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Abstract: This paper is aimed at modelling of a distinct smart charging station for electric vehicles
(EVs) that is suitable for DC quick EV charging while ensuring minimum stress on the power grid.
Operation of the charging station is managed in such a way that it is either supplied by photovoltaic
(PV) power or the power grid, and the vehicle-to-grid (V2G) is also implemented for improving the
stability of the grid during peak load hours. The PV interfaced DC/DC converter and grid interfaced
DC/AC bidirectional converter share a DC bus. A smooth transition of one operating mode to
another demonstrates the effectiveness of the employed control strategy. Modelling and control of
the different components are explained and are implemented in Simulink. Simulations illustrate
the feasible behaviour of the charging station under all operating modes in terms of the four-way
interaction among PV, EVs and the grid along with V2G operation. Additionally, a business model is
discussed with comprehensive analysis of cost estimation for the deployment of charging facilities in
a residential area. It has been recognized that EVs bring new opportunities in terms of providing
regulation services and consumption flexibility by varying the recharging power at a certain time
instant. The paper also discusses the potential financial incentives required to inspire EV owners for
active participation in the demand response mechanism.

Keywords: electric vehicles; PV power; vehicle-to-grid; power management

1. Introduction

Envisioned large-scale penetration of electric vehicles (EVs) in the system would trigger a need for
readily-available charging facilities. A huge amount of EVs’ charging load on the power system could
arouse various technical issues, including voltage regulation, harmonic contamination, frequency
variations, etc. A smart grid technology may come up with a technique to manage EVs’ charging load
and its scheduling in an efficient way with seamless integration and operation of renewable energies
in the power system, which can help keep stress on the power grid to a minimum. In the wake of the
Smart Grid Initiative, there has been much attention on the impact of large-scale EVs carrying out
vehicle-to-grid (V2G) operation through smart control approaches [1,2]. In order to deal with grid
limitations during peak load hours, the implementation of the V2G concept enables the use of EVs as
an auxiliary power source that can be discharged to feed the grid, and thus, it contributes towards the
latter’s stability.

The PV-based power generation can be located on the roof-tops of parking lots for recharging EVs
with an effective strategy of power flow management among PVs, EVs and the grid. Different
grid-connected EV charging levels (Level 1, Level 2 and Level 3) are defined by the SAEJ1772,
IEC62196-2 and CHAdeMO, for single-phase and three-phase slow, medium and DC charging,
respectively [3–5]. Keeping in view the driving needs of EVs, there is a need to develop fast charging
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stations with the feature of lesser charging time, and this has to be supported through the deployment
of appropriate infrastructure in the power grid [6], including smart meters, power electronic converters
and smart load management strategies [7–9].

Smart DC charging is based on direct DC charging in which EVs can be supplied either from
PV power or the utility grid, and EVs could be discharged for supplying the grid. A DC bus-based
system has many advantages over an AC system, such as involving a few stages of power conversion
with reduced losses and hardware costs [10–12]. This work presents a solar carport-based charging
point that can be supplied by DC power for efficient and quick recharging of electric cars. A charging
station supplied by a PV source may provide an economical recharging facility. The charging station
involves vehicle driver’s participation in the electricity market by selling extra stored energy in the
vehicle, when not needed, back to the charging station during peak hours for better economy. The idea
of utilizing the electric vehicle as a power source may serve to a great extent to satisfy the mean power
demand at economical cost. It is considered a potential concept in dealing with the intermittency and
fluctuating nature of renewable energy sources. A block diagram of the system is shown in Figure 1.
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Figure 1. Block diagram of the system.

There have been many attempts by researchers to present DC charging station [13,14] with a
limited discussion on the potential solution through efficient power management. For instance, the
authors in [15] proposed an intelligent energy management system to allocate power for recharging
EVs with the optimal use of supplied and recharging time, but the power electronic converter-based
implementation of the management system is not significantly reported. The authors in [16,17] have
presented numerous EV control and modelling strategies, including reactive power compensation
given in [18,19]. Large-scale placement of photovoltaic-powered charging facilities in a public parking
lot is analysed in [20]. A practical control strategy for an electric vehicle charging station consists
of a photovoltaic array, the power grid and a lithium ion battery emulator, as illustrated in [21,22].
The economics of a PV-powered charging station are investigated in [23,24]. However, none of
those ensure an effective and efficient strategy for the management of EVs’ charging load though
multiple-mode operation. The presented charging station is made to operate in three different
modes, including V2G operation, i.e., EV discharging to the grid with seamless transition from
charging to discharging mode. The presented strategy is validated through simulations carried out
in MATLAB/Simulink. Additionally, the positive impact of EVs is given in [25–27]. In this paper,
a business model is envisioned with a cost-benefit analysis under EVs’ penetration for the assessment
of the cost for charging infrastructure and external factors, such as health and climate benefits.

