
energies

Article

Optimal Load Shedding for Maximizing Satisfaction
in an Islanded Microgrid

Yeongho Choi 1, Yujin Lim 1,* and Hak-Man Kim 2

1 Department of Information Technology Engineering, Sookmyung Women’s University, Seoul 04310, Korea;
yeongho87@sookmyung.ac.kr

2 Department of Electrical Engineering, Incheon National University, Incheon 22012, Korea;
hmkim@incheon.ac.kr

* Correspondence: yujin91@sookmyung.ac.kr; Tel.: +82-2-2077-7305

Academic Editor: Paras Mandal
Received: 3 August 2016; Accepted: 29 December 2016; Published: 3 January 2017

Abstract: A microgrid (MG) is a discrete energy system that can operate either in parallel with
or independently from a main power grid. It is designed to enhance reliability, carbon emission
reduction, diversification of energy sources, and cost reduction. When a power fault occurs in a grid,
an MG operates in an islanded manner from the grid and protects its power generations and loads
from disturbance by means of intelligent load shedding. A load shedding is a control procedure that
results in autonomous decrease of the power demands of loads in an MG. In this study, we propose
a load shedding algorithm for the optimization problem to maximize the satisfaction of system
components. The proposed algorithm preferentially assigns the power to the subdemand with a high
preference to maximize the satisfaction of power consumers. In addition, the algorithm assigns
the power to maximize the power sale and minimize the power surplus for satisfaction of power
suppliers. To verify the performance of our algorithm, we implement a multi-agent system (MAS) on
top of a conventional development framework and assess the algorithm’s adaptability, satisfaction
metric, and running time.

Keywords: load shedding; microgrid (MG); multi-agent system (MAS); optimization algorithm

1. Introduction

Recently, microgeneration has been considered for use in managing the growth of electric power
demands and CO2 emission. The Consortium for Electric Reliability Technology Solutions (CERTS)
has initiated research on the impact of connecting small generation units to low-voltage electricity
distribution systems in order to enhance the reliability of a utility grid system. Accordingly, a microgrid
(MG) has been introduced [1]. An MG is a small-scale autonomous power system that operates either
in parallel to or islanded from utility main grids. An MG allows for fast installation of electricity
supply without the need for expensive transmission infrastructure investments. It is composed of
on-site distributed generators (DGs), energy storages (ESs), and loads [2]. DGs are power generators
such as renewable energy sources (e.g., photovoltaic (PV), wind, or solar) and conventional generators
such as microturbines or diesel generators. ESs include lithium-ion batteries. They can be either power
generators that produce power or power consumers that expend power. Loads such as residential or
commercial buildings are power consumers.

An MG has two operational modes: grid-connected and islanded. A grid-connected operation
indicates a situation in which an MG is connected to the main grid. An islanded operation indicates
a situation in which an MG is disconnected from the main grid when a fault occurs in the grid.
The amount of produced power of DGs depends on the demands of loads. The difference between
the generated power and load demand is controlled by the well-functioning main grid in the
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grid-connected MG. On an islanded MG, because the main energy sources are renewable energy
sources that have an uncertain nature, the amount of produced power may not controlled. Thus,
the control is commonly accomplished by a load shedding system, not a mechanical controller.

Load shedding is a process in which some of the power demands are shed to protect MGs
from potential dangers [3]. Two architectures for load shedding, centralized and decentralized,
have been investigated [4]. In a centralized architecture, system components are controlled by
a central control system, which can lead to optimal utilization of MG resources. In a decentralized
architecture, individual components cooperatively or competitively share the power supply or power
demand based on their individual capabilities. A decentralized architecture can easily integrate
new components. However, real-time optimal utility under various operating conditions is not
possible. Although considerable research on load shedding systems such as islanding detection and
autonomous operation/management have been extensively studied [5], research on load shedding
algorithms remain an open issue for further research. A load shedding algorithm determines the
amount of power demand that can be reduced. In general, a load shedding algorithm finds the most
stable equilibrium operating point for the system with the fewest shed demands. In other words, a load
shedding algorithm is designed to make full use of limited generation resources and maximize the
beneficial performance [6]. In this study, we propose a load shedding algorithm for the optimization
problem in a centralized architecture of an islanded MG. We use the satisfaction of an MG system
player as performance criteria.

