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Abstract: In modular uninterruptible power supplies (UPSs), several DC/AC modules are required
to work in parallel. This structure allows the system to be more reliable and flexible. These DC/AC
modules share the same DC bus and AC critical bus. Module differences, such as filter inductor,
filter capacitor, control parameters, and so on, will make it possible for the potential zero sequence
current to flow among the modules. This undesired type of circulating current will bring extra losses
to the power semiconductor devices in the system, which should be paid special attention in high
power application scenarios. In this paper, plug’n’play modules and cycle control are discussed and
validated through experimental results. Moreover, potential zero sequence circulating current impact
on power semiconductor devices thermal performance is also analyzed in this paper.
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1. Introduction

Recently, more and more advanced technologies are entering human beings everyday life. A large
number of modern electrical facilities, such as communication equipment, IT facilities, medical
equipment, and so on, are widely used in both the industrial field and daily life [1]. As a result,
the utility suffers great challenges in order to provide a clean, continuous, and reliable electrical
energy. On the other hand, with the prosperity of the renewable energy sources, more and more
factories and offices tend to use a local smart utility system [2]. However, renewable energy sources are
unpredictable. This will have negative impacts on the power quality that they provide. Consequently,
uninterruptible power supply (UPS) system is receiving more and more attention from both researchers
and industrial application engineers [3].

Based on IEC 62040-3, UPS system is able to be divided into three categories, namely offline UPS
system, line interactive UPS system, and online UPS system. Compared with the other two, online UPS
system, also known as double conversion UPS system, mainly aims at high power application scenarios
due to its outstanding capability in output voltage control and decoupling of the utility and the
load [4,5]. In order to improve UPS performance, a series of enhanced different online UPS structure is
proposed in [6–8]. Among them, the modular concept is drawing more and more attention due to its
attractive flexibility and expansibility. Consequently, when the system is required to be maintained or
has module failure, a modular online UPS system is still able to operate normally by replacing to stop
the damaged module.

Normally a number of DC/AC modules operates in parallel and shares the same DC bus and AC
bus (as shown in Figure 1a) in a typical modular online UPS system. Thus, possible paths for potential
zero sequence circulating current exist (which is marked by red in Figure 1b). It still has negative
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impacts on losses and thermal distribution of the power semiconductor devices. The unbalanced losses
and thermal distribution performances, especially in high power modular scenarios, are required to
be investigated further, which can be a guidance concerning heat problems in designing the modular
online UPS systems. In order to avoid such kinds of circulating current, a number of approaches are
proposed, namely isolation [9–11], high impedance [12,13], synchronized issues [14–17], and active
issues [18–20]. Isolation and high impedance issues will add extra devices into the system, such as
extra DC sources, transformers, or inter-phase reactors and these will increase the UPS system cost.
As such, it is not a cost effective and volume effective issue. As a result, synchronization and active
issues are considered hereby.
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Figure 1. Modular uninterruptible power supplies (UPSs) system architecture and circulating current
path: (a) modular UPS system structure; and (b) circulating current flowing path.

On the other hand, active power and reactive power of each of the DC/AC modules should
be equally shared in order to minimize the active power circulating current. A number of parallel
technologies have been proposed in [21–26], which can be categorized into two main types, namely
communication based and communication-less. Since the mature digital signal processor (DSP)
technology provides a smaller data transmit time delay, a communication based parallel technology is
used here. By using virtual resistor and phase regulating methods, both active and reactive power are
shared among all the modules.

In this paper, unsynchronized pulse width modulation (PWM) condition and physical parameters
mismatch is considered since these two are more common in real applications. With the power devices
thermal model proposed in [27], the thermal impedance of devices is edited in the simulation software
PLECS. Thus, the temperature and losses of devices are able to be monitored to investigate the zero
circulating current impacts on the losses and temperature of different power semiconductor devices.

This paper is organized as follows: Section 2 depicts the system control mechanism; Section 3
presents experimental results while the thermal analysis results are presented in Section 4; and Section 5
gives the final conclusion.

2. System Control Mechanism

As shown in Figure 1a, one three-phase AC/DC creates the DC bus for the DC/AC modules.
Its control is considered in the conventional dq frame, which is descripted in [28] in detail. Several DC/AC
modules are working in parallel and the detailed information for the modules is listed in Table 1.
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Table 1. Module characteristics.