In principle, a distribution system must be designed to withstand the power demand during
peak load hours. An additional load of EVs can be supplied during the off-peak period without
additional generation capacity. In general, an optimal time to recharge EVs is between the hours of
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the evening and early morning, and thus, it needs to be managed through the enforcement of some
incentive-based techniques. In other words, EVs can actively participate in the demand response by
offering financial benefits to EV owners. The implementation of vehicle-to-grid (V2G) technology
depends on whether an EV owner is willing to trade his/her surplus energy for some money versus
his/her convenience. In this regard, the efficiency of energy delivery and its effect on battery life
are also of great concern. A traditional means lies in offering regulation by modulating the required
power level during EV recharging and discharging. A principle adopted in [6] is meant to maximize
the aggregator revenue from EV users and the grid. The authors in [28] presented an algorithm to
manage an EV fleet assisting wind power generation to preserve a stable output. A technique based
on variation in real time for recharging an EV may respond to regulation signals sent from the system
operator with the purpose of power exchange for remuneration. For instance, a regulation scheme
given in [6] entitles EV owners to freely decide whether to go for the regulating-while-recharging
option. With the advent of recent technological changes in distribution engineering, it can be seen
that the pricing factor has gained significance in smart grid operations [29]. A discussion on dynamic
EV charging pricing was started in [30], and the relevant concepts are broadly debated for demand
response options in [31,32]. Incentives are considered important to actuate demand response in both
the residential, as well as the industrial sector. Smart grids and EVs’ penetration in the market move
the discussion of dynamic pricing to the level of distribution networks [33]. Nonetheless, the response
will be assisted by innovative automation technology.

This paper is organized as follows: The charging station architecture is illustrated in Section 2.
The description of the EV battery is given in Section 3. Section 4 contains an explanation of the various
components of the smart charging station, and simulations are detailed in Section 6. A business model
of the EV charging infrastructure along with incentives for EVs’ participation in demand response and
regulation are explained in Section 5. The paper is concluded in Section 7.

2. Smart Charging Station Architecture

The proposed charging station is primarily supplied by PV power generation, and if necessary,
power could be drawn from the utility grid via the corresponding DC/DC boost converter and
bidirectional power converter, respectively. EVs can be operated in V2G mode, i.e., EVs are discharged
to the grid during peak load hours provided that extra energy is available in them. The charging station
architecture is shown in Figure 2. EV charging is supplied by a common DC bus that is energized
by either PV or the utility grid depending on the availability and operating conditions, respectively.
Major components of the whole system include the bidirectional grid-interfaced power converter, the
DC-DC boost converter with the function of maximum power point tracking (MPPT) that delivers
PV power generation to the variable DC bus and an EV battery charger with a bidirectional DC-DC
buck boost converter for recharging and discharging of EVs, respectively. All of these components are
explained in the following subsections. A controller is employed that decides the power flow direction
among three blocks of the system depending on the change in DC bus voltage.
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Figure 2. Charging station architecture.
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2.1. Modes of Operation of the Charging Station

The direction of power flow is monitored and controlled in three different modes; parameters,
including voltage magnitude at the DC link, Vdc, the state of charge SOC of the EV battery and the
current loading on the grid Ig (this can be acquired from the data acquisition centre in a smart grid
environment by using techniques given in [34]), are used to determine the required action to cause the
power to flow in the required direction. In the perspective of intermittent solar power generation and
the consequent change in voltage level at the DC bus, control of the system is subject to the sensing
and regulation of voltage levels at the common DC bus, which is switched to operate in different
modes [35]. In fact, for the purpose of simplicity, but without loss of generality, the design principles
and modelling are implemented in MATLAB/Simulink in an educational way to support academic
research. The presented EV charging station is formulated in an educational manner that allows
its further implementation and research on the subject. In order to maintain the simplicity of the
educational research problem, different values are taken for clear and better understanding of the
modes of operation with corresponding voltage levels.

Preq is the amount of power required to recharge EVs at time t; Ppv is the power available from
PV; EVsoc represents the state of charge of the EV battery; Ptot is the total power available at time t;
Ppv,min is the minimum available power through PV that is greater than zero; Pg is the grid power
available at t; Pg,max is the maximum power demand from the grid; and EVsoc,th is the energy stored in
EV greater than the required amount for the operation of the vehicle.

Mode I: EV charging through PV power:

Ppv ≥ Preq and EVsoc < EVsoc,th

In this mode, PV generates enough power to recharge EVs at time t, and no power is required
from the grid to meet the EV charging power demand; in this case, the bidirectional DC/DC power
converter acts in buck mode for recharging the EV battery. However, the charging is stopped when the
SOC of the EV is maximum; then, the PV power is supplied to the grid, and grid-tied power converter
inverts DC into AC. Thus, the operation of Mode I may lie in two cases: Case I is when the whole PV
power is used for recharging electric vehicle, and Case II is observed when PV is redirected to the grid.

Mode II: Meeting EV charging power demand through both sources—PV power and the
utility grid:

Ppv > Ppv,min and Ppv < Preq

In this case, PV power is not sufficient to support EV charging demand, and thus, the latter is
supplied by a combination of PV power and the grid. In this mode, the grid-tied power converter acts
in rectification mode, and the EV interfaced bidirectional DC/DC converter serves in buck mode.

Mode III: Vehicle-to-grid mode: the EV is discharged (V2G) to contribute towards the stability of
the power grid, and/or subject to availability, the PV power may also be directed to the grid.

Ppv > Preq or EVsoc > EVsoc,th and Pg < Pg,max

In the third mode of operation, the concept of V2G is performed. In this situation, the EV battery
interfaced bidirectional DC/DC converter acts in boost mode and supplies energy to the grid, and PV
power is also directed to the grid depending on the availability and concurrent operating conditions
of all elements of the system. EV is used as an auxiliary power source and helps stabilize the power
grid during peak hours. However, the availability of power from EVs depends on the availability and
vehicle driver’s willingness to either sell energy by discharging EV or not.

