
energies

Article

Deep Neural Network Based Demand Side Short
Term Load Forecasting †

Seunghyoung Ryu 1, Jaekoo Noh 2 and Hongseok Kim 1,*
1 Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742, Korea;

shryu@sogang.ac.kr
2 Software Center, Korea Electric Power Corporation (KEPCO), 105 Munji Road, Yuseong-Gu,

Daejeon 305-760, Korea; jknoh@kepco.co.kr
* Correspondence: hongseok@sogang.ac.kr; Tel.: +82-2-705-7989
† This paper is an extended version of our paper published in Proceedings of the 2016 IEEE International

Conference on Smart Grid Communications (SmartGridComm), Sydney, Australia, 6–9 November 2016.

Academic Editor: José C. Riquelme
Received: 15 July 2016; Accepted: 16 December 2016; Published: 22 December 2016

Abstract: In the smart grid, one of the most important research areas is load forecasting; it spans
from traditional time series analyses to recent machine learning approaches and mostly focuses on
forecasting aggregated electricity consumption. However, the importance of demand side energy
management, including individual load forecasting, is becoming critical. In this paper, we propose
deep neural network (DNN)-based load forecasting models and apply them to a demand side
empirical load database. DNNs are trained in two different ways: a pre-training restricted Boltzmann
machine and using the rectified linear unit without pre-training. DNN forecasting models are
trained by individual customer’s electricity consumption data and regional meteorological elements.
To verify the performance of DNNs, forecasting results are compared with a shallow neural network
(SNN), a double seasonal Holt–Winters (DSHW) model and the autoregressive integrated moving
average (ARIMA). The mean absolute percentage error (MAPE) and relative root mean square
error (RRMSE) are used for verification. Our results show that DNNs exhibit accurate and robust
predictions compared to other forecasting models, e.g., MAPE and RRMSE are reduced by up to 17%
and 22% compared to SNN and 9% and 29% compared to DSHW.

Keywords: short-term load forecasting; deep neural network; deep learning; rectified linear unit
(ReLU); exponential smoothing; smart grid; restricted Boltzmann machine (RBM); pre-training

1. Introduction

Load forecasting is one of the main research areas in the smart grid and can be classified depending
on its target forecasting ranges from minutes to years. Among these, short-term load forecasting (STLF),
which focuses on predicting the load of hours or days ahead, secures attention in the smart grid because
of its wide applicability to demand side management, energy storage operation, peak load reduction,
etc. One of the main characteristics of the smart grid is bidirectional communications, which breaks
down the border between electricity generation and consumption. Bidirectional communications can
be realized with the deployment of advanced metering infrastructure (AMI), which is a prerequisite of
many smart grid services, such as demand response (DR), targeted dynamic tariffs, load monitoring,
outage detection and restoration, the customer information system, etc. [1,2].

However, the collapse of the border between generation and consumption increases the complexity
of the grid. Now, consumers can produce electricity from renewable sources, such as photovoltaic
cells and wind turbines. Furthermore, by using an energy storage system (ESS), consumers can
actively shape their power demand. In addition to these changes, deregulation and privatization

Energies 2017, 10, 3; doi:10.3390/en10010003 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/journal/energies


Energies 2017, 10, 3 2 of 20

of the electricity market produce different aspects than the traditional market. In the literature,
load forecasting is vitally important for the electricity industry in the deregulated electricity market.
Furthermore, accurate models for electric load forecasting are also essential to the operation and
planning of a utility company [3]. In addition, DR is considered as one of the lease expensive
resources available for operating the system according to the new paradigm under deregulation [4],
and thus, forecasting the DR resource is important in the DR market. We also note that accurate
demand forecasting can encourage customers to participate in DR programs and to receive monetary
rewards from the utility company [5]. Meanwhile, in the deregulated retail market, various end-user
services, such as customer load management, require load forecasting to attract more customers.
These characteristics imply that the role of consumers would be more significant than before, and thus,
the scope of forecasting is shifted from the macroscopic view to the microscopic view.

There are many research activities on forecasting models from classical time series analysis to
recent machine learning approaches. Time series analysis [6], one of the most popular load forecasting
methods, includes the autoregressive integrated moving average (ARIMA), exponential smoothing and
the Kalman filter. In [7,8], the authors developed a double seasonal Holt–Winters model (exponential
smoothing) that showed better results than other models like ARIMA or neural networks.

Another branch of load forecasting is to use an artificial neural network (ANN) model [9,10].
Since ANN can model nonlinearity, it is widely used for various forecasting applications. For example,
ANN-based STLF models are well summarized in [11]. It is known that network structure plays
an important role in ANN because feature information about the model, including the forecasting
period or what variables are used, is reflected in the structure of neural networks. The most common
type of ANNs is a multilayer perceptron (MLP) that forecasts a load profile using previous load
data (e.g., [12,13]). So far, many ANN models have been published in the literature and showed
adequate forecasting results. In [14], an ANN-based hourly load forecasting model was proposed
for a household application. In [15], electricity price is considered as an input parameter for load
forecasting in real-time pricing markets. Furthermore, neural network models could be combined with
other methods: fuzzy logic [16], wavelet transform [17] or both [18]. Some literature uses different
methods in training neural networks. In [19], a continuous genetic algorithm was proposed to train
a neural network-based STLF model. Other types of neural networks, such as a self-organizing map
(SOM), are also used for prediction and classification [20]. In [5,21], the two-stage adaptive prediction
model based on SOM and K-means clustering was used for a buildings and apartments dataset.

A deep neural network (DNN) is an ANN with more layers than the typical three layers of
MLP. The deep structure increases the feature abstraction capability of neural networks. Recently,
the progress of the Internet of Things (IoT) and big data enables the adoption of DNNs in diverse
research fields. However, to the best of our knowledge, there are only a few DNN-based electricity
load forecasting models; in [22], DNN is used for time series wind forecasting, and DNN with the
discriminative pre-training method is used for time series electricity load forecasting in [23]. In [24],
a deep belief network (DBN) was used as a part of ensemble learning. They used support vector
regression with time series forecasting results of DBN. Our approach differs from the above in that:
(1) We adopt the DNN forecasting model for various types of load consumption data of the individual
demand side level; (2) We forecast daily load profiles the day ahead; (3) We compare two different
DNNs: The restricted Boltzmann machine (RBM) pre-training method and DNN with rectified linear
unit (ReLU).

