase, but the change occurs in A-phase and B-phase.


Figure 11. RWPTE when AB-phase grounding short circuit fault occurs. (a) A-phase; (b) B-phase; (c) C-phase.



[image: Energies 10 00023 g011]






When AB-phase ungrounded short circuit fault occurs on the AC transmission line, reconstruction signal is computed in 14–28 Hz by RWPTE, and the operation results are shown in Figure 12a–c. In Figure 12a–c, there are no any significant changes in RWPTE of C-phase, but it occurs in A-phase and B-phase.


Figure 12. RWPTE of A, B, C-phase when AB-phase ungrounded short circuit fault occurs. (a) A-phase; (b) B-phase; (c) C-phase.



[image: Energies 10 00023 g012]






When AB-phase grounding short circuit fault and AB-phase ungrounded short circuit fault occur on the AC transmission line, reconstruction signals are computed in 7–14 Hz by RWPTE, and the results are shown in Figure 13. In Figure 13, there are no any significant changes in RWPTE of C-phase when AB-phase ungrounded short circuit fault occurs. Otherwise, AB-phase grounding short circuit fault occurs.


Figure 13. RWPTE of C-phase. (a) AB-phase grounding short circuit fault; (b) AB-phase ungrounded short circuit fault.



[image: Energies 10 00023 g013]








5. Recognition of AC Transient Fault


From the Section 4, when the different transient faults occur on AC transmission line, Renyi entropy can be used to extract the fault feature of MMC arms and DC bus when transient faults occur. Based on the feature extraction, a recognition method of AC transient fault is put forward in this article. The flow chart of fault recognition is shown in Figure 14.


Figure 14. Flow chart of fault recognition.



[image: Energies 10 00023 g014]






	A.

	
DC bus voltage is sampled with 800 Hz, and RWPEE is performed on it. Comparing the maximum and average value of RWPEE, if the ratio is between 4 and 25, which implies that multi-phase fault occurs on AC transmission line. Otherwise, the single-phase grounding fault occurs. When the single-phase grounding fault occurs, fault phase can be judged by step B. Otherwise, step C can be used to judge multi-phase fault type and fault phase.




	B.

	
Currents from the upper arm of three phases are respectively sampled with 112 Hz and RWPTE are computed for reconstruction signal in 42–29 Hz. The phase with entropy saltation is non-fault phase, and the phase without entropy saltation is fault phase. According to it, the fault phase of single-phase grounding fault can be confirmed.




	C.

	
Currents from the upper arm of three phases are respectively sampled with 112 Hz and RWPTE are computed for reconstruction signal in 14–28 Hz.

	a.

	
Entropy saltation in three phases implies that three-phase short circuit fault occurs on AC transmission line and the fault phases are ABC phases.




	b.

	
There is two-phase short circuit fault on AC transmission line, when the entropy saltation occurs in only two phases. Although only the two phases with entropy saltation can be determined as fault phase, the other fault phases have to be found based on step D.










	D.

	
Fault phases can be identified according to step C. On this basis, RWPTE are computed for reconstruction signal in 7–14 Hz. If there is entropy saltation at the fault phase, it can be determined as two-phase grounding short circuit fault on AC transmission line. Otherwise, it is two-phase ungrounded short circuit fault.







In summary, when transient faults occur on AC transmission line, the steps above can be used to determine the fault type and fault phase.




6. Stimulation


In this article, experiment data are acquired by using RT-LAB and MATLAB real-time simulation platform where a MMC-HVDC system model with 2-terminal 51-level is built. A scheme of system model is shown in Figure 15, main parameters are shown in Table 2. Meanwhile, the experiment data are compared with experiment results of MMC-HVDC numeral physics mix platform, which verifies that experiment data can reflect variety law of electrical signals in practical MMC. RT-LAB real-time simulation platform is shown in Figure 16. MMC-HVDC numeral physics mix platform is shown in Figure 17, Figure 18 and Figure 19.


Figure 15. Scheme of system model for 2-terminal 51-level MMC station.



[image: Energies 10 00023 g015]





Figure 16. RT-LAB.



[image: Energies 10 00023 g016]





Figure 17. Valve base controllers. (a) Elevation view; (b) Rear view.



[image: Energies 10 00023 g017]





Figure 18. Converter group. (a) Elevation view; (b) Rear view.



[image: Energies 10 00023 g018]





Figure 19. Physic model of DC transmission lines.



[image: Energies 10 00023 g019]






Table 2. Model parameters.