3. Electric Vehicle Battery

An EV is represented by a battery that is charged through its charger. The charger model shall
be explained in the next section. An appropriate modelling of the battery is necessary for its smooth
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operation. Some battery models, including electrical, electro-chemical and mathematical models, are
presented in [36]. For this study, an electrical model of the battery is considered accurate in terms
of its characteristics. The electro-chemical behaviour of a battery has been presented in [37] while
accounting for the battery’s state of charge (SOC), internal resistance, discharging current, battery
terminal voltage, etc. Generally, an EV battery refers to a lithium-ion-type battery with appropriate
specifications of the model. Mathematically, the charge equation of the battery is expressed as given in
Equation (1).

Vb = Vc − ibR− K
Q

Q− bt
bt+−Bbt (1)

where Vb is the voltage of the battery, Vc represents the battery constant voltage, ib is the battery current,
K stands for the polarization constant, Q shows the battery capacity in Ah, bt is the actual charge
of the battery, A stands for the zone amplitude and B is the zone time constant. The value of all of
these parameters can be found using a characteristic curve given by the manufacturer with the data
including the fully-charged voltage Vf ull , the capacity and value of the voltage at the nominal zone
(Qnom, Vnom) and the capacity and value of the voltage at the exponential zone (Qexp, Vexp), where the
battery parameters can also be found, assuming that R is constant, and during the charging process, it
is 0.05 ohms, where A, B, Vc and K can be determined using Equation (2):

A = Vf ull−Vexp

B = 3
Qexp

Vc = Vf ull − A + ibRib
K = Vc −Vnom − Rib + Aexp

(
−3Qnom/Qexp

) (2)

In EV battery applications, the required energy storage capacity and terminal voltage are acquired
by combining several cells in series or in a parallel arrangement. The series arrangement of cells
determines the battery stack voltage, and cells in parallel determine the current carrying capacity of
the battery stacks. The capacity of the stacks can be found using Equation (3):

Ctot = Ccnsnp (3)

Ctot is the capacity in Ah; Cc represents the capacity of an individual cell; ns stands for cells
arranged in series; and np represents the number of battery cells connected in parallel. A state-of-the-art
Thevenin equivalent-based model is considered in this work; an equivalent circuit is shown in Figure 3.
A Thevenin battery model uses a series resistor Rs that models the voltage and current characteristic
and an repetitive control (RC) parallel circuit with Rt and Ct that helps determine the predictive
response to transients at an instant SOC of the EV battery. This model was further improved with the
addition of some components for enabling one to determine and predict run-time and DC response,
as given in [38,39]. For instance, [39] adds a capacitor to represent a non-linear open circuit voltage
and state of charge instead of open circuit voltage Voc, and the model gives the relationship of Voc and
SOC, but does not account for transients.

Cts

Vb

Ib

Rts

Voc

Rs

+

-

+

-

Figure 3. Thevenin battery model.
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4. Components of the Smart Charging Station

The smart charging station consists of a PV array, a bidirectional grid-interfaced power converter, a
DC-DC boost converter and an EV battery charger with a bidirectional DC-DC buck-boost converter for
recharging and discharging of EVs, respectively. All of these components are explained in Section 4.1,
Section 4.2, Section 4.2.1 and Section 4.3. A controller is employed that decides the power flow direction
among the three blocks of the system depending on the change in the DC bus voltage.

4.1. Grid-Interfaced Bidirectional Power Converter

In the proposed configuration of the PV-based DC charging station, the bidirectional PWM power
converter deals with power exchange between the grid and the EV battery charger. When an EV
is discharged, it exchanges power from EV to the grid under V2G mode, and conversely, power
is delivered to the common DC bus from the grid when required. The configuration of the power
converter is shown in Figure 4. The controller design for the AC/DC power converter is based on the
internal model principle to achieve a minimum tracking error and ripple-free output DC voltage Vdc,
as described in [40,41].
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Figure 4. Configuration of the bidirectional AC/DC converter.

The control scheme of a double loop structure is shown in Figure 5 that contains an inner current
loop and outer loop for voltage. The employed control scheme basically combines an outer loop that is
based on a PI voltage controller and an inner loop deadbeat controller in addition with a repetitive
controller for the current control [42]. The implementation of a plug-in repetitive control (RC) system
is shown in Figure 6 Transfer function Crc(z), with control gain krc, of the RC and low pass filter q(z)
can be found as given in Equation (4). Generally, q(z) = 1 is considered for a DC signal. As per
Equation (4), the integral controller is considered a special case of a repetitive controller. In the case
of the DC reference, the PI controller is another particular case of the control scheme. The control
scheme for the single-phase current loop is shown in Figure 7. A sample equation for each phase with
standard parameters is given in Equation (5).

Crc(z) =
krcz−N1

1− z−N q(z) =
krcz−N1

zN − 1
q(z) (4)

ij(k + 1) =
(b1 − b2)

b1
ij(k) +

1
b1

ej(k)−
vd(k)

2
1
b1

uj(k) (5)

where b1 = Lnom
T , b2 = Rnom, Lnom and Rnom are the nominal values of L and R, respectively. If T is the

sampling period, then u(k) = (2t+(k)−T)
T , and in this case, the transfer function for Gp(z) would be as

given in Equation (6). The equation for the deadbeat controller is given in Equation (7). Obtaining
ij(k + 1) = ire f (k), the transfer function for each control loop without the repetitive controller would



Energies 2017, 10, 4 7 of 20

become H(z) = z−1. The deadbeat controller offers a quick response with a one-sampling period
delay only.