We summarize our key contributions as follows. First, we apply deep learning to demand side
STLF and propose a DNN-based STLF framework. Specifically, we train DNNs in two different
ways: pre-training RBM and using ReLU without pre-training. With using ReLU, DNN can be
easily trained and performs better than the shallow neural network (SNN) with one hidden layer.
Second, we carefully investigate the problem of training DNNs with customer load data. Overfitting
may occur during DNN training if the volume of available individual load data is relatively small
considering the size of the neural network. Our experimental results show that DNN can be well



Energies 2017, 10, 3 3 of 20

trained with customer’s three-year load data. Third, we test the DNN-based STLF model using various
load databases of the demand side level and for the aggregated case. DNN models are trained for
40 big-sized industrial customers and the aggregated consumption of high usage customers in Korea.
We compare DNN forecasting results with the typical three-layered SNN, seasonal ARIMA and the
double seasonal Holt–Winters (DSHW) model. Numerical results indicate that the DNN-based STLF
model has lower mean absolute percentage error (MAPE) and relative root mean square error (RRMSE)
by up to 17% and 22% compared to SNN and by 9% and 29% compared to DSHW.

The rest of this paper is organized as follows. In Section 2, basic ANNs and DNNs will be
introduced. In Section 3, we propose a DNN-based framework, and the implementation issues of
forecasting model will be followed in Section 4. Experimental results and the conclusion will be given
in Sections 5 and 6, respectively.

2. Methodology

Recently, DNNs have shown tremendous progress in many research fields, such as acoustic
modeling, natural language processing and image recognition. The layout of ANNs had remained
shallow due to the problems of training DNNs, such as vanishing gradient, overfitting and lack of
computational power. In 2006, Hinton et al. published a seminal paper about deep learning [25],
and after that, deep learning developed rapidly. With many hidden layers, DNNs have the ability to
capture highly abstracted features from training data. Since load profiles have nonlinear characteristics
among various factors that affect the shapes of load patterns, it is reasonable to use DNN as a forecast
model. In this paper, we adopt two different DNN models to learn complicated relations between
weather variables, dates and previous consumptions for individual customers. Then, the DNN
produces a day-ahead prediction of the 24-h load profile according to past observations.

2.1. Artificial Neural Networks

An artificial neuron is a mathematical model imitating a biological neuron of the central nervous
system. It shows nonlinear reactions according to input signals. Figure 1 shows the structure of
the artificial neuron and explains the mechanism of the neuron’s nonlinear reactions according to
the inputs.

������ ��	
��� ��	���	�������	��

��

��

��

��

∑

���

���

���

���

�

�

�

�

�

�

��

��
��

�����

������

���	�		���������

�

� �

�

������

�

Figure 1. Structure of the artificial neuron.

The artificial neuron consists of inputs, bias, weights, output and an activation function. A typical
neuron j with the number of n inputs is as depicted in Figure 1. According to the shape of the
activation function, the output could be construed as the intensity of reaction or the turn-on probability
of the neuron.



Energies 2017, 10, 3 4 of 20

ANN is a system of connected artificial neurons, and it has the ability to model any arbitrary
nonlinear function [26]. A typical structure of ANN is based on multilayer perceptron (MLP),
depicted in Figure 2. The MLP has a three-layered structure; input, hidden and output layers.
Each layer consists of neurons without intra-layer connections. However, between the layers, there
exist full weighted connections among neurons. The elements of MLP are as follows. By using
a superscript l to denote a layer, the output vector y of the layer l is:

yl = h(zl) = h((Wl)Tyl−1 + bl) (1)

where h(·) represents a nonlinear vector activation function, Wl = [wl
ij] and bl represent a weight

matrix and a bias vector, respectively. The structure implies that the MLP has the power of manipulating
the input space by adjusting weight matrices between layers. The main process of building MLP is to
calculate appropriate weight matrices that produce the desired output corresponding to given data.
The back propagation (BP) algorithm is used to update weight matrices to minimize the error between
the target value and the value produced by MLP. Then, wl

ij is updated by:

∆wl
ij = −η

∂E
∂wl

ij
(2)

where η represents a learning rate and E is the error. ∆wl
ij can be derived by the chain rule [27].

In the BP algorithm, error signal δ propagates backwards to calculate ∆wl
ij. In SNN, δ propagates

well to the input layer. However, in DNN, since the gradient of typical activation functions is zero in
the saturation area, δ also goes to zero as it propagates toward the input layer. This problem of training
DNNs is called vanishing gradient and made it hard to train DNNs.

��������	
� ���
����	
�

��

��

��

��

���������	
�

��

��

��

�
�

�
�

�
�

�
�

Figure 2. Multilayer perceptron.

2.2. Deep Neural Networks

We adopt two techniques to overcome the difficulties of training the deep structure.

2.2.1. RBM Pre-Training

The first method is to pre-train the DNN by stacking RBMs, which is known as DBN. It is known
that neural networks with multiple hidden layers can be well trained by the BP algorithm when weights
are initialized by stacked RBMs [25]. Furthermore, unsupervised pre-training leads the network to
better local minima that support better generalization [28].

RBM is a neural network that has only two layers, called the visible and hidden layers. Typical
RBM has binary nodes in each layer denoted as v = {vi} and h = {hj}, respectively. For any (vi, hj)



Energies 2017, 10, 3 5 of 20

pair, there exists a bidirectional connection, but no intra-layer connection. The probability to have a
specific (v, h) configuration is determined by its energy E(v, h) in the form of:

p(v, h) =
1
Z

e−E(v,h) (3)

where Z = ∑v,h e−E(v,h) is a normalization factor. With bias vectors bv for visible, bh for hidden and
weight matrix W between v and h, the energy of RBM is defined as [29]:

E(v, h) = −bT
v v− bT

hh− vTWh (4)

Since there are no intra-layer connections, the states of the visible and hidden layer are
conditionally independent of each other. Thus, the conditional distributions p(v|h) and p(h|v) are:

p(v|h) =
Nv

∏
i

p(vi|h) (5)

p(h|v) =
Nh

∏
j

p(hj|v) (6)

where Nv and Nh are the numbers of visible nodes and hidden nodes. Then, the probability of the
specific node turning on is:

p(hj = 1|v) = σ(bh,j + vTWj) (7)

p(vi = 1|h) = σ(bv,i + hT(WT)i) (8)

where σ(x) = 1/(1 + e−x) and Wj represents the j-th column vector of the matrix W. RBM is then
trained to maximize the log probability of v over given training data. The contrastive divergence
algorithm is widely known to update W. It performs k-step Gibbs sampling to generate a reconstructed
image of the given training data and updates W with:

∆wij = ε(〈v, h〉data − 〈v, h〉recon) (9)

where ε is a learning rate, and the angle brackets are expectations under the distribution of
the subscript [29]. Geometrically, ∆W is the direction of lowering/increasing the energy of
training/reconstructed data.