Nominal Power Switch Frequency DC Side Bus Voltage Bus Current

200 kW 5 kHz 700 V 230 V 290 A

Phase Number Topology Filter Inductor Capacitance

3 H_bridge LC filter 1.8 mH 27 µF

2.1. Single Module Control

DC/AC modules inner loop uses conventional double control structure (voltage and current),
which is considered in αβ frame:

Gv(s) = kpv +
krvs

s2 +ωo2 + ∑
h=5,7,11

khrvs

s2 + (ωoh)2 (1)

Gc(s) = kpc +
krcs

s2 +ωo2 + ∑
h=5,7,11

khrcs

s2 + (ωoh)2 (2)

with kpv, krv, ωo, khrv, h, kpc, krc, and khrc being the voltage proportional term, fundamental
frequency voltage resonant term, fundamental frequency, the hth harmonic voltage compensation term,
harmonic order, current proportional term, fundamental frequency current resonant term, and the
hth harmonic current compensation term, respectively. Two typical PRs are used due to its harmonic
compensation capability.

2.2. Power Balance among Modules

As mentioned in [24], if the output impedance of the DC/AC modules is designated to be mainly
resistive, the active power and reactive power that each DC/AC module injects into the AC bus are
able to be regulated by voltage amplitude and phase, respectively, thus a virtual resistor and phase
regulating loop are inserted into the control loop:

δnk = δnkre f − kphQnk (3)

vnk = vnkre f − iLabcZvir (4)

Here n is the number of DC/AC module (1, 2, 3, . . . , N), k is the phase order (a, b, c), Vnkref is the
nominal voltage reference, Zvir is the virtual resistor, δnkref is the nominal phase reference, kph is the
phase regulating coefficients, and Qnk is the reactive power of each phase of each DC/AC module.

2.3. Voltage Amplitude and Phase Synchronized

By measuring AC critical bus voltage, two typical Proportional Integrator (PI) controllers are used
to keep online UPS output voltage tightly synchronized with the utility:

Gv_rec(s) = kpv_rec +
kiv_rec

s
(5)

Gδ_rec(s) = kpδ_rec +
kiδ_rec

s
(6)

with kpv_rec, kiv_rec, kpδ_rec, and kiδ_rec being voltage amplitude recovery proportional term, voltage
amplitude recovery integral term, phase recover proportional term, and phase recover integral term,
respectively. The overall control diagram is shown in Figure 2a.
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2.4. Cycle and Plug’n’Play Control

The modular online UPS system is designed to be flexible, which means that any of the DC/AC
modules can be plugged into or out of the system randomly due to module failure or maintenance
reasons. Thus, some voltage overshoot or sag will occur in the AC critical bus, and this requires a
control that can suppress the voltage overshoot or sag in a short transient time. In the standard IEC
62040-3, detailed requirements are included for the transient performance for an online UPS system,
which is shown in Table 2.
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Figure 2. Control mechanism for modular UPS system: (a) overall control; and (b) plug’n’play control
mechanism. PWM: pulse width modulation.

Table 2. Transient time requirements.

Load Type Voltage Variation (%) Dynamic Time Requirement (ms)

Linear Load

14 20–40
12 40–60
11 60–100
10 100–1000

Nonlinear Load
12 40–60
11 60–100
10 100–1000

It can be seen that with a smaller voltage overshoot or sag, the transient time for the system
can be a little longer. While designing the system, the overshoot or sag should be guaranteed that
its amplitude should be controlled small as 10% compared with the nominal critical bus voltage
amplitude. Thus, less stress will be put on the transient performance of the controller.

On the other hand, another reason for using modular UPS structure is that modules can operate
in turns in order to allow all modules to be maintained or repaired equally, as shown in Figure 2b.
When one of the modules disconnects with the AC critical bus, another module that has already finished
the maintenance will start to connect with the AC critical bus at the same time in a fixed sequence,
called Normal Cycle (NC). As a result, there is voltage transient during this process, which should
be paid specific attention. Normally, such a cycle duration time is quite long in real applications,
for instance, routinely numbering in the hours. However, in case of an emergency condition, such as
module failures, the fixed sequence is interrupted and it will have a much shorter cycle duration time,
which is called Emergency Cycle (EC).