Gp(z) =
i(z)
u(z)

= −vd(z)
2

1
b1z− b1 + b2

(6)

uj(k) =
2

vd(k)

[
e(k)− b1ire f (k) + (b1 − b2) ij(k)

]
(7)

The deadbeat controller is based on an accurate model of the AC/DC power converter.
Practically, some uncertainties are found in the parameters of converter, such as: 4L = L − Lnom

and4R = R− Rnom.. Thus, it becomes difficult to achieve a tracking phase error of zero in accordance
with the references [43,44].
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Figure 5. Control scheme for the AC/DC converter.
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4.2. PV Structure

The characteristics of the PV module are described using a single-diode model, as per the I-V
curve presented in [45]. Mathematically, it is expressed in Equation (8):

I = Npe

[
Ipg − Id {Xa} −

V
Ns +

I
Nc Rse

Rpl

]
Xa = exp

(
q

AkT

(
V

Nse
+ I

Npe
Rs

))
− 1

(8)



Energies 2017, 10, 4 8 of 20

where V and I represent the voltage and current of the PV array, Ipg stands for the photo-generated
current, Id is the saturation current of the diode and T, A, q, k represent the operating temperature,
diode quality factor, electron charge and Boltzmann constant, respectively. Rse and Rpl stand for the
series and parallel resistances of the cell; Nse and Npe are the number of cells arranged in series and
parallel in cell strings. Values of these parameters can be found using an approach given in [46], and Id
can be calculated using Equation (9):

Id =
Isc

exp
(

qVoc
kTANse

)
− 1

(9)

where Isc, Voc represent the short circuit current and open circuit voltage, respectively. Many PV models
have been presented for different purposes with a certain accuracy. Authors in [47–50] demonstrate
the effect of recombined carriers using an extra diode with the inclusion of additional effects. However,
a single-diode model is offers both fair accuracy and simplicity; in the literature, it has been mostly used
with a simplified structure of the current source and a parallel diode. Generally, electric generators
are considered as either the voltage or current source, but PV arrays show a hybrid behaviour in
terms of current and voltage. Typically, series resistance substantially influences the device, when
operating in the voltage source region, and the device’s parallel resistance affects it while operating
the current source region. The series resistance is found by summing many structural resistances, and
parallel resistance is characterized by the leakage current. However, these resistances are sometimes
ignored for the simplification of PV modelling [51], and the parameters are important to determine the
photo-generated current. An assumption that Ipg photo-generated current is equal to the short circuit
current is also used considering the Rs and Rp to be very low and high, respectively; Ipg depends on
irradiation and is effected by temperature, and it can be found using Equation (10).

I
pg=
(

Ipg,n + K1∇T
) G

Gn

(10)

where Ipg,n represents photo-generated current at the nominal condition and ∆T is the difference of
the actual and nominal temperature. G and Gn stand for irradiation in watts per square meters and
nominal irradiation, respectively. Io is the saturation current that depends on temperature and is
expressed as in Equation (11).

Io = Io,n

(
Tn

T

)3
exp

[
qEg

ak

(
1

Tn
− 1

T

)]
(11)

where Eg and Io,n stand for band-gap energy (its value is 1.12 eV) and nominal saturation current,
respectively, and the latter can be found using Equation (12)

Io,n =
Isc,n

exp
(

Voc,n
αVt,n

)
− 1

(12)

where Vt,n represents the thermal voltage of the cells at Tn and α is the diode constant. Io of PV cells is
dependent on the saturation current density, Jo, of the semiconductor material, and the latter further
depends on the intrinsic properties of the cell. Io,n is found at the Isc,n nominal open-circuit assuming
that V = Voc,n, I = 0 and Ipg ≈ Isc,n; where the value of α can be randomly chosen between 1≤ and
≤1.5 depending on the I −V model, as it represents the degree of ideality of the diode; so, it is mostly
empirical, and initially an appropriate value can be chosen; then it might be improved later for the
purpose of model fitting, as its value influences the I −Vcurve.

4.2.1. DC/DC Boost Converter

A single-phase boost stage is used that boosts the PV voltage while tracking the maximum power
point of the PV array. For this, the input voltage and current are sensed and used by the algorithm.
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The boost power converter regulates the input terminal voltage to the maximum power point at the
PV to facilitate the maximum power point tracking (MPPT) during the normal operating condition.
The control strategy of the converter is illustrated in Figure 8. An average current-mode control scheme
is applied that ensures robust control as compared to the peak current-mode control strategy. A low
pass filter LFis used to reduce the noise and ripples. Linearized averaged state-space equations of the
DC/DC converter can be written as in Equations (13) and (14) [52]:

Lpv
diLpv

dt
= vpv + Vdc,nmd (13)

Cpv
dvpv

dt
= −iLpv +

vpv

rdpv
(14)

where Vdc,n represents the nominal DC-link voltage, rdpv stands for the PV dynamic resistance and md
is the averaged control input. Then, transfer functions Gmd ,iLpv and GiLpv ,vpv from md to iLpv and from
iLpv to vpv, respectively, can be found using Equations (15) and (16):

Gmd ,iLpv(s) =
iLpv(s)
md(s)

=

(
Cpvrdpv − 1

)
Vdc,n

LpvCpvrdpvs2 − Lpvs + rdpv
(15)

GiLpv ,vpv(s) =
vpv(s)
iLpv(s)

=
rdpv

Cpvrdpvs− 1
(16)

The employed PI controllers are designed by using the frequency response of the system with
diverse values of rdpv found at rdpv,v and rdpv,c voltage and current source regions, respectively, and
the I–V characteristics, and the stability of the system is observed with rdpv,v and rdpv,c.