The RBM pre-training method initializes DNN with weights of the stacked RBMs that are already
trained with the given data. The RBM stacking process is described in Figure 3. First, train the
RBM with training data. Then, its upper RBM is trained from the hidden layer of the previous RBM.
The hidden layer of the lower RBM becomes the visible layer of its new upper RBM. In this manner, the
learning and stacking procedure iterates until it has the desired network structure. After unsupervised
RBM pre-training, supervised fine-tuning is performed with the BP algorithm. Because the network
already knows the feature of the given training data, the pre-training method helps to train DNN.



Energies 2017, 10, 3 6 of 20

���

���

���

���

���	
�� ���	
� ���	
�������

Figure 3. Stacking RBM.

2.2.2. ReLU

Another method to train the DNN is much simpler than pre-training: using ReLUs instead of
typical sigmoid units [30]. The ReLU has a rectifier h(z) = max(0, z) as an activation function that is
described in Figure 4. Since the gradient of the rectifier is 1 if z ≥ 0 and 0 otherwise, error signal δ is
still alive when it propagates backward to the lowest layer, and DNN can be trained well with the BP
algorithm without the vanishing gradient problem. Furthermore, using ReLU has an advantage in
training time due to the characteristic of its gradient.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.5

1

1.5

2

f(
x
)

Sigmoid
Rectifier

Figure 4. Activation functions.

3. Proposed Framework

In this section, we describe the proposed load forecasting framework using DNNs as depicted in
Figure 5. The framework is based on the knowledge discovery in databases (KDD) process. Figure 5
could be divided into three major parts: data processing module, DNN training module and DNN
forecasting module.



Energies 2017, 10, 3 7 of 20

��������	


���	�������

��������	

�������	�������

��� �������������

����	����������	��������������	���������	�������

��������	���

 ����	

!����������

���

������

����������

	���

�	
�

����������

����

�����������

��	��������	!�����

����	���


�����

���������
�������� ������	
�

����

��������

��	

"����������	!����

��	"����������	!�����

���	����������	!�����

Figure 5. The proposed deep neural network (DNN) short-term load forecasting framework.

3.1. Data Processing

The upper part of Figure 5 shows the data processing module. First, we acquire demand side
hourly load data provided by Korea Electric Power Corporation (KEPCO). Each customer in the
database has information about time, power consumptions, province and industrial category in
accordance with the Korea Standard Industrial Classification (KSIC). Customers consist of dominant
power contractors in their province and industrial category. Unlike large-scale aggregated electricity
consumption, demand side loads show various load patterns. For this study, we select eight
representative industrial categories among KSIC with five randomly-selected customers per category.
Figure 6 shows the box and whiskers plot of the normalized consumptions of the eight selected
categories. Each customer is trained with the local weather parameters depending on his/her location;
Figure 7 shows an example of five weather parameters during three years for the training and testing
period. Note that because Korea is a small country and located in a mid-latitude temperate climate
zone, the weather parameters are roughly similar to Figure 7 across customers.

The representative load pattern per category can be inferred by the median, which is drawn as the
red line in a box. For example, Figure 6a has a typical load patten of a rise during daytime, except lunch
time, and a decrease at night. We also use weather data to forecast load profiles. From the regional
weather database of the National Climate Data Service System (NCDSS), we select five parameters
after examining the correlation analysis result. Daily average temperature, humidity, solar radiations,
cloud cover and wind speed are used as input data.



Energies 2017, 10, 3 8 of 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hour)

0

0.2

0.4

0.6

0.8

1
N

o
rm

a
liz

e
d

 L
o

a
d

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hour)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 L

o
a

d

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hour)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 L

o
a

d

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hour)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 L

o
a

d

(d)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hour)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 L

o
a

d

(e)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hour)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 L

o
a

d

(f)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hour)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 L

o
a

d

(g)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hour)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 L

o
a

d

(h)

Figure 6. Box plot of normalized daily electricity consumptions: (a) Public administration;
(b) Retail business; (c) R&D services; (d) Networking business; (e) Healthcare; (f) Vehicle and trailer
manufacturing industry; (g) Electronic component and computer manufacturing industry; (h) Other
manufacturing industries.



Energies 2017, 10, 3 9 of 20

Jan(2012) Jul Jan(2013) Jul Jan(2014) Jul Dec

Time (Date)

-15

-10

-5

0

5

10

15

20

25

30

35
T

e
m

p
e
ra

tu
re

 (
°
C

)

(a)

Jan(2012) Jul Jan(2013) Jul Jan(2014) Jul Dec

Time (Date)

20

30

40

50

60

70

80

90

100

H
u
m

id
it
y
 (

%
)

(b)

Jan(2012) Jul Jan(2013) Jul Jan(2014) Jul Dec

Time (Date)

1

2

3

4

5

6

7

8

W
in

d
 S

p
e

e
d

 (
m

/s
)

(c)

Jan(2012) Jul Jan(2013) Jul Jan(2014) Jul Dec

Time (Date)

0

5

10

15

20

25

30

S
o
la

r 
R

a
d
ia

ti
o
n
 (

M
J
/m

2
)

(d)

Jan(2012) Jul Jan(2013) Jul Jan(2014) Jul Dec

Time (Date)

0

2

4

6

8

10

C
lo

u
d
 C

o
v
e
r 

(m
a
x
=

1
0
)

(e)

Figure 7. Weather variation in Korea: (a) Average temperature; (b) Humidity; (c) Wind speed;
(d) Solar radiation; (e) Cloud cover.