Such kinds of plug’n’play modules will result in PWM unsynchronized problems, which will cause
strong potential zero sequence circulating current. In addition, although each module is designated to
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be the same, they still have many differences, such as filter inductors, capacitance, control parameters,
and so on. These things will also provide the possibility for the zero sequence circulating current
to occur.

3. Experimental Results

An experimental setup was built in the MicroGrid Intelligent Lab [28]. Four Danfoss converters
were used. One of them works as AC/DC while the other three are working as the DC/AC modules.
A control system was established in Matlab/Simulink and complied into the dSpace 1006 to achieve
the real time control for the experimental setup.

3.1. Modules Plug’n’Play Performance

Hereby, one of the modules connected and disconnected with the AC critical bus in order to test
the proposed control transient performance. Active and reactive power performance was monitored
on the control desk in PC while the voltage real time performance was observed in scope.

At t1, one module was plugging out of the system and both reactive and active power was well
shared among the other two modules. At t2, it plugged into the system again and the power was
equally shared among the three modules, as shown in Figure 3a,b.
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3.2. Cycle Control Transient Performance

The transient performance, when two DC/AC modules were switched, is presented in Figure 3c.
In real applications, supervisory control monitors the operating condition of each of the DC/AC
modules to decide operating rules. At t3, module #3 was ordered to disconnect and rest for maintenance
and module #2 was required to start working again in order to avoid overloading of the other modules,
and at t4, module #2 and #3 were switched for the second time. It can be observed that both active
power and reactive power were well shared among the remaining modules.
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The voltage detail at t3 and t4 is shown in Figure 4a,b. The voltage overshoot can be calculated
through the scope, which is ∆v = (620 − 570) V/570 V = 8.77% or (610 − 560) V/560 V = 8.92%.
This value is below 10%, and the transient time is about three and a half utility periods (i.e., 70 ms),
which is faster than 100 ms.
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4. Thermal Analysis Results

The thermal condition of power devices is an important issue that should be taken into
consideration. It is tightly related with the cooling system of each DC/AC module, especially in
high power application scenarios. Based on the thermal model shown in Figure 5, the thermal
impedance from junction to case Z(j-c) is able to be treated as a four layer resistor-cpacitor (RC)
network. For a specific power device, the information can be found in the manufacture datasheet.
Since the thermal capacitance is mainly related with the dynamic process before steady state [29],
big thermal capacitance of ZT/D(c-h) and Z(h-a) can be neglected in order to achieve a faster simulation.

Energies 2017, 10, 50 6 of 11 

 

 
Figure 4. Real time voltage waveform: (a) details at t3; and (b) details at t4. 

4. Thermal Analysis Results 

The thermal condition of power devices is an important issue that should be taken into 
consideration. It is tightly related with the cooling system of each DC/AC module, especially in high 
power application scenarios. Based on the thermal model shown in Figure 5, the thermal impedance 
from junction to case Z(j-c) is able to be treated as a four layer resistor-cpacitor (RC) network. For a 
specific power device, the information can be found in the manufacture datasheet. Since the thermal 
capacitance is mainly related with the dynamic process before steady state [29], big thermal 
capacitance of ZT/D(c-h) and Z(h-a) can be neglected in order to achieve a faster simulation. 

 
Figure 5. Thermal model: (a) power devices thermal model; and (b) IGBT resistor-cpacitor (RC) 
network of ZT/D(j-c). 

Based on the module information shown in Table 1, the IGBT pack 5SND-0800M170100 from 
ABB was chosen for the power semiconductor devices, whose thermal information is shown in Table 
3 [30]. 

Table 3. Module thermal parameters. 

Thermal Impedance 
ZT/D(j-c) 

1 2 3 4
RiIGBT (K/kW) 15.2 3.6 1.49 0.74 
τiIGBT (ms) 202 20.3 2.01 0.52 

RiDiode (K/kW) 25.3 5.78 2.6 2.52 
τiIGBT (ms) 210 29.6 7.01 1.49 

With PLECS, the thermal impedance model of IGBT pack 5SND-0800M170100 can be edited in 
simulation. Thus, thermal information, including losses and temperature can be monitored. In [31], 
it mentions that normally DC/AC modules are designed to work in the load condition from 50% to 

TA

TA

TA

Tc Tc

TH

Tj TjIGBT Diode
ZT(j-c)

ZD(j-c)

ZT(c-h) ZD(c-h)

Z(h-a)

Tj:      Junction temperature
Tc:      Case temperature
TH:     Heatsink temperature
TA:     Ambient temperature
Z(j-c) :  Thermal impedance form junction to case
Z(c-h):  Thermal impedance from case to heat sink
Z(h-a):  Thermal impedance from heat sink to ambient

Rth1 Rth2 Rth3 Rth4

τ1 τ2 τ3 τ4

Tc
TA

Tj

ZT/D(j-c)

(a) (b)

Figure 5. Thermal model: (a) power devices thermal model; and (b) IGBT resistor-cpacitor (RC)
network of ZT/D(j-c).