Cpv

PV Array

+

-

vpv

ipv iLpv Lpv

+

-

Cdc

MPPT

PWMPI
vpv,ref

vpv

-

v M
P

P
T

LF
iLpv

ipv

vpv

-

vx

Ss

Figure 8. Control of the DC/DC boost converter.

4.3. EV Battery Charging Converter

A model of the battery charger is shown in Figure 9. It is composed of a bidirectional DC/DC
power converter that enables two-way power transfer capability, with two switches (IGBT) controlled
by a complimentary controller. In discharging mode of the battery with the V2G concept, switch Sbs
operates; the converter acts in boost mode; it increases the voltage Vb and current Ib in the inductor Lb
and flows towards capacitor Cdc. On the other hand, in the case of the battery charging process, the
converter acts as a buck converter when switch Sbc is ON, and Ib rather flows in the opposite direction
from the capacitor to the inductor for recharging the EV battery. On the other hand, the control of
the battery charger depends on the state of charge SOC of the battery; where the configuration of the
EV battery charger is shown in a simplified manner for educational research purposes, and it aims to
demonstrate that the corresponding control methodologies can be realized depending on the required
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charging strategy (i.e., charging or discharging) under the constant current or constant voltage strategy.
However, the model is implemented in SimPowerSystems with certain required simulation aspects,
the integration method, the time step, the grid parameters, the reactive power, the inverter modulation
index, the switching frequency, etc.

+ 
Sbc

Sbs

Cdc Lb

Battery

Vb

Rb

Figure 9. EV battery charger configuration.

For the battery charger, two control techniques, including constant voltage and constant current,
are applied for battery charging and discharging modes, respectively. In the constant voltage strategy,
the battery is operated as a voltage source, and the resulting duty ratio dv describes the converter
operation in buck mode for battery charging, as shown in Figure 10. A constant current strategy,
in which the EV battery operates as a current source, is employed for controlling the charger while
operating in V2G mode. In this mode, the converter serves in boost mode, and the scheme is shown in
Figure 11.

+

-

+Vref PI 
Controller

+

Vb

Vdc

dv
Sbc

Sbs

Figure 10. Control scheme for the DC/DC converter in buck mode.

+

-

+Iref PI 
Controller +

Vb

Vdc

di
Sbc

Sbs
ib

1

Figure 11. Control scheme for the DC/DC converter in boost mode.

5. Business Model of EV Charging

A sustainable expansion of EVs in the transportation sector requires substantial charging facilities,
up-gradation of the distribution network and aggregated control strategies for market integration.
Installation cost for charging facilities and equipment depends on the required charging mode and
physical location. According to the information given in [53,54], let us assume a scenario of EV charging
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at a public lot only and estimate the total cost of the charging stations, including installation cost,
equipment, electrical connections, connection with the grid, maintenance and administrative costs.
The considered public lot has the following characteristics; it can charge an EV in both slow and fast
modes; charging time ranges from 15 min to 12 h depending on the employed charging mode (whether
the slow or fast charging method); and the charging facility is available 24 h with V2G property. Its cost
is €2130 for a slow charging station of a maximum power of 3.5 kW at a public lot, and the cost will be
€44,692 for a fast charging station of a power up to 10 kW. Generally, aggregators offer EV charging
facilities to EV users through public charging stations. The aggregators act as retailers; they purchase
energy from the spot market and sell to the ultimate customers.

It is assumed that the number of EVs to be recharged at a public lot is 48. As the charging station
is equipped with V2G technology, so a public charging station needs an electronic counter for distant
control, management and interaction with the market. Studio Scada is an example of such an electronic
counter described in [55], and its total cost is around €240k. The EVs’ ambient impact considered in
this study includes the effect of emissions on human health, change in climate and noise pollution.

The impact of emission on human health is estimated using the criteria given in [56] for a small
suburban area, and it is found that the mortality rate is significantly reduced with a reduction in
emissions. In terms of climate change, the cost of CO2 emissions may be estimated based on their
impact on climate change. For example, in the year 2010, the average value of CO2 per ton was €25.
Additionally, EVs make no noise and ensure acoustic comfort, though the levels are different for
different countries depending on the noise tolerance.

Cost Estimation

The cost for deployment of the EV charging infrastructure (EVDCI) can be estimated (in €) as
given in Equation (17):

EVDCI = EVPL.TCV .
(
Cpp + CRU + CCMS + CEq. + CDNE

)
(17)

where EVPL is the EV penetration level, TCV represents the total cost of conventional vehicles and Cpp

and CRU stand for the cost of charging stations at public parking lots and the cost of charging stations
at single residential units. CCMS is the cost of the control and management software; CEq. stands for
the cost of equipment; and CDNE represents the cost of the expansion distribution network.

The cost of ambient factors in €can be calculated as expressed in Equation (18):

CAF = ALEV (TCEm. + TCcc + TCN) (18)

TCAF is the total cost of ambient factors; ALEV stands for the average life of an EV; TCEm. is the
total cost of emissions; TCcc represents the cost of climate change; TCN stands for the noise cost.