In this paper, the major contributions are:

- Identifying the satisfaction of system components as performance criteria;
- Defining the optimization problem to maximize the satisfaction;
- Developing a load shedding algorithm for the optimization problem;
- Implementing a multi-agent system (MAS) for the load shedding algorithm;
- Performing experiments to verify performance of the implemented system.

The remainder of the paper is organized as follows. In Section 2, we describe related studies
and system models. In Section 3, we propose a load shedding algorithm for the optimization
problem to maximize player satisfaction. In Section 4, experimental results are discussed to verify
the performance of our algorithm based on an implemented system operating in a conventional
development framework. Finally, a conclusion and future research directions are provided in Section 5.

2. Load Shedding in an Islanded Microgrid

2.1. Related Work

Recent studies have explored the load shedding problem in an islanded MG. In Reference [2],
fine-grained load shedding policies for high-stressed grids were proposed. High-stressed grids are
power grids with a very large and nearly continuous supply-demand gap. Two algorithms have been
proposed. In a distributed algorithm, the power throttling level is stochastically computed and the
demand is shed based on the level. In a centralized algorithm, feeder-level groups are formed among
the loads. In a group, the demand for the highest consumption is shed to the specific level of power
consumption. Other demands in the group are then shed alternatively. After the cycling, if a supply
demand gap remains, the next group is selected and the process continues until the gap is resolved.

In References [7–9], researchers solved the load shedding problem by using a game theoretic
approach. They considered MG as a collection of individual components that compete for power.
The three methodologies frame a power system in the context of a multiplayer nonzero-sum game,
the bankruptcy problem, or the bargaining solution, respectively.

In References [10–12], a heuristic method was adopted to solve the load shedding problem.
In References [10,11], load shedding strategies were proposed in which a V-shaped transfer function
for binary particle swarm optimization or a binary firefly algorithm was used. The objective function
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is to meet the maximum demand based on the priority. In Reference [12], a genetic algorithm was
applied to minimize the shed demands at all stages and maximize the lowest swing frequency. Penalty
functions and chromosomes with varying lengths were utilized in the algorithm to determine the
optimal shed demands.

In References [13,14], an optimization solution for load shedding was used. In Reference [13],
specifically, a control strategy for stratified optimization was presented. This strategy stratifies demands
into different levels based on their importance and the load frequency regulation effect coefficient.
Based on the levels, the optimization solution is provided to minimize the cost of load shedding and
voltage fluctuation. In Reference [14], it was observed that in addition to frequency, the rate of change
of frequency (RoCoF) was an important index to determine the demand reduction. Based on RoCoF,
a load shedding sequence was determined in real time by evaluating operating profits according to the
willingness to pay (WTP) of the loads.

2.2. System Model

In a conventional under-frequency load shedding scheme, when the frequency of MG falls below
permissible levels, some power demands in the system are shed in predetermined steps [15]. In the
first step, an anticipated overload (L) is given by:

L =
Total load demands− Total power supplied

Total power supplied
. (1)

In the second step, the total amount of demands to be shed is calculated to maintain the frequency
above permissible levels for the maximum L below that of [16]:

LD =

L
L+1 − d

(
1− f

fn

)
1− d

(
1− f

fn

) , (2)

where LD is the total number of demands to be shed, d is the load reduction factor, f is the minimum
permissible frequency, and fn is the nominal system frequency. The load reduction factor indicates the
percentage change in load demand per percentage change in frequency. In the final step, the number
of demands to be shed for each load must be determined. In this study, we focus on the final step of
a load shedding scheme.