Based on the module information shown in Table 1, the IGBT pack 5SND-0800M170100 from ABB
was chosen for the power semiconductor devices, whose thermal information is shown in Table 3 [30].

Table 3. Module thermal parameters.

Thermal Impedance
ZT/D(j-c)

1 2 3 4

RiIGBT (K/kW) 15.2 3.6 1.49 0.74
τiIGBT (ms) 202 20.3 2.01 0.52

RiDiode (K/kW) 25.3 5.78 2.6 2.52
τiIGBT (ms) 210 29.6 7.01 1.49
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With PLECS, the thermal impedance model of IGBT pack 5SND-0800M170100 can be edited in
simulation. Thus, thermal information, including losses and temperature can be monitored. In [31],
it mentions that normally DC/AC modules are designed to work in the load condition from 50% to
75%. As such, in the analysis, the load condition is considered from 50% to 100%, and losses and
temperature information of T1, T2, D1, and D2 are discussed.

4.1. Single DC/AC Module

In order to compare with the modular UPS system, a single DC/AC module was simulated.
Figure 6a,b presents the devices temperature and losses. It can be seen that the losses and temperature
are distributed nearly balanced between T1 and T2, and D1 and D2.

Another critical parameter, namely the temperature fluctuation amplitude of the devices, is also
important for power semiconductor devices. In Figure 6c,d, it can be observed that T1 and T2 share
nearly the same temperature fluctuation amplitude, and a similar result can be seen for D1 and D2.
Figure 6e shows the steady state temperature information in 100% load condition.
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Figure 6. Single module result: (a) junction temperature; (b) devices loss; (c) junction temperature
fluctuation; (d) temperature fluctuation difference; and (e) detailed temperature result in 100% load.

4.2. DC/AC Modules with Zero Sequence Circulating Current

In this condition, an unsynchronized PWM was given to the three DC/AC modules. Moreover,
each module filter inductor was given a 30% difference to emulate the manufacturer difference.
The control parameters were also different among different modules. Thus, an obvious circulating
current can be observed, as shown in Figure 7a. It can be seen that there is some DC component; this is
because both physical and control parameters differences will result in a small amount of active power
circulating current.
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Figure 7. Circulating current and detailed temperature result with obvious circulating current:
(a) three modules circulating current; and (b) detailed temperature in 100% load.
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Figure 8a,b shows the losses and temperature information of each module. It can be seen that they
are distributed unbalanced. In all the three modules, T1 has a higher loss and temperature than T2,
and D2 has a higher loss and temperature than D1. A similar trend is also observed for the temperature
fluctuation amplitude and fluctuation amplitude difference of the devices, as shown in Figure 8c.
In Figure 7b, the steady state temperature for devices in 100% load condition is presented. It can be
seen that the temperature is distributed in an unbalanced way. Since the thermal impedance of the
heat sink is smaller in scale, the difference is not too obvious.
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Figure 8. Thermal results of the modules with obvious circulating current flowing: (a) three module
junction temperature; (b) devices losses; and (c) junction temperature differences.

4.3. DC/AC Modules with Suppressed Zero Sequence Circulating Current

Hereby, the zero sequence circulating current was suppressed. All the PWM for the three modules
were synchronized, and zero vector operating time in the space vector modulation was tuned based on
the active suppression method proposed in [18]. The zero sequence circulating current is presented in
Figure 9a. It can be seen that the zero sequence circulating current was suppressed to a small amount of
value. Figure 10a shows the losses of each module. All three modules shared the same loss distribution
condition that T2 has a higher loss and temperature than T1, and D1 had a higher loss and temperature
than D2. Consequently, they had the same temperature results, as shown in Figure 10b.
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Figure 9. Circulating current and detailed temperature result without circulating current:
(a) three modules circulating current; and (b) detailed temperature in 100% load.