5.1. Incentivizing EVs’ Participation in the Demand Response and Regulation Services

It is generally considered that most consumers would choose convenience over cost to recharge
their EVs. A few of the effective techniques for providing incentives include different pricing schemes
with respect to varying times, such as real-time, peak pricing and time-of-use. Time-based pricing splits
a day into different chunks of time and applies different unit prices for energy use at particular instants.
A pricing strategy usually involves an off-peak and on-peak price. Creating a time-of-use-based
schedule for EV users will allow them to use timers to utilize energy at a certain time. The ability to
contribute to the time-of-use schedule might encourage consumers to carefully utilize energy.

Two possible options for recharging of an EV can be offered to an EV driver with the perspective
of revenue maximization for an aggregator: (i) flat charging (f-charging) set in which the EV recharging
price is fixed by the aggregator, and EVs are reached at the maximum rate of power; (ii) f-charging in
addition to service charging (s-charging) in which an aggregator bids a lower price for recharging, and
in exchange, the recharging process provides regulation to the power grid.
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In both options/settings, an EV driver is free to select none of the offered options by the aggregator,
i.e., an alternative option of no-charging is also available. Let us consider an aggregator of numerous
charging stations, which purchases energy at a wholesale price represented by WSP (wholesale price)
(in $/kWh), and then offers a fixed a retail price (RP) in $/kWh for EV drivers. As a general fact,
most vehicles are assumed to be parked during the daytime, and the same may be expected with
EVs; thus, comparatively low recharging power may be adequate to recharge a battery of a few EVs.
This fact is considered for the basic assumption that EV drivers are ready to accept reduced power at a
less expensive price. In this case, an aggregator can avail itself of this opportunity to have increased
revenue. As low recharging power is satisfactory for a few clients, so the aggregator can reduce it when
it is cost-effective to do so. Consider that the variable EV recharging power level contributing towards
auxiliary control may be termed as a regulation service. In order to perceive EV charging as a resource
for regulation, there must be some margins to decrease or increase its power consumption. Regarding
monetary compensation for such regulation, the aggregator pays ∆wspPn per EV with its regulation
slot. In the case of regulation, the aggregator is paid for tumbling demand to zero. The incentive
is symbolized as a fraction ru ≥ 1 of the wholesale price, and the aggregator receives an amount,
as expressed in Equation (19).

∆wspru (Pn − 0) = ∆wspruPn (19)

In other words, the system operator re-purchases the energy at a unit price ruWSP ≥ WSP.
For regulation, where EVs should consume more than scheduled, the operator bids a concession
ratio of rd ≥ 0 on the normal price WSP, so that the aggregator purchases the spare energy at a
reduced price.

Aggregating all payments and their occurrence probabilities, the anticipated revenue for the
aggregator from one regulating EV is expressed in Equation (20).

Ar = ∆wsp (ρuruPc − ρd (1− rs) (Pd − Pc)− Pc) (20)

where Ar stands for anticipated regulation, wsp is the price at which the aggregator buys energy, ru is
the ratio of the remuneration for regulation, rs is the discount ratio, the probability of a signal when no
regulation is need is denoted by ρu and Pc is the charging power.

5.2. Smart EV Charging and Pricing

This subsection contains a description of the potential smart operation of EVs’ charging manner
for the benefit of the system. It is based on a self-determined charging decision and ancillary control
through variable pricing. At a certain moment, prices may typically reflect energy generation cost
only. In order to use the pricing factor for altering EV charging, the prices must be able to reflect the
system operating conditions. Prices that achieve this goal must be cost-reflective of generation and
network cost. EVs’ driving routes affect the location of the charging load. Likewise, utilization patterns
influence the quantity of available energy to be supplied to the grid under V2G operation.

A controlled and smart operation of EVs can spread EV charging load over time and re-position
EV demand to reduce peak power consumption and network congestion. EVs’ smart operation can
further increase the feasibility by reducing the driving cost. This discussion is concentrated on prices
with the aim to incentivize the system charging.

Smart EV charging operation can be performed through a direct control strategy on an EV charging
process or through dynamic price-based indirect control [57]. Depending on the model, a control
scheme may be applied only when an EV is parked and being charged at a particular location, or a
control scheme may be implemented directly by an operator or an aggregator. The right to control
may be allowed by an EV user in lieu of a certain rebate payment. Indirect control is exercised through
dynamic pricing. There may be several diverse pricing extents to steer EV charging operation with the
aim to lessen energy peaks. These price dimensions vary from a simple tariff to greatly distinguished
pricing schemes.
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A probable dimension of pricing is the diversity of price according to the time of charging.
Time-differentiated prices are characterized by the utilization of the network and can aid synchronized
EV charging with the system operation. Such synchronization ensures a less expensive system
by steering the EV charging towards off-peak hours. Real-time pricing involves different prices
at different time slots in accordance with the real operating conditions. Another dimension is the
difference in location, where the EV charging process may have a substantial influence on network
load. Location-based steering can diminish distribution losses and avert network expansion costs,
thereby reducing inclusive cost for the ultimate consumers. Differentiation in terms of location can be
illustrious as per price differences. A certain benefit of location-based pricing for EV charging originates
from the mobile nature of EVs and their wide-spread energy requirements. Price differentiation based
on volume is another potential dimension. The amount of energy consumed at a particular time
influences the capacity required for power generation, transmission and distribution. In order to direct
energy consumption towards better tariffs, applying a higher price per kilowatt-hour may persuade
billing less per unit for incentivizing the total turnover. Depending on the needs of a particular system,
this must be addressed via price incentives. Price dimensions may greatly help produce the desired
incentives for optimal EV charging operation.