We next describe a system model for load shedding in an islanded MG. The system is defined as
a pair (L, P), where P is a vector of the power supplied by N DGs and L is a vector of power demanded
by M loads (i.e., P = (P1, P2, . . . , PN) and L = (L1, L2, . . . , LM)). There are some stochastic variables
in DGs like power generation of renewable energy sources (e.g., wind turbines (WT) and PV cells) [17].
The stochastic models which consider uncertain nature of some variables such as generation of WT
and PV are proposed [18–20]. In the models, the amount of wind speed or solar irradiance is forecasted
by a time series method. For the forecasted amount, a probability distribution function is assigned
to obtain the amount of stochastic variable. In our system model, P includes the power supplied by
dispatchable energy sources, WT, and PV cells (i.e., Pn ∈ {Pdis, PWT, PPV}).

The demand of the load m is divided into two types: critical load demand and controllable load
demand. Critical load includes hospitals, water stations, and other infrastructures to be associated
with basic needs of human life. When MG is disconnected from the main grid, controllable load
demand is shed gradually for the continuous power supply to critical load. The power supplied by
DGs is firstly assigned to the critical load demands, L̂m. A controllable load demand is composed of
a set of K subdemands (i.e., Lm =

{
l1
m, l2

m, . . . , lKm
m

}
). Let lk

m denote the k-th subdemand of the load
m. For each subdemand, a preference is assigned in the range of 1 to Premax. The power is assigned
gradually to the subdemand with high preference. When ∑N

n=1 Pn − ∑M
m=1 L̂m = ∑N

n=1 P′n > 0 and
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∑M
m=1 Lm > ∑N

n=1 P′n, our load shedding algorithm is activated. A summary of important symbols used
in this study is given in Table 1.

Table 1. Summary of important symbols. DG: distributed generator.

Symbol Definition

Pn amount of power supplied by DG n
N number of DGs
L̂m critical demand of load m
Lm controllable load demand of load m
lk
m k-th subdemand of Lm

M number of loads
Km number of subdemands of Lm

Prelk
m

preference of lk
m

Premax max value of the preference
αLm sensitivity to the preference of Lm
αPn sensitivity to the surplus power of Pn

3. Proposed Load-Shedding Algorithm

In this section, we devise an optimization scheme for load shedding to maximize the satisfaction
of the system player. The system player is divided into power suppliers such as DGs and ESs and the
power consumers such as loads and ESs. In this study, we use DGs as power suppliers and loads as
power consumers. The system optimum is achieved when the satisfaction of both the DG and load are
maximized. Given xm and yn, which are the satisfaction indices of the load m and DG n in the load
shedding, ULoad(xm) and UDG(yn) indicate utility functions of the load and the DG at a specific time
interval. The time-dependent utility models general situations in which the load and DG may have
various load demands and may supply power at different time intervals. We assume that ULoad(xm)

and UDG(yn) are continuously differentiable, strictly concave, and increase over the range xm ≥ 0 and
yn ≥ 0 [21]. In this model, our optimization problem is given by:

maximize
(
∑M

m=1 ULoad(xm) + ∑N
n=1 UDG(yn)

)
. (3)

Our optimization problem is divided into two parts: that of the load and that of the DG. First,
we define the utility function from the load point of view. The utility function of the load reflects the
satisfaction of power allocation and the dissatisfaction of power shortage. We analyze the relationship
between the preference of a subdemand and the satisfaction. The satisfaction is achieved when the
power is assigned to the subdemand with high preference greater than that when the power is assigned
to the subdemand with a relatively low preference. Thus, we assign the power to subdemands in
the order of high preference to low preference. To obtain the numerical value of the load satisfaction,
we calculate k′, which is given by:

max
1≤k′≤Kmin

∑k′

k=1

(
lk
1 + lk

2 + . . . + lk
M

)
= max

1≤k′≤Kmin
∑k′

k=1 ∑M
m=1 lk

m, (4)

subject to:

∑k′

k=1 ∑M
m=1 lk

m ≤∑N
n=1 P′n, (5)

where Kmin indicates min
1≤m≤M

Km. The satisfaction index of the subdemand lk
m in the load m is given by:

τk
m = wlk

m
· lk

m
Lm

, (6)
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where wlk
m

is the preference weight of the subdemand lk
m. It is given by:

wlk
m
= 1−

Prelk
m

Premax
, (7)

where Prelk
m

is the preference of the subdemand lk
m. The satisfaction index of the load m, xm is given by:

xm = ∑k′

k=1 τ
k
m +ϕmτ

k′+1
m , (8)

subject to:
0 ≤ k′ ≤ Km, (9)

where ϕm is a binary variable taken to be 0 or 1 for the linear programming problem. Thus,
the satisfaction value of the load m is given by:

SLoad
m = αLm xm − αLm xm, (10)

subject to:

∑M
m=1ϕmlk′+1

m ≤∑N
n=1 P′n − ∑k′

k=1 ∑M
m=1 lk

m, (11)

where
xm = ¬ϕmτ

k′+1
m + ∑Km

k=k′+2 τ
k
m. (12)

The variable ¬ϕm indicates the negation of ϕm. In other words, ¬ϕm = (ϕm → 0 = 1). The variable
αLm denotes the sensitivity to the preference of Lm. In Equation (10), the first term indicates the
satisfaction of power allocation for l1

m ∼ lk′
m(or lk′+1

m ) and the second term indicates the dissatisfaction
for lk′+1

m (or lk′+2
m ) ∼ lKm

m resulting from the power shortage. Thus, the utility function of the load is
defined as follows:

maximize ∑M
m=1 ULoad(xm) = maximize ∑M

m=1 SLoad
m . (13)

In the second part of our optimization problem, we define the utility function from the DG point
of view. The utility function of the DG reflects the satisfaction of the power sale and the dissatisfaction
of the power surplus. The uncertainty of power generation is one of the important features when a
load selects its power supplier. It is because the amount of produced power by DGs is not estimated
exactly in an islanded MG with renewable energy sources. For dealing with the uncertainty, we assign
the uncertainty value to each DG according to the deviations of forecasted amounts of produced power
in long-term historical data [17]. Using k′ in Equation (4), the subdemands of M loads, ∑k′

k=1 ∑M
m=1 lk

m,
are assigned to DGs in the order of low to high uncertainty. The satisfaction index of the DG n, yn is
given by:

yn = Tk′
n + Tk′+1

n , (14)

where:

Tk′
n =

1
P′n
× ∑k′

k=1 ∑M
m=1 lk

m
N

, (15)

and

Tk′+1
n =

1
P′n
× ∑M

m=1ϕmlk′+1
m

N
, (16)

subject to:
∑k′

k=1 ∑M
m=1 lk

m
N

+
∑M

m=1ϕmlk′+1
m

N
≤ P′n. (17)
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Thus, the satisfaction value of the DG n is given by

SDG
n = yn − αPn(1− yn), (18)

where αPn is the sensitivity to the surplus power of Pn. The utility function of DG is defined as follows:

maximize ∑N
n=1 UDG(yn) = maximize ∑N

n=1 SDG
n . (19)

Therefore, our optimization problem is described as follows:

maximize
(
∑M

m=1 ULoad(xm) + ∑N
n=1 UDG(yn)

)
= maximize

(
∑M

m=1 SLoad
m + ∑N

n=1 SDG
n

)
. (20)

4. Performance Evaluation

An MAS is presented as an effective solution for a centralized or decentralized MG system [22].
Thus, we implemented an MAS for the load shedding management of an islanded MG using a
Java Agent Development Environment (JADE) framework (Telecom Italia Lab, Torino, Italy) [23].
The MAS operating on JADE emulates distributed load shedding operations. To optimize load
shedding, the MAS was linked with the IBM CPLEX Optimizer (IBM, Armonk, NY, USA) [24], which is
a mathematical programming solver for linear programming.