Next, load and weather data go through the data preprocessing step. Data preprocessing contains
data cleansing, normalization and structure change. We find that load measurements have some
defective data, such as missing values and zero measured loads. Defects are replaced with the average
of previous loads. After data cleansing, all load and weather data are normalized with the maximum
value. If training data have large values, the weight matrix needs to be extremely small to make the
weighted sum within the appropriate input range of the sigmoid activation function described in
Figure 4. However, small weights make it hard to use the BP algorithm, so we normalize the database
first and denormalize the forecasting result to obtain valid load predictions.

The third part of preprocessing is restructuring the given database into training data and test data.
The training data contain input variables of the neural network and the desired output, i.e., labels to



Energies 2017, 10, 3 10 of 20

calculate prediction errors. For example, the label of daily load forecasting model is a 24-h normalized
load profile. Input variables could be any parameters that affect electricity consumption. The input
data consist of past electricity consumptions, weather parameters for the target date, season, month
and date indicators. With a time window index n that determines the period of previous electricity
consumption for prediction, the composition of training data is described in Table 1.

In the experiments, we focus on forecasting load profiles of business days. Thus, from Table 1,
weekend data are excluded from the input. In addition, we select the number of days in a window,
n = 5, to use past load data up to the same weekday of the previous week to reflect weekly seasonality.
Thus, a total of 133 inputs is used for forecasting.

Test data have an identical structure to the training data. This is used for evaluating the accuracy
of the proposed forecasting model. Practical predictions are easily obtained by replacing test data with
past observations for target forecasting dates. We construct validation data from the training data and
exploit validation errors as indicators for selecting proper parameters.

Table 1. Training data configuration.

Parameter Configuration Number of Parameters

y1, y2, . . . , y24 label, 24-h normalized load profile 24

x1, x2, . . . , x24n past n normalized load profile 24 · n

x24·n+1, . . . , x26·n
date information of past n days 2 · n(day of the week, weekday indicator)

x26·n+1, . . . , x26·n+5

weather parameters correspond to label
5(temperature, humidity, wind speed,

solar radiation, cloud cover)

x26·n+6, . . . , x26·n+9
date information of label 4(season, month, day of the week, weekday indicator)

3.2. Training and Forecasting

After obtaining test and training data by the data processing module, training data come into
the DNN training module in the lower left part of Figure 5. The DNN training module is the main
part of this framework, and the implementation details are given in Section 4. We first determine the
structure of DNN, e.g., the numbers of hidden layers and neurons. The numbers of neurons in input
and output layers are fixed to the dimension of the training data and the period of the forecast load
profile, respectively. Each neuron in the output layer produces a prediction value for the specific hour.
Once the DNN is created, we select a way to train the DNN (RBM pre-training or ReLU), and the DNN
learns nonlinear relations between load profiles and past observations.

The last part of the framework is the forecasting module. We trained our DNN with training data;
the DNN structure is fixed, and then, we used the trained DNN to predict the testing day. For the three
weeks of test days without the weekend, to predict the day d, the input is taken from the days d− 5 to
d− 1. Then, d changes from d = 1 to d = 15. Thus, our model predicts the daily load profile one by
one like a sliding window. Of course, our model can be modified to be updated on the run using batch
retraining; periodically, DNN is retrained using the same procedure when new data are available for
training, e.g., once every few weeks.

DNN provides 24-h loads of the target forecasting date according to the input parameters listed in
Table 1. Since neurons are fully connected, all hours of previous n days (in the experiment, five days)
affect each output value. Thus, our model learns the nonlinear relations of inter-day loads and intra-day
loads during training and forecasts the next whole day based on trained relations. Forecasting model
accuracy is evaluated by test data. The MAPE and RRMSE are used for the error measure.



Energies 2017, 10, 3 11 of 20

4. Implementation of DNNs

We construct DNNs using R with the “darch” package [31] and train with various customer’s
electricity consumption data.

4.1. Size of Data

There could be some issues of using DNNs as a forecasting model if the size of load data is
limited. DNNs show remarkable performance in image recognition and speech recognition with a
huge training database. For example, the ImageNet large-scale visual recognition challenge in 2014
has more than four hundred thousand training images. Using pre-training is not necessary with large
training data. However, the volume of load forecasting data is limited because gathering demand side
load data just started recently. We could obtain roughly 750 daily load profiles per customer for three
years, except holidays. There are a few possible ways to increase the size of training data, such as
adding distorted data [32], which was used in image classification, or using other customer’s training
data having a similar load profile. However, there is no guarantee that training with other customer’s
data helps with better forecasting. In contrast, the number of parameters in DNN may outnumber
training data. This size-related problem could lead to overfitting that memorizes the whole training
data rather than learning. Therefore, we need to consider the proper DNN structure and overfitting.

4.2. Structure of DNNs

The structure of DNNs is mainly determined by the numbers of layers and neurons. The numbers
of input neurons and output neurons are automatically fixed by the training data and forecasting period.
In [19], the authors used a heuristic method to choose the number of hidden neurons. They gradually
increased the number of neurons and compared the errors. The heuristics may work with the typical
three-layer MLP because there are only two possible actions: increase or decrease. However, in the
case of DNNs, it is not feasible to test all possible combinations of layers and neurons, since we need
to consider not only the width of hidden layers, but also the depth. Therefore, we determine the
structure by trial and error with adding or subtracting 50 neurons for each layer and, finally, select
four hidden layers and 150 neurons per each layer. Hidden layers have either a sigmoid unit for RBM
pre-training or ReLU, and the output layer has linear units to construct load prediction. The proposed
DNN structure is described in Figure 8. In the experiment, we train DNNs with a mini-batch and
resilient backpropagation [33]. In addition, we train DNNs without non-business days to focus on the
load profile of business days, and a time window of five is used.

��������	
� ���
����	
� ���������	
�

��

����

���
�����

���
�����

���
�����

���
����

�����
��

�
���
�����

�����
��

�  

��

��

���

��
�!���

���

�"#�"#�"#�"#

�
�

��

�
�

�
�

�
�

�
�

Figure 8. The structure of DNN.