6. Results

Simulations are carried out to validate the presented operation of the proposed system model.
The value of the DC link bus voltage Vdc is taken between Vdc,min and Vdc,max for shifting from one
mode of operation to another. DC bus voltage is variable, and thus, the power source for EV charging
varies, respectively. The reference DC bus voltage value is chosen based on a mode where the load of
an EV is taken as constant and the irradiation varies gradually.

The reference values at the DC bus are kept at 250 V and 350 V, and these are selected based on
the change in available solar energy from morning till evening. Varying the voltage value on the DC
bus causes switching of the power source (either from the grid or PV) to recharge an EV. It can be seen
in Figure 12 that the variations in the solar irradiance from morning until afternoon on a sunny day
cause a corresponding change in the DC bus voltage. In a public parking lot, EVs can be assumed to
be parked at different times of a day; thus, an analogous varying load of EVs can also be considered.
The range of operational voltage can be split into any levels, and based on that, the charging station
may be subjected to different modes of operation. In this study, the DC bus voltage is chosen while
taking into account the change in solar irradiance during a day. The PV panel starts yielding power
when the DC bus voltage is above its threshold value. In this way, the PV system provides the required
amount of power when the DC bus voltage is 250 V, and with the further increase in the DC bus
voltage, it starts producing extra power, which is then directed to the grid. In other words, the DC bus
voltage does correspond with the solar irradiation and the output power, and so do the criteria for
switching of the operating mode from one to another with reduced complexity.

The results for all described modes of operation under steady-state conditions at the output of
the various power converters employed are obtained in this work. This is aimed at showing that the
supply source for recharging an EV changes when variation in the bus voltage is seen. For instance,
the EV will be fully recharged through PV power while operating under Mode I if the DC bus voltage
is greater than 400 V; it will serve in Mode II when the voltage at the DC bus is in the range of 250 to
350; a combination of PV power redirection and V2G operation will be observed when the load on
the grid is greater than the available supply. The outputs of the system, downstream of the power
converters, under Mode II, when EV charging power demand is being met through both PV and the
power grid, are shown in Figures 13 and 14. Figure 13 shows that when the DC bus voltage is 250 V,
this means the corresponding power from the PV system is not enough to satisfy the EV charging
power demand, and thus, it has to be supplied through both sources, i.e., the PV system and the grid.
In this case, the required amount of power is drawn from the grid, and the DC bus voltage is raised to
350 V, which is analogous to the sufficient amount of power for recharging EVs; where the upper part
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of Figure 14 is the measured grid voltage (showing that the grid is operating at off-peak hours and
enough power is available for EVs), and its lower part illustrates that the DC bus voltage has reached
the required level while meeting the required power demand of EV charging.
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Figure 12. Changing DC bus voltage, corresponding to the PV generated power, with respect to change
in solar irradiation.

0.1 0.2 0.3 0.4 0.6
100

250

400

600

Time (s)

V
ol

ta
ge

 (
V

)

Figure 13. DC bus voltage under Mode II operation.
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Figure 14. Grid voltage (top) and output voltage of the bidirectional converter in rectification
mode (bottom).
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Results including the DC bus voltage, grid supply voltage and output of the grid-connected
bidirectional power converter under the system transition from Mode I to Mode II are also obtained
and shown in Figures 15 and 16. It could be observed that when the bus voltage is less than 350 V,
the utility grid also supplies power to charge EVs, and as soon as the DC bus voltage is sufficiently
available from the PV power, then grid supply is no longer provided. Thus, in Mode I, an EV is solely
recharged through PV power, and the output of the grid interfaced power converter becomes zero.
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Figure 15. DC bus voltage under the transition from Mode II to Mode I.
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Figure 16. Grid voltage (top) and output voltage of the bidirectional converter in rectification mode
(bottom) under the transition from Mode II to Mode I.

This implies that when the solar irradiation changes to the higher value of W/m2, it causes an
increase in the PV generated power, and the corresponding DC bus voltage is raised to the value
of 350 V, which is termed as the transition of the mode from II to I, as shown in Figure 15. In the
previous case, the charging power was being supplied by both combined sources (PV, as well as the
grid), whereas, with the increase in solar irradiance, enough power becomes available through PV only.
The top of Figure 16 demonstrates the grid voltage in which it can be seen that a supply is being drawn
from the grid from 0.4 to 1.2 s; afterwards, no supply is required from the grid end; just to symbolize it,
the supply from the grid for EV charging is reduced to zero; this means that at that moment, no power
is drawn from the grid. The bottom of Figure 16 illustrates the corresponding DC bus voltage in which
the rectified output of the bidirectional power converter after 1.2 s becomes zero, and it shows that
no power is being rectified from the grid end; rather. the whole power demand of EVs is being met
through PV power generation. For further clarification, the output of the bidirectional converter will
be at some value until the power is drawn from the grid, and when no power is taken from the grid,
then the output of the converter will become zero.