We configured our system with MG central control (MGCC), using DGs as power generators
and loads as power consumers. The components were classified according to operational capabilities
and assigned appropriate control agents: AgMGCC, AgDG, and Agload [25]. One major functionality
of MAS is the communication among the distributed agents. By using the Foundation for Intelligent
Physical Agents (FIPA) guidelines for agent-based communication, FIPA-Contract Net Protocol (CNP)
performatives are standardized [26]. The performatives included CFP (Call For Proposal), PROPOSE,
REFUSE, ACCEPT, REJECT, FAILURE, and INFORM. Figure 1 shows the message flows when using
the FIPA-CNP performatives. The MG operation follows an interval-based planning paradigm. First,
the AgMGCC sends a CFP message to AgDGs and Agloads to produce a load shedding plan of the next
interval (e.g., interval t). The AgDGs and Agloads respond with PROPOSE messages to send their
information to the AgMGCC. Such information includes the amount of power generated or the number
of power demands. Each Agload additionally sends a list of subdemands with their preferences.
If the supplied power is less than the demanded power, the AgMGCC initiates the load shedding
scheme to determine the number of shed demands of the loads. Once the number of shed demands is
determined, the AgMGCC sends ACCEPT messages to notify the AgDGs and Agloads of the results of
the load shedding. For the AgDGs, the amount of power to be supplied to the loads is given. For the
Agloads, the number of shed demands and the amount of power to be allocated to the loads are given.
The notified load shedding plan is implemented at time interval t. The load shedding planning and
implementation procedures repeat at each interval.

To show the functionality and feasibility of our algorithm, we configured the system with one
AgMGCC, five AgDGs, and seven Agloads. The modified CERTS MG consists of five generators, seven
loads, and 23 breakers [27]. A graphical representation of normal operation of the modified CERTS is
shown in Figure 2.
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Figure 2. Modified Consortium for Electric Reliability Technology Solutions (CERTS) MG.

Figure 3 shows the system in a distributed environment based on three PCs. The left subfigure
shows the test environment of our laboratory. One AgMGCC is on the first PC, five AgDGs are on the
second PC, and seven Agloads are on the third PC. The Internet is used for inter-agent communications.
The right subfigure shows the operational process on the implemented JADE system. In our system,
for the sake of experiments, we assume that the critical load demands ∑7

m=1 L̂m = 0 and ∑5
n=1 Pn =

∑5
n=1 P′n. The total controllable load demands ∑7

m=1 Lm is set to 360 kWh and the total supply ∑5
n=1 Pn

is set to 50%, 65%, or 80% of the total load demands. For αLm and αPn , we set both of them to 1.
The uncertainty values of DGs are set to the same value. The details of load data is given in Table 2
and the subdemands (lk

m) for each load are sorted by preference (Prelk
m

) in ascending order from the
value ‘1’. We set Premax to 10. We divided the time in a day to 24 intervals for MG operation, and the
length of an interval was one hour. The amount of demand of an Agload for each interval follows a
Poisson distribution.
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Table 2. Details of load data for modified Consortium for Electric Reliability Technology Solutions
(CERTS) MG.

Load Number Demand Subdemands

1 100 30, 20, 15, 20, 15
2 60 20, 15, 20, 5
3 60 10, 20, 30
4 60 20, 25, 15
5 20 10, 10
6 30 10, 20
7 30 15, 15

Figure 4 shows the functionality of our load shedding algorithm in three test scenarios.
In experiments, the total power supply was set to 180 kWh for 50% of the total load demands (50% test
scenario), 234 kWh for 65% (65% test scenario), and 288 kWh for 80% (80% test scenario). The subfigures
show the number of shed demands of 3 Agload for 24 time intervals. In the figures, the height of a
bar indicates the number of power demands, and the violet color of a bar indicates the amount of
allocated power to the load. The blue color of a bar indicates the number of shed demands of the load.
At each interval, as the power demands of the load changes, the number of shed demands accordingly
changes. In addition, as the power supply increases, the number of shed demands decreases. In the
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experiments, the power was assigned about 42%, 52%, or 77% of the demands to 3 Agload for 50%, 65%
or 80% test scenarios.