Energies 2017, 10, 3 12 of 20

4.3. Resolving Overfitting

Overfitting can be recognized by observing a learning curve that describes the error rate according
to the number of epochs. An epoch is a period of time that the network learns all training data once.
When overfitting occurs, there exists a certain point where the test error starts to increase while the
training error still decrease. This means that the model memorizes the given training data, but it
cannot predict well in a real situation. Thus, too much training with the complex forecasting model
leads to bad generalization. There are several methods to prevent overfitting, such as dropout [34] or
early stopping. However, when we observe the learning curve of DNN forecasting models, we did
not observe overfitting to occur; the test error also gradually decreases as the training error does so in
both the pre-training and ReLU models. An example of the customer’s learning curve is depicted in
Figure 9. Since customers have different learning curves, we apply k-fold cross-validation to determine
stopping criterion. From this study, the size of the electricity consumption data seems less critical,
but it may require further verification with different network structures and/or when more data are
available later.

0 20 40 60 80 100

Epochs

0

20

40

60

80

100

120

M
A

P
E

 (
%

)

Training Data

Test Data

Figure 9. An example of the customer learning curve.

Another interesting point is that the training error of the RBM model mostly drops first, followed
by the DNN model without pre-training and the ReLU model as shown in Figure 10. This implies
that pre-training with RBM expedites the speed of convergence because of starting from better
initial weights. However, the errors of all three models eventually approach similar values as the
training continues.

5 10 15 20 25 30

Epochs

0

10

20

30

40

50

M
A

P
E

 (
%

)

DNN

DNN(RBM)

DNN(ReLU)

Figure 10. Training error comparison among DNN models.



Energies 2017, 10, 3 13 of 20

5. Experimental Results with Case Studies

In this section, experimental results of STLF by DNNs are given. MAPE and RRMSE are used to
measure the accuracy of daily predictions, and daily MAPE and RRMSE are defined as:

MAPEdaily =
1
T

T

∑
i=1

|Ri − Fi|
Ri

(10)

RRMSEdaily =

√√√√ 1
T

T

∑
i=1

(Ri − Fi)2/Ravg (11)

where Ri and Fi represent real and forecast consumption at hour i, respectively, and T is the number of
time units in a day. Ravg refers to the average of daily values. Experiments are focused on forecasting
load profiles of working days. Forecasting results of DNNs are compared with SNN, seasonal ARIMA
(we denote ARIMA for representing seasonal ARIMA for the rest of the results) and the DSHW model
in order to verify DNNs as a forecasting model of individual customers. Instead of double seasonal
ARIMA, we used DSHW, which shows better forecasting accuracy than double seasonal ARIMA in [8].
Time series models (seasonal ARIMA and DSHW) are created for each daily load profile prediction
with the past eight weeks [7].

5.1. Case 1: Single Load Type

We first present the result about one selected customer and analyze the prediction results of four
seasons. The customer who is located in Busan belongs to the networking business category and
has typical daily load patterns with seasonal variation. Figure 11 shows the customer’s electricity
consumptions of 2012 to 2014. There exists a significant load increase in summer and a slight increase
in winter during the daytime. Maximum, average and minimum hourly electricity consumptions
are 2667, 1642 and 641 kWh, respectively. We predict load profiles of three weeks in the middle of
each season. Seasonal predictions are described in Figure 12. The daily load profile is zoomed in the
box. ARIMA with daily seasonality shows the worst predictions; their load shapes are somewhat
similar to real loads, but ARIMA could not reflect the recent trend. The DSHW model considers
both daily and weekly seasonality. It shows better accuracy than the ARIMA model. However,
DSHW sometimes shows unusual patterns, like in Figure 12b,c, which seem to be the imprint of past
abnormal consumptions. In contrast, the predictions by the two proposed DNN models are more stable
than the ARIMA and DSHW models. When there exists a gap between real and DNN predictions,
other models exhibit wider gaps. However, it is hard to find the opposite cases.

In all four seasons, DNN predictions follow the recent trend and real load patterns well.
The average errors of all seasons are shown in Table 2. As can be seen, two DNN forecasting models
show better accuracy than the SNN, DSHW and ARIMA models overall. DNN with pre-training
shows the best accuracy on average by 3.2% and 4.1% in terms of MAPE and RRMSE. MAPE decreases
by 27% compared to SNN and 12% compared to DSHW. Due to the average gap of predictions by
ARIMA, the MAPE of DNN is much lower than ARIMA, i.e., a 69% decrease. Furthermore, DNN
models predict well without being affected by seasonal variation.



Energies 2017, 10, 3 14 of 20

Date index

200

400

600

Tim
e

0

5

10

15

20

1.0

1.5

2.0

2.5

M
W

h

Figure 11. An example of a customer’s daily and yearly load pattern.

50 100 150 200 250 300 350

Time (hour)

0

500

1000

1500

2000

L
o
a
d
 (

k
W

)

Real

DNN(RBM)

DNN(ReLU)

SNN

DSHW

ARIMA
290 295 300 305 310

1200

1400

1600

1800

2000

(a)

50 100 150 200 250 300 350

Time (hour)

0

500

1000

1500

2000

2500

L
o
a
d
 (

k
W

)

Real

DNN(RBM)

DNN(ReLU)

SNN

DSHW

ARIMA
290 295 300 305 310

1400

1600

1800

2000

2200

2400

(b)

50 100 150 200 250 300 350

Time (hour)

0

500

1000

1500

2000

L
o
a
d
 (

k
W

)

Real

DNN(RBM)

DNN(ReLU)

SNN

DSHW

ARIMA
290 295 300 305 310

1200

1400

1600

1800

2000

(c)

50 100 150 200 250 300 350

Time (hour)

0

500

1000

1500

2000

L
o
a
d
 (

k
W

)

Real

DNN(RBM)

DNN(ReLU)

SNN

DSHW

ARIMA
170 175 180 185 190

1200

1400

1600

1800

2000

2200

(d)

Figure 12. Seasonal prediction results: (a) spring; (b) summer; (c) fall; (d) winter. SNN, shallow neural
network; DSHW, double seasonal Holt–Winters.



Energies 2017, 10, 3 15 of 20

Table 2. Seasonal error table of the selected customer.