The grid loading and its operating condition are assessed by determining the value of the current
on the secondary side of the distribution transformer. At the start, when the grid is operating at
off peak hours, it delivers some amount of power required to charge EVs, as shown in the first half
interval (from 0.4 till 1.2 s) of Figure 16. The charging supply is ended as soon as the load on the grid
increases, and the grid interfaced side of the bidirectional power converter draws no power from the
grid. In other words, zero power is taken from the grid, and it is shown in the second half interval
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in both the upper and lower parts of Figure 16, i.e., in this situation, zero voltage is measured at the
upstream and downstream of the grid-tied bidirectional power converter.

Figure 17 shows Mode I operation under the transition from Case I to Case II when firstly all
solar energy is used to recharge EVs and the DC bus voltage is close to 350 V. If it continues to increase
or EV charging demand is satisfied, then the power is supplied to the grid. In this case, it can be
seen that firstly, the whole EV charging demand is being supported or supplied through PV power
generation only, as a sufficient amount of solar energy is available. Thus, the top of Figure 17 illustrates
the DC bus voltage value, showing that from 0.4 s till 1.1 s, the DC bus voltage value is 350 V, which
is sufficient (i.e., its corresponding generated power) to meet EV power demand, and no power is
required to be drawn from the grid for this period. This implies that the output of the grid interfaced
bidirectional converter is zero (otherwise, there would be some rectified output) from 0.4 till 1.1 s (i.e.,
power is being neither supplied nor drawn from the grid). Consequently, in the second half interval
(from 1.1 till 2.0 s) of Figure 17, it is obvious that as soon as the value of the DC bus voltage goes above
350 V (again, here, the increase in the DC bus voltage corresponds to the increase in solar irradiation
and, thus, an increase in generated power), the power management algorithm, which is based on the
variation in the DC bus voltage, causes the surplus amount of power to flow towards the grid, and in
this situation, the grid interfaced bidirectional converter becomes active in inversion mode and starts
supplying to the grid. Therefore, the second half of the bottom of Figure 17 shows the inverted output
of the respective power converter. In this way, the first and second halves of the top and bottom of
Figure 17 are found to be appropriate in functioning, while validating the designed algorithm of the
power flow under different operating modes.
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Figure 17. DC bus voltage (top) and supply to the grid (bottom).

Simulation of the charging station under V2G operation is shown in Figure 18 with reactive
power compensation. It demonstrates that initially, the charging station operates at around 48 kW,
and the reactive power is zero; for first quarter of a second, no reactivepower is demanded by the
controller while the EV is being recharged. When time is almost 0.24 s, some reactive power injection is
demanded by the controller, and the bidirectional EV charger starts providing reactive power. In V2G
operation, changing the current direction affects voltage variation. It is observed that the reactive
power is zero when the system is in charging mode, and the value of reactive power is also zero.
At around 0.3 s, EV discharging under V2G mode is requested, and the system starts injecting power
to the utility grid; the value of reactive power becomes positive. Thus, the controller ensures seamless
transition among different modes of operation. The reactive power support is consider the most
beneficial parameter, as it does not affect the battery performance of an EV.
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Figure 18. V2G operation for reactive power compensation: reactive power (top), active power (bottom).

7. Conclusions and Future Research Direction

A model of a PV-based fast charging station with a four-way power flow interaction is presented
in this paper. The model and corresponding control strategy of each component, including the
PV interfaced DC/DC boost converter, the EV interfaced DC/DC buck-boost converter and the
grid-tied bidirectional AC/DC converter, are explained along with their implementation in Simulink.
The employed control strategy is based on the variation in the DC link voltage that causes a change
in the power flow direction, and thus, it operates in various different modes. The charging station
also supports V2G operation. Simulations validate the dynamic behaviour of the DC bus voltage,
battery voltage and the current. In view of the presented results, it could be safely established that the
PV-based grid-connected EV charging is a promising factor to support the expected overwhelming
load of EVs and the intermittent nature of renewable energy, while using EVs as an energy storage
device upon availability. This paper also presents a brief model for the cost-benefit analysis of EVs’
penetration in a suburban area. The theatrical analysis shows that EVs would be a profitable initiative
in the transportation and energy market with significant human health and environmental benefits.
Nonetheless, deployment of charging infrastructure will require substantial investments. It has been
discussed that incentives and rebates can be used to encourage EV drivers’ active participation in
the market. A coordinated EV charging operation could increase the system’s efficiency through
good incentivization, as dynamic electricity pricing is a potential strategy to aid the power system.
However, opportunities for price-based control of EV charging operation are still indefinite, and further
research is required regarding the effects that EVs can experience in a local network. Basically, this
research paper is aimed at describing the presented model and its implementation in an educational
manner. For experimental verification, its further implementation is planned to be carried out using
industry-oriented parameters/values. In view of the fact that the EV characteristics differentiating
from the distributed resources are mobility and duality, as they can behave either as controllable loads
or controllable micro-generators, the authors are working to enhance this presented model with the
inclusion of the aggregation strategies for PV integrated EV charging management under the virtual
power plant (VPP) concept. The authors are hoping to be able to obtain the experimental validation in
the next few months and will strive to publish that work as an extended Part II of this manuscript in
the same journal. As we believe that the addition of further sections in this paper will extraordinarily
increase the length of this paper and, sometimes, such a lengthy paper does not appeal to potential
readers, thus the extended research work with the experimental results shall be submitted for potential
publication as Part II.
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