The plug-and-play functionality is one key feature of multi-agent based optimization systems.
Thus, to investigate the plug-and-play functionality of our system, we configure that DG P4 (50 kWh)
among five DGs is removed and added at intervals 11 and 15. Figure 5 shows that our system is
feasible for plug-and-play operation when ∑5

n=1 Pn is changed from 288 to 238 kWh.Energies 2017, 10, 45 9 of 13 
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To verify the performance of our algorithm, we compared it with the max–min fairness algorithm.
In the max–min fairness, a resource is allocated to customers in order of increasing demand and
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customers with unsatisfied demands split the remaining resources. For the performance comparison,
we designed the satisfaction metric (SM) of Agload m as follows:

SMm =
∑k∗

k=1 wlk
m
·lk

m

∑Km
k=1 wlk

m
·lk

m
, (21)

where k∗ indicates the number of subdemands that the power is allocated. The SM of AgDG n is
given by:

SMn =
P̌′n
P′n

, (22)

where P̌′n indicates the amount of power to be allocated to the loads. Figure 6 shows the SM for
different load conditions. Each value in the charts indicates ∑M

m=1 SMm or ∑N
n=1 SMn at each interval.

Figure 6a shows the performance from the load points of view. On average, the SM of our algorithm
was about 39% better than that of max-min algorithm. In detail, our algorithm showed about 55.1%,
39.4%, and 22.5% better performance for 50%, 65% and 80% test scenarios. Figure 6b shows the SM
from the DG points of view. On average, the SM of our algorithm was about 30% better than that
of the max–min algorithm. In detail, our algorithm showed about 44.8%, 29.3%, and 15.8% better
performance for the three test scenarios. As a result, our algorithm improves the degree of satisfaction
more than does the max–min fair algorithm from both the DG and load points of view.
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Figure 7 shows benefits for loads and DGs for different load conditions. On the load side, because
the load demand is shed by force, we consider the benefits in terms of the satisfaction when the
subdemands with high preferences are met. Figure 7a shows the benefit of load satisfaction when the
SM of our algorithm is compared with the SM of the max–min algorithm. In detail, our algorithm
shows about 153%, 132%, and 116% better benefits for 50%, 65%, and 80% test scenarios. Figure 7b
shows the benefit of DGs’ profit. To generate the power, DGs spend generation costs such as the
maintenance cost, fuel cost, and emission penalty. Thus, we consider the benefit in terms of the
profit when the generated power is maximally assigned to load demands. In detail, our algorithm
shows about 159%, 141%, and 123% better benefits for 50%, 65%, and 80% test scenarios. Thus, as the
power shortage becomes worse, the benefit of our algorithm increases in terms of load satisfaction and
DGs’ profit.

Figure 8 shows the running time of our load shedding algorithm. The dominant factor for the
running time of our system is the time required to run the proposed optimization algorithm. For the
efficient optimization calculation, we adopted the IBM CPLEX Optimizer in our MAS system. For our
experiments, we varied the amount of total power supply. The running time of our system was up to



Energies 2017, 10, 45 11 of 13

30 ms in the three test scenarios. In detail, the running times of our system were about 13.9 ms, 12.4 ms,
and 11.3 ms for 50%, 65% and 80% test scenarios. Thus, we show that our optimization algorithm does
not deteriorate performance in terms of running time.Energies 2017, 10, 45 11 of 13 
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5. Conclusions

We developed an optimization algorithm for the load shedding problem in an islanded MG.
We achieved the system optimum by maximizing the satisfaction of both the DG and load. To maximize
satisfaction, we designed the utility function to reflect the satisfaction of power allocation and the
dissatisfaction of power shortage. To verify the performance, we implemented an MAS for the load
shedding algorithm on top of a JADE framework. Regarding the adaptability of our algorithm,
we showed that, as the power demands of the load changes, the number of shed demands accordingly
changes. To verify performance, we compared the proposed algorithm with the max–min fairness
algorithm in terms of SM. To analyze the feasibility, we measured the running time of our algorithm
and revealed that the optimization problem is solved quickly and efficiently. For a future study, we plan
to identify an optimal strategy for the load to determine the preference of subdemands for maximizing
the profit of the load in the long run. In addition, we plan to continue to do research on how to
implement our system in a real world system. For example, the conventional distribution systems are
changed into multi-microgrid systems that are usually faster, more controllable and reliable. We plan
to investigate the energy management system for a multi-microgrid.

Acknowledgments: This work was supported by the Power Generation & Electricity Delivery Core Technology
from the Ministry of Trade, Industry & Energy, Korea. (No. 20141020402350).