As for the temperature fluctuation amplitude, three modules shared the same changing pattern.
∆T2 first had a sudden increase at 90% load and then decreased. It was higher than ∆T1. ∆D1 decreased
smoothly and was higher than ∆D2. The fluctuation difference also presented a similar trend, as shown
in Figure 10c.

The detailed temperature information of the three modules at 100% load condition is shown in
Figure 9b. It can be seen that the T2 had a higher loss and temperature than T1, and D1 had a higher
loss and temperature than D2.

Energies 2017, 10, 50 9 of 11 

 

 
Figure 9. Circulating current and detailed temperature result without circulating current: (a) three 
modules circulating current; and (b) detailed temperature in 100% load. 

As for the temperature fluctuation amplitude, three modules shared the same changing pattern. 
ΔT2 first had a sudden increase at 90% load and then decreased. It was higher than ΔT1. ΔD1 decreased 
smoothly and was higher than ΔD2. The fluctuation difference also presented a similar trend, as 
shown in Figure 10c. 

The detailed temperature information of the three modules at 100% load condition is shown in 
Figure 9b. It can be seen that the T2 had a higher loss and temperature than T1, and D1 had a higher 
loss and temperature than D2. 

 
Figure 10. Thermal results of the modules without obvious circulating current flowing: (a) three 
module device losses; (b) junction temperature; and (c) junction temperature differences. 

5. Conclusions 

In this paper, the plug’n’play capability for a modular online UPS system was proposed and 
tested. Experimental results were provided to validate the proposed control steady and transient 
performance, which were able to meet the standard IEC 62040-3. Moreover, zero sequence circulating 
current impact on thermal and losses distribution of the power semiconductor devices was discussed. 
Through simulation results, it can be concluded that while operating in different kinds of conditions 
associated with circulating current, T1 had a higher temperature than T2 while D2 had a higher 
temperature than D1. In order to suppress zero sequence circulating current, synchronization issues 

4.8 4.9
50

55

60

65

70

75

80

85

90

4.8 4.9
50

55

60

65

70

75

80

85

90

4.8 4.9
50

55

60

65

70

75

80

85

90

(a) (b)

Module #1 Junction 
Temperature ( ) 

Module #2 Junction 
Temperature ( ) 

Module #3 Junction 
Temperature ( ) 

T2

T1

D1

D2

T2

T1

D1

D2

T2

T1

D1

D2

1.4 1.41 1.42 1.43 1.44 1.45
-10

-5

0

5

10

1.4 1.41 1.42 1.43 1.44 1.45
-10

-5

0

5

10

1.4 1.41 1.42 1.43 1.44 1.45
-10

-5

0

5

10

Module #1 Module #2 

Module #3 

0

200

400

600

800

1000

50% 60% 70% 80% 90% 100%

T1

D1

T2

D2

0

200

400

600

800

1000

50% 60% 70% 80% 90% 100%

T1

D1

T2

D2

0

200

400

600

800

1000

50% 60% 70% 80% 90% 100%

T1

D1

T2

D2

55

60

65

70

75

80

85

50% 60% 70% 80% 90% 100%

T1

D1

T2

D2

0
1
2
3
4
5
6
7

50% 60% 70% 80% 90% 100%

ΔT1

ΔD1

ΔT2

ΔD2

(a)

(b) (c)

Module #1 device loss (W) Module #2 device loss (W) Module #3 device loss (W)

Modules Junction Temperature ( )

Modules temperature 
difference ( )

Figure 10. Thermal results of the modules without obvious circulating current flowing: (a) three module
device losses; (b) junction temperature; and (c) junction temperature differences.

5. Conclusions

In this paper, the plug’n’play capability for a modular online UPS system was proposed and
tested. Experimental results were provided to validate the proposed control steady and transient
performance, which were able to meet the standard IEC 62040-3. Moreover, zero sequence circulating
current impact on thermal and losses distribution of the power semiconductor devices was discussed.
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Through simulation results, it can be concluded that while operating in different kinds of conditions
associated with circulating current, T1 had a higher temperature than T2 while D2 had a higher
temperature than D1. In order to suppress zero sequence circulating current, synchronization issues
and zero vector time regulation were considered in this paper. However, such issues increased the
temperature and losses of T2, which was higher than T1. Moreover, D1 had a higher temperature
than D2.
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