Season
MAPE (%) RRMSE (%)

RBM ReLU SNN DSHW ARIMA RBM ReLU SNN DSHW ARIMA

Spring 1 2.66 3.77 3.44 2.01 9.45 3.18 4.24 4.30 2.54 13.8

Summer 2 2.88 3.36 4.20 4.50 5.86 4.12 4.68 5.92 7.93 7.16

Fall 3 3.49 3.84 6.01 5.04 13.43 4.52 5.00 8.48 7.34 26.55

Winter 4 3.76 2.82 3.78 3.04 11.16 4.58 3.50 4.72 4.06 15.36

Average 3.20 3.45 4.36 3.65 9.97 4.10 4.36 5.86 5.47 15.61
1 7∼25.04.2014, 2 7∼25.07.2014, 3 13∼31.10.2014, 4 6∼24.01.2014.

5.2. Case 2: Various Load Types

To identify the generalized performance of the proposed DNNs, we apply the DNNs to a large
set of load databases where there are eight industrial categories (public administration, retail
business, R&D services, networking business, healthcare, vehicle and trailer manufacturing industry,
electronic component and computer manufacturing industry and other manufacturing industries),
and five customers are randomly selected in each category. We target forecasting daily load profiles of
10 weeks from 13 September to 19 December 2014. Considering the highly inaccurate result of ARIMA
in Case 1 and the burden of model selection, we exclude ARIMA in Case 2.

The error results of 40 customers are shown in Table 3. MAPE and RRMSE are used for error
measurements, and abnormal days with more than 100% MAPE are not counted in the result.
As described in the table, both DNN models show accurate forecasting result even though SNN
or DSHW sometimes exhibits better result than the DNNs. Overall, the average MAPE of DNN with
ReLU decreases by 17% and 9% compared to the SNN and DSHW, respectively. The decrease in the
RRMSE is more drastic: 22% and 29% lower than that of the SNN and DSHW. For further analysis,
we compare the daily errors of whole customers. Figure 13a,b shows the cumulative distribution
function (CDF) of daily RRMSEs and MAPEs. In terms of RRMSE and MAPE CDFs, the two DNN
models are always better than the SNN model. Since DNNs have more computational power, this
result may not be surprising. Compared with DSHW, the two DNN models and DSHW exhibit similar
performance in a small error region. However, there exists a crossover point beyond which DNNs
surpass the DSHW model. Roughly, when errors are under 3%, the performance of DSHW is better
than that of DNNs, but after that, DNNs begin to be better than DSHW; DNNs predict more reliably,
even if loads are uncertain with high prediction errors. These results imply the robustness of DNN
models. Between two DNN models, there is no significant difference in accuracy. Since the RBM
pre-training model needs more computational power and time, the DNN with ReLU would be a better
choice for customer load forecasting.



Energies 2017, 10, 3 16 of 20

Table 3. Error table of various customers in 8 industries.

Industry
User Peak MAPE (%) RRMSE (%)

ID Load (kW) RBM ReLU SNN DSHW RBM ReLU SNN DSHW

Public
administration

1 2784 12.53 12.82 11.93 15.82 15.68 15.94 14.98 21.90
2 6487 8.64 8.69 8.39 11.02 11.18 10.92 10.62 15.66
3 2012 4.72 5.06 4.52 3.82 6.36 6.03 6.13 6.00
4 3890 14.79 16.25 17.46 19.82 20.14 21.96 21.42 30.26
5 8743 7.87 7.54 8.54 8.26 9.50 9.19 12.74 11.26

Average 9.71 10.07 10.17 11.75 12.57 12.81 13.18 17.02

Retail business

6 3358 11.27 8.57 9.07 6.64 8.92 9.11 9.40 8.81
7 7646 10.52 10.12 12.26 9.84 14.56 13.95 21.13 16.74
8 5194 9.12 8.87 13.50 12.24 11.10 10.73 17.15 25.46
9 7268 10.26 11.36 16.99 12.88 12.37 13.29 16.29 22.23
10 7214 6.45 7.47 8.14 7.82 9.74 10.19 10.54 14.35

Average 9.52 9.28 11.99 9.88 11.34 11.45 14.90 17.52

R&D services

11 8845 3.53 3.32 4.48 3.43 4.90 4.21 6.23 4.83
12 2740 11.13 7.53 14.47 6.29 12.74 8.94 24.86 9.55
13 8221 5.72 4.42 5.41 5.46 5.76 4.33 5.40 5.73
14 1276 6.64 6.14 9.21 5.70 9.42 8.04 32.71 8.65
15 891 10.03 9.38 10.31 9.80 12.71 13.56 14.76 16.21

Average 7.41 6.16 8.78 6.14 9.11 7.82 16.79 8.99

Networking
business

16 878 2.18 2.14 2.65 2.34 3.91 3.84 4.17 4.12
17 1481 2.51 2.04 5.72 2.10 3.37 2.76 8.12 3.65
18 2667 2.76 3.20 4.61 3.42 3.72 4.19 6.43 5.50
19 477 7.51 7.64 9.33 6.22 10.14 10.37 11.89 8.23
20 10,022 1.78 1.38 6.88 0.68 2.331 1.95 15.81 1.05

Average 3.35 3.28 5.84 2.95 4.67 4.62 9.28 4.51

Healthcare

21 2193 4.69 5.01 7.76 6.00 6.17 6.54 20.69 8.53
22 6937 3.60 3.82 4.54 5.01 4.97 5.21 5.97 6.67
23 2603 3.81 5.45 5.70 6.16 5.18 6.44 8.80 9.05
24 4110 3.21 2.95 4.40 3.76 4.36 3.66 7.09 5.33
25 2932 5.48 6.34 6.24 7.82 7.32 7.96 7.56 11.37

Average 4.16 4.71 5.73 5.75 5.60 5.96 10.02 8.19

Vehicle and
trailer
manufacturing
industry

26 23,138 12.44 14.51 12.71 9.67 14.47 15.13 12.80 16.84
27 4132 14.09 17.58 20.10 18.40 12.81 12.66 14.15 24.55
28 130,133 7.94 10.16 9.80 16.74 10.95 13.19 12.93 28.18
29 38,674 14.65 12.86 15.52 16.74 17.35 15.32 18.78 27.35
30 128,257 3.35 4.12 3.90 6.96 4.82 5.47 5.07 14.41

Average 10.49 11.85 12.41 13.70 12.08 12.35 12.75 22.27

Electronic
component and
computer
manufacturing
industry

31 28,690 5.73 5.76 6.95 4.78 7.98 7.87 9.44 6.86
32 602 18.37 18.79 22.05 16.12 16.70 21.70 20.64 31.63
33 112,630 2.72 1.19 2.17 1.11 3.32 1.90 2.88 1.91
34 8607 3.33 1.84 2.76 1.54 3.88 2.24 4.75 2.07
35 299,880 1.58 1.43 2.01 1.40 2.07 2.00 2.57 1.89