Author Contributions: The paper was a collaborative effort between the authors. The authors contributed
collectively to the theoretical analysis, modeling, simulation, and manuscript preparation.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Lopes, J.A.P.; Moreira, C.L.; Madureira, A.G. Defining control strategies for MicroGrids islanded operation.
IEEE Trans. Power Syst. 2006, 21, 916–924. [CrossRef]

2. Bashir, N.; Sharani, Z.; Qayyum, K.; Syed, A.A. Delivering smart load shedding for highly-stressed grids.
In Proceedings of the 2015 IEEE International Conference on Smart Grid Communications (SmartGridComm),
Miami, FL, USA, 2–5 November 2015; pp. 852–858.

3. Balaguer, I.J.; Lei, Q.; Yang, S.; Supatti, U.; Peng, F.Z. Control for grid-connected and intentional islanding
operations of distributed power generation. IEEE Trans. Ind. Electron. 2011, 58, 147–157. [CrossRef]

4. Thale, S.S.; Wandhare, R.G.; Agarwal, V. A novel reconfigurable microgrid architecture with renewable
energy sources and storage. IEEE Trans. Ind. Appl. 2015, 51, 1805–1816. [CrossRef]

5. Zhao, Z.; Yang, P.; Guerrero, J.M.; Xu, Z.; Green, T.C. Multiple-time-scales hierarchical frequency stability
control strategy of medium-voltage isolated microgrid. IEEE Trans. Power Electron. 2016, 31, 5974–5991.
[CrossRef]

6. Gao, H.; Chen, Y.; Xu, Y.; Liu, C.-C. Dynamic load shedding for an islanded microgrid with limited generation
resources. IET Gener. Transm. Distrib. 2016, 10, 2953–2961. [CrossRef]

7. Weaver, W.W.; Krein, P.T. Game-theoretic control of small-scale power systems. IEEE Trans. Power Deliv.
2009, 24, 1560–1567. [CrossRef]

8. Kim, H.-M.; Kinoshita, T.; Lim, Y.; Kim, T.-H. A bankruptcy problem approach to load-shedding in
multiagent-based microgrid operation. Sensors 2010, 10, 8888–8898. [CrossRef] [PubMed]

9. Lim, Y.; Park, J.; Kim, H.-M.; Kinoshita, T. A Bargaining approach to optimizing load shedding in islanded
microgrid operation. IETE Tech. Rev. 2013, 30, 483–489.

10. Kumar, R.H.; Ushakumari, S. Optimal management of islanded microgrid using binary particle swarm
optimization. In Proceedings of the 2014 International Conference on Advances in Green Energy (ICAGE),
Thiruvananthapuram, India, 17–18 December 2014; pp. 251–257.

11. Kumar, R.H.; Ushakumari, S. A two stage algorithm for optimal management of isolated microgrid.
In Proceedings of the 2015 IEEE International Conference on Signal Processing, Informatics, Communication
and Energy Systems (SPICES), Kozhikode, India, 19–21 February 2015; pp. 1–5.

12. Hong, Y.Y.; Chen, P.H. Genetic-based underfrequency load shedding in a stand-alone power system
considering fuzzy loads. IEEE Trans. Power Deliv. 2012, 27, 87–95. [CrossRef]

http://dx.doi.org/10.1109/TPWRS.2006.873018
http://dx.doi.org/10.1109/TIE.2010.2049709
http://dx.doi.org/10.1109/TIA.2014.2350083
http://dx.doi.org/10.1109/TPEL.2015.2496869
http://dx.doi.org/10.1049/iet-gtd.2015.1452
http://dx.doi.org/10.1109/TPWRD.2008.2007022
http://dx.doi.org/10.3390/s101008888
http://www.ncbi.nlm.nih.gov/pubmed/22163386
http://dx.doi.org/10.1109/TPWRD.2011.2170860


Energies 2017, 10, 45 13 of 13

13. Xing, S. Microgrid emergency control based on the stratified controllable load shedding optimization.
In Proceedings of the International Conference on Sustainable Power Generation and Supply (SUPERGEN),
Hangzhou, China, 8–9 September 2012; pp. 1–5.