	
Parameters

	
Value






	
Short circuit ratio

	
10




	
AC system voltage [image: there is no content], [image: there is no content]

	
230 kV




	
AC system equivalent inductance [image: there is no content], [image: there is no content]

	
0.2183 mH/km




	
AC system equivalent resistance [image: there is no content], [image: there is no content]

	
0.0001143 [image: there is no content]/km




	
Transformer turns ratio [image: there is no content]

	
230 kV/64 kV




	
Transformer capacity [image: there is no content], [image: there is no content]

	
230 MVA




	
Connection mode [image: there is no content], [image: there is no content]

	
[image: there is no content]




	
Arm equivalent inductance [image: there is no content]

	
24 mH




	
Arm equivalent resistance [image: there is no content]

	
0.4 [image: there is no content]




	
Number of SM

	
100










Here, the faults are set between 1 and 2 in Figure 15 respectively with grounding resistance of 1–100 [image: there is no content]. The types of fault include single-phase grounding fault, two-phase short circuit fault, two-phase ungrounded short circuit fault, and three-phase short circuit fault. Each kind of fault occurs 18 times with various grounding resistance and short-circuit resistance.



The feature extraction and recognition method proposed are used to recognize the fault types. The entropy parameter [image: there is no content] is 0.1, the recognition results are shown in Table 3.



Table 3. The recognition results of transient faults.







	
Fault Types and Fault Phase

	
Correct Recognition

	
The fault Phase is Misjudgment

	
The Fault Type is Misjudgment






	
A-phase groundingfault

	
17

	
1

	
0




	
B-phase groundingfault

	
17

	
1

	
0




	
C-phase groundingfault

	
17

	
1

	
0




	
AB-phase grounding short circuit fault

	
17

	
1

	
0




	
BC-phase grounding short circuit fault

	
16

	
1

	
1




	
AC-phase grounding short circuit fault

	
17

	
0

	
1




	
AB-phase ungrounded short circuit fault

	
17

	
1

	
0




	
BC-phase ungrounded short circuit fault

	
16

	
1

	
1




	
AC-phase ungrounded short circuit fault

	
17

	
1

	
0




	
ABC-phase short circuit fault

	
18

	
0

	
0










From Table 3, the accuracy rate of fault recognition can reach 93.88%. In addition, the recognition method is compare with back propagation (BP) neural network recognition method that is widely applied to recognize AC fault in power system. The result obtained by BP neural network recognition method is shown in Table 4. From Table 4, the accuracy can reach 90.56%. It is lower than the fault recognition proposed.



Table 4. The results of BP neural network recognition method.







	
Fault Types and Fault Phase

	
Correct Recognition

	
The Fault Phase is Misjudgment

	
The Fault Type is Misjudgment






	
A-phase grounding fault

	
16

	
1

	
1




	
B-phase grounding fault

	
17

	
1

	
0




	
C-phase grounding fault

	
16

	
2

	
0




	
AB-phase grounding short circuit fault

	
16

	
1

	
1




	
BC-phase grounding short circuit fault

	
15

	
2

	
1




	
AC-phase grounding short circuit fault

	
16

	
1

	
1




	
AB-phase ungrounded short circuit fault

	
16

	
1

	
1




	
BC-phase ungrounded short circuit fault

	
16

	
2

	
0




	
AC-phase ungrounded short circuit fault

	
17

	
1

	
0




	
ABC-phase short circuit fault

	
18

	
0

	
0











7. Conclusions


In this article, the mechanism and feature of transient faults is analyzed for two-terminal MMC-HVDC system and the mathematical expression is established. Based on the characteristics of electrical signals in MMC as AC transient faults occur, RWPEE and RWPTE are proposed to extract feature of transient faults. Combining the results of feature extraction, a novel recognition method is proposed to recognize AC transient faults and its effectiveness is verified. The conclusions are as follows.

	(a)

	
Different AC transient faults have different influence on MMC. It is difficult to recognize AC transient faults by using time-domain signals of electrical information in MMC.




	(b)

	
Based on high resolution of DWPT in frequency-domain, the energy distribution of electrical signals in MMC are different for different arms in the same frequency bands after DWPT. According to the feature of energy distribution in the same frequency bands, RWPEE and RWPTE are proposed to extract feature of transient faults. In term of feature extraction accuracy and computation complexity, the methods proposed are better than SWPEE and SWPTE.




	(c)

	
The recognition method proposed can simplify numerous and complicated electrical information and it achieves the recognition of AC transient faults in MMC-HVDC system. Compared with BP neural network recognition, the recognition method proposed is more accurate.




	(d)

	
The conclusion provides theoretical support for the further analysis of operation state and AC-DC interaction for MMC-HVDC system. The next research will focus on how to reduce negative effects of transient faults on MMC from the results of this article, and the control strategy and evaluation of operation state will be proposed to optimize the performance of MMC-HVDC system.
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