Average 6.35 5.80 7.19 4.99 6.79 7.14 8.06 8.87

Other
manufacturing
industries

36 5721 12.89 13.81 15.50 19.10 13.52 14.41 16.36 26.17
37 832 33.14 33.65 45.21 40.73 24.43 25.25 29.11 53.15
38 8202 21.48 21.15 24.01 25.94 28.34 30.76 31.54 44.55
39 1164 15.60 16.19 16.31 12.00 31.79 32.38 31.93 20.61
40 1948 15.58 13.51 13.95 15.79 16.07 14.13 14.20 20.23

Average 19.74 19.66 23.00 22.71 22.83 23.39 24.63 32.94

Total 40 users Average 8.84 8.85 10.64 9.73 10.62 10.69 13.70 15.04

10 20 30 40

RRMSE (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

DNN(RBM)

DNN(ReLU)

SNN

DSHW

(a)

10 20 30 40

MAPE (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

DNN(RBM)

DNN(ReLU)

SNN

DSHW

(b)

Figure 13. CDF of daily errors: (a) RRMSE; (b) MAPE.



Energies 2017, 10, 3 17 of 20

5.3. Case 3: Aggregated Load

From Case 2, each customer’s errors are around 10% on average. One may think the errors are
higher than the results from the literature [9,23]. The difference is that previous research is focused on
large-scale load consumption, such as at the level of substations or power systems. It should be noted
that individual-level load forecasting shows higher errors up to 30% [35]. By aggregating customer’s
electricity consumption, error drops significantly. Figure 14 represents three years’ aggregated
loads with more than 500 customers with high usage. Load consumption varies in GW units, and
weekly seasonality can be observed. Figure 15 describes the forecasting results of the five models.
With aggregation, we obtain the average MAPE of 2.27% by DNN with pre-training and 2.19% by DNN
with ReLU during the same periods of Case 2. In contrast, the MAPEs of SNN, DSWH and ARIMA are
2.55%, 2.98%, and 3.29% on average, respectively. The average MAPE and RRMSE are described in
Table 4. The result confirms that aggregation helps to reduce prediction errors by reducing inherent
variability [35], and the proposed DNN models also work well with large-scale load consumptions.

Date index

200

400

600

Tim
e

0

5

10

15

20

2.0

2.5

3.0

G
W

h

Figure 14. An example of the aggregated daily and yearly load pattern.

250 300 350 400 450

Time (hour)

0

0.5

1

1.5

2

2.5

3

3.5

L
o
a
d
 (

G
W

)

Real

DNN(RBM)

DNN(ReLU)

SNN

DSHW

ARIMA
385 390 395 400 405

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

Figure 15. Predictions of the aggregated load.



Energies 2017, 10, 3 18 of 20

Table 4. Error table of the aggregated load.

MAPE (%) RRMSE (%)

RBM ReLU SNN DSHW ARIMA RBM ReLU SNN DSHW ARIMA

Average 2.27 2.19 2.98 2.55 3.29 2.91 2.76 3.70 3.35 4.21

6. Conclusions

In this paper, we applied deep learning to demand side STLF and proposed a DNN-based
STLF framework. The proposed framework contains data processing, DNN training and DNN
forecasting step and predicts the 24-h load pattern day-ahead based on weather, date and past
electricity consumptions. Specifically, we compared two different DNNs; pre-training RBM and using
ReLU without pre-training. Then, we investigated the problems of training DNNs, e.g., overfitting.
Our extensive experiments show that the two proposed approaches, DNN with pre-training and DNN
with ReLU, can be trained well with up to three years of customer load data without overfitting. Finally,
we applied the proposed framework to a large-scale set of customers’ data. DNN models were trained
for 40 dominant industrial customers and exhibited better performance compared to other forecasting
models, such as ARIMA, SNN and DSHW. The numerical results indicate that the DNN-based STLF
model has less MAPE and RRMSE by up to 17% and 22% than SNN and 9% and 29% than DSHW.
We found that DNN with ReLU is easy to train and shows accurate and robust predictions, and thus,
it can be firstly applied for the demand side STLF model.

The results of this paper can be further extended in several directions. We are currently gathering
nation-wide data and, thus, expect to train the DNN better when big data are available. Then,
it would be possible to explore a better DNN structure, e.g., considering the convolutional neural
network as a time series forecasting model. In addition, analyzing the conditions (e.g., load type, load
pattern, date, etc.) when DNN is accurate would be helpful to select a proper forecasting model for
individual customers.

Although our extensive experimental results may not necessarily guarantee that DNNs surpass
all other forecasting models, our study is meaningful in the sense that it sheds light on the study of
DNN for STLF.

Acknowledgments: This research was supported by the Korea Electric Power Corporation (KEPCO) and the
Korea Electrical Engineering & Science Research Institute. (Grant Number R14XA02-50), as well as by the KEPCO
(CX72166553-R16DA17) of the Republic of Korea.

Author Contributions: Seunghyoung Ryu designed the algorithm, performed the simulations, and prepared the
manuscript as the first author. Jaekoo Noh assisted the project and managed to obtain the demand side data from
KEPCO. Hongseok Kim led the project and research. All authors discussed the simulation results and approved
the publication.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ipakchi, A.; Albuyeh, F. Grid of the future. IEEE Power Energy Mag. 2009, 7, 52–62.
2. Farhangi, H. The path of the smart grid. IEEE Power Energy Mag. 2010, 8, 18–28.
3. Feinberg, E.A.; Genethliou, D. Load forecasting. In Applied Mathematics for Restructured Electric Power Systems;

Springer: Berlin, Germany, 2005; pp. 269–285.
4. Albadi, M.H.; El-Saadany, E. A summary of demand response in electricity markets. Electr. Power Syst. Res.

2008, 78, 1989–1996.
5. Park, S.; Ryu, S.; Choi, Y.; Kim, J.; Kim, H. Data-driven baseline estimation of residential buildings for

demand response. Energies 2015, 8, 10239–10259.
6. Hagan, M.T.; Behr, S.M. The time series approach to short term load forecasting. IEEE Trans. Power Syst.