14. Zhang, H.; Lai, C.S.; Lai, L.L. A novel load shedding strategy for distribution systems with distributed
generations. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference Europe,
Istanbul, Turkey, 12–15 October 2014; pp. 1–6.

15. Saffarian, A.; Sanaye-pasand, M.; Asadi, H. Performance investigation of new combinational load shedding
schemes. In Proceedings of the Joint International Conference on Power System Technology and IEEE Power
India Conference (POWERCON), New Delhi, India, 12–15 October 2008; pp. 1–8.

16. Seyedi, H.; Sanaye-Pasand, M.; Dadashzadeh, M.R. Design and simulation of an adaptive load shedding
algorithm using a real network. In Proceedings of the IEEE Power India Conference, New Delhi, India,
10–12 April 2006; pp. 1–5.

17. Talari, S.; Yazdaninejad, M.; Haghifam, M.-R. Stochastic-based scheduling of the microgrid operation
including wind turbines, photovoltaic cells, energy storages and responsive loads. IET Gener. Transm. Distrib.
2015, 9, 1498–1509. [CrossRef]

18. Wu, H.; Shahidehpour, M.; Al-Abdulwahab, A. Hourly demand response in day-ahead scheduling for
managing the variability of renewable energy. IET Gener. Transm. Distrib. 2013, 7, 226–234. [CrossRef]

19. Guo, L.; Liu, W.; Jiao, B.; Hong, B.; Wang, C. Multi-objective stochastic optimal planning method for
stand-alone microgrid system. IET Gener. Transm. Distrib. 2014, 8, 1263–1273. [CrossRef]

20. Gast, N.; Tomozei, D.-C.; Le Boudec, J.-Y. Optimal generation and storage scheduling in the presence of
renewable forecast uncertainties. IEEE Trans. Smart Grid 2014, 5, 1328–1339. [CrossRef]

21. Chen, L.; Li, N.; Low, S.H.; Doyle, J.C. Two market models for demand response in power networks.
In Proceedings of the 2010 First IEEE International Conference on Smart Grid Communications
(SmartGridComm), Gaithersburg, MD, USA, 4–6 October 2010; pp. 397–402.

22. Liu, W.; Gu, W.; Sheng, W.; Meng, X.; Wu, Z.; Chen, W. Decentralized multi-agent system-based cooperative
frequency control for autonomous microgrids with communication constraints. IEEE Trans. Sustain. Energy
2014, 5, 446–456. [CrossRef]

23. Java Agent Development Framework. Available online: http://jade.tilab.com/ (accessed on 6 July 2016).
24. IBM CPLEX Optimizer. Available online: https://www-01.ibm.com/software/commerce/optimization/

cplex-optimizer/ (accessed on 6 July 2016).
25. Lim, Y.; Kim, H.-M.; Kinoshita, T. Distributed load-shedding system for agent-based autonomous microgrid

operations. Energies 2014, 7, 385–401. [CrossRef]
26. Foundation for Intelligent Physical Agents (FIPA). Available online: http://www.fipa.org/ (accessed on

6 July 2016).
27. Shariatzadeh, F.; Vellaithurai, C.B.; Biswas, S.S.; Zamora, R.; Srivastava, A.K. Real-time implementation of

intelligent reconfiguration algorithm for microgrid. IEEE Trans. Sustain. Energy 2014, 5, 598–607. [CrossRef]

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/iet-gtd.2014.0040
http://dx.doi.org/10.1049/iet-gtd.2012.0186
http://dx.doi.org/10.1049/iet-gtd.2013.0541
http://dx.doi.org/10.1109/TSG.2013.2285395
http://dx.doi.org/10.1109/TSTE.2013.2293148
http://jade.tilab.com/
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://dx.doi.org/10.3390/en7010385
http://www.fipa.org/
http://dx.doi.org/10.1109/TSTE.2013.2289864
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Load Shedding in an Islanded Microgrid 
	Related Work 
	System Model 

	Proposed Load-Shedding Algorithm 
	Performance Evaluation 
	Conclusions 