1987, 2, 785–791.



Energies 2017, 10, 3 19 of 20

7. Taylor, J.W. Short-term electricity demand forecasting using double seasonal exponential smoothing. J. Oper.
Res. Soc. 2003, 54, 799–805.

8. Taylor, J.W.; de Menezes, L.M.; McSharry, P.E. A comparison of univariate methods for forecasting electricity
demand up to a day ahead. Int. J. Forecast. 2006, 22, 1–16.

9. Park, D.C.; El-Sharkawi, M.; Marks, R.; Atlas, L.; Damborg, M. Electric load forecasting using an artificial
neural network. IEEE Trans. Power Syst. 1991, 6, 442–449.

10. Hernandez, L.; Baladrón, C.; Aguiar, J.M.; Carro, B.; Sanchez-Esguevillas, A.J.; Lloret, J. Short-term load
forecasting for microgrids based on artificial neural networks. Energies 2013, 6, 1385–1408.

11. Hippert, H.S.; Pedreira, C.E.; Souza, R.C. Neural networks for short-term load forecasting: A review and
evaluation. IEEE Trans. Power Syst. 2001, 16, 44–55.

12. Bakirtzis, A.G.; Petridis, V.; Kiartzis, S.; Alexiadis, M.C. A neural network short term load forecasting model
for the Greek power system. IEEE Trans. Power Syst. 1996, 11, 858–863.

13. Lu, C.; Wu, H.T.; Vemuri, S. Neural network based short term load forecasting. IEEE Trans. Power Syst. 1993,
8, 336–342.

14. Rodrigues, F.; Cardeira, C.; Calado, J. The daily and hourly energy consumption and load forecasting using
artificial neural network method: A case study using a set of 93 households in Portugal. Energy Procedia
2014, 62, 220–229.

15. Chen, H.; Cañizares, C.; Singh, A. ANN-based short-term load forecasting in electricity markets.
In Proceedings of the 2001 IEEE Power Engineering Society Winter Meeting, Columbus, OH, USA,
28 January–1 February 2001; Volume 2, pp. 411–415.

16. Papadakis, S.; Theocharis, J.; Kiartzis, S.; Bakirtzis, A. A novel approach to short-term load forecasting using
fuzzy neural networks. IEEE Trans. Power Syst. 1998, 13, 480–492.

17. Bashir, Z.; El-Hawary, M. Applying wavelets to short-term load forecasting using PSO-based neural
networks. IEEE Trans. Power Syst. 2009, 24, 20–27.

18. Kodogiannis, V.S.; Amina, M.; Petrounias, I. A clustering-based fuzzy wavelet neural network model for
short-term load forecasting. Int. J. Neural Syst. 2013, 23, doi:10.1142/S012906571350024X.

19. Shayeghi, H.; Shayanfar, H.; Azimi, G. Intelligent neural network based STLF. Int. J. Comput. Syst. Sci. Eng.
2009, 4, 17–27.

20. Fan, S.; Chen, L. Short-term load forecasting based on an adaptive hybrid method. IEEE Trans. Power Syst.
2006, 21, 392–401.

21. Park, S.; Ryu, S.; Choi, Y.; Kim, H. A framework for baseline load estimation in demand response:
Data mining approach. In Proceedings of the 2014 IEEE International Conference on Smart Grid
Communications (SmartGridComm), Venice, Italy, 3–6 November 2014; pp. 638–643.

22. Dalto, M.; Matusko, J.; Vasak, M. Deep neural networks for ultra-short-term wind forecasting. In Proceedings
of the 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015;
pp. 1657–1663.

23. He, W. Deep neural network based load forecast. Comput. Model. New Technol. 2014, 18, 258–262.
24. Qiu, X.; Zhang, L.; Ren, Y.; Suganthan, P.N.; Amaratunga, G. Ensemble deep learning for regression and time

series forecasting. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence in Ensemble
Learning (CIEL), Orlando, FL, USA, 9–12 December 2014; pp. 21–26.

25. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006,
313, 504–507.

26. Leshno, M.; Lin, V.Y.; Pinkus, A.; Schocken, S. Multilayer feedforward networks with a nonpolynomial
activation function can approximate any function. Neural Netw. 1993, 6, 861–867.

27. Abu-Mostafa, Y.S.; Magdon-Ismail, M.; Lin, H.T. Learning from Data; AMLBook: Berlin, Germany, 2012.
28. Erhan, D.; Bengio, Y.; Courville, A.; Manzagol, P.A.; Vincent, P.; Bengio, S. Why does unsupervised

pre-training help deep learning? J. Mach. Learn. Res. 2010, 11, 625–660.
29. Hinton, G. A Practical Guide to Training Restricted Boltzmann Machines; Springer: Berlin, Germany, 2012;

pp. 599–619.
30. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models.

In Proceedings of the International Machine Learning Society, Atlanta, GA, USA, 16–21 June 2013;
Volume 30, p. 1.



Energies 2017, 10, 3 20 of 20

31. Drees, M. Implementierung und Analyse von Tiefen Architekturen in R. Master’s Thesis, Fachhochschule
Dortmund, Dortmund, Germany, 2013.

32. Simard, P.Y.; Steinkraus, D.; Platt, J.C. Best practices for convolutional neural networks applied to visual
document analysis. In Proceedings of the 2003 7th International Conference on Document Analysis and
Recognition (ICDAR), Edinburgh, UK, 3–6 August 2003.

33. Riedmiller, M.; Braun, H. A direct adaptive method for faster backpropagation learning: The RPROP
algorithm. In Proceedings of the 1993 IEEE International Conference On Neural Networks, San Francisco,
CA, USA, 28 March–1 April 1993; pp. 586–591.

34. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

35. Sevlian, R.; Rajagopal, R. Short term electricity load forecasting on varying levels of aggregation. Statistics
2014, arXiv:1404.0058.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Artificial Neural Networks
	Deep Neural Networks
	RBM Pre-Training
	ReLU


	Proposed Framework
	Data Processing
	Training and Forecasting

	Implementation of DNNs
	Size of Data
	Structure of DNNs
	Resolving Overfitting

	Experimental Results with Case Studies
	Case 1: Single Load Type
	Case 2: Various Load Types
	Case 3: Aggregated Load

	Conclusions

