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Abstract: Plug-in hybrid electric vehicles (PHEVs) can be considered as a hybrid system (HS) which
includes the continuous state variable, discrete event, and operation constraint. Thus, a model
predictive control (MPC) strategy for PHEVs based on the mixed logical dynamical (MLD) model and
short-term vehicle speed prediction is proposed in this paper. Firstly, the mathematical model of the
controlled PHEV is set-up to evaluate the energy consumption using the linearized models of core
power components. Then, based on the recognition of driving intention and the past vehicle speed
data, a nonlinear auto-regressive (NAR) neural network structure is designed to predict the vehicle
speed for known driving profiles of city buses and the predicted vehicle speed is used to calculate the
total required torque. Next, a MLD model is established with appropriate constraints for six possible
driving modes. By solving the objective function with the Mixed Integer Linear Programming (MILP)
algorithm, the optimal motor torque and the corresponding driving mode sequence within the speed
prediction horizon can be obtained. Finally, the proposed energy control strategy shows substantial
improvement in fuel economy in the simulation results.

Keywords: driving intention; mixed logic dynamical model; mixed integer linear programming
(MILP); model predictive control (MPC); nonlinear auto-regressive (NAR) neural network

1. Introduction

Focusing on plug-in hybrid electric vehicles (PHEVs), which are a typical hybrid system (HS) [1],
an accurate system model is mandatory to study their control strategy. Commonly used hybrid system
modeling methods include hierarchical model [2], Petri net model based on the proposed network
diagram [3], the “unified model” of hybrid dynamic systems by Branicky et al. [4] and the Piecewise
Affine (PWA) switching model [5]. All these models are relatively complex and inconvenient compared
to the conventional control technology. In [6], Bemporad and Morari proposed the mixed logical
dynamical (MLD) model that includes interdependent physical laws, logic rules and operational
constraints, to apply the conventional control methods (e.g., optimization and prediction) to the hybrid
system. The MLD model also uses differential equations to avoid the complex conditions in hybrid
systems and could be transferred into mixed integer linear programming (MILP) [7] for a solution.

The control strategy for PHEVs aims to find an appropriate power and torque distribution
between the combustion engine and the electric motor to improve the fuel economy and emission
performance [8]. Among various control strategies, the rule-based control method [9] is the most
widely used, but it relies on experience to a greater extent, which makes it difficult to adapt to dynamic
changes in the driving cycles and to optimize the fuel economy of the vehicle. The optimization-based
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control strategy [10] includes instantaneous optimization and global optimization. The instantaneous
optimization control strategy [11] for an equivalent minimal fuel consumption does not give
sufficient consideration to the vehicle state in the future; while for the global optimization [12],
complete statistical information on driving cycles must be provided, including road conditions,
which makes it hard to compute fast and it lacks adaptability, and eventually cannot be applied
directly to real-time control of the vehicle. If the vehicle state information is predicted accurately
beforehand, global optimization within this time could be applied to overcome the disadvantages
of inadaptability. This could also form the basis of the Model Predictive Control (MPC) method for
a hybrid electric vehicle. In [13], a generalized predictive optimal control framework is proposed,
and MILP methodology is utilized, which enables the control strategy to get better economy than
instantaneous strategies. However, it assumes the traffic pattern and terrain are known in advance
without any prediction.

In this paper, the required vehicle torque is calculated based on the predicted vehicle speed.
Commonly used vehicle speed prediction methods are the model-based method [14], Kalman filter [15],
hidden Markov models [16] and neural network models [17], etc. The non-linear auto-regressive (NAR)
model neural network [18,19] has advantages of solving time variant and nonlinear problems, making it
suitable for vehicle speed prediction. For training the neural network, most researchers have only
used global positioning system (GPS) data from or statistical analysis data from the vehicle driving
cycle [20–22], but ignored the driver’s operation such as accelerator pedal and braking pedal operations
which can reflect the future speed variation trends. Therefore, a vehicle speed prediction method
using a NAR neutral network based on the combination of past speed data and driving intention data
recognized by fuzzy inference is proposed.

Based on the analysis above, this paper focuses on a parallel plug-in hybrid electric city bus,
and the powertrain model is set-up firstly. Then, the driving intention is recognized by using fuzzy
inference to analyze the pedal operation. A vehicle speed prediction method using a NAR neutral
network based on the combination of driving intention and the past speed data is proposed to predict
the future short-term vehicle running state and calculate the required vehicle torque. Afterwards,
the MLD model is established for the PHEV powertrain. Combined with MILP algorithm and aiming
at the minimal equivalent fuel consumption, a mixed logic dynamical-model predictive control
(MLD-MPC) strategy based on vehicle speed prediction is proposed. Finally, the simulation results are
presented to validate the proposed energy control strategy.

2. Modeling of Powertrain System

In this part, the vehicle powertrain is modeled. It is used to calculate the total vehicle torque
demand, and to evaluate the engine and motor energy consumption quickly for the control strategy,
similar torque-speed modelling method could also be found in literature [12,23,24]. Parallel powertrain
and transmission system of PHEV [25] adopted in this paper are shown in Figure 1. The mathematical
models of each part in powertrain are described as follows. The speed and torque models of wheels
are described in Equation (1):

TW = rW(
ρa
2

A f Cdv2 + frmg cosα+ mg sinα) +
J

rW

dv
dt

ωW =
v

rW

(1)
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Figure 1. Parallel plug-in hybrid electric vehicle (PHEV) powertrain and transmission system (1—
Touque Coupler; 2—Clutch; 3—Engine; 4—Motor; 5—Energy Storage System; 6—Gearbox; 7—Final 
Drive; 8—Wheels). 

In Equation (1), v  is the vehicle velocity in m/s, ρa  is the air density (1.2258 kg/m3), wr  is the 
radius of wheel in m, ωw  is the wheel rotating speed in rad/s, WT  is the wheel torque in mN ⋅ , 

fA  is the frontal area in 2m , dC  is the drag coefficient, rf  represents tire rolling resistance 

coefficient, m is the vehicle mass in kg, J  represents total vehicle rotational inertia in 2kg m⋅ , α  is 
vehicle slope angle in rad, d dv / t  is the acceleration in m/s2. Model of transmission torque and 
speed is given in Equation (2), where ωin  is the required input rotating speed of transmission in 

rad/s; 0i  is the total transmission ratio; inT  is the required input torque of transmission in N m⋅ ; η  
is the efficiency from transmission input to tire [26]. The model of engine fuel consumption rate is 
given in Equation (3), where fm  is the engine fuel consumption rate, which is a function of its 

rotation speed ωe  and torque eT : 
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According to the engine fuel consumption data, the relationship between fuel consumption rate 
fm  and torque under different rotating speed is curve-fitted using the least squares method and is 

plotted in Figure 2. In Equation (4), 0a  and 1a  are the fitting coefficients in linear expression (see 
Appendix A). 

 

Figure 2. Linear fitting curve of engine fuel consumption rate and torque. 
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Figure 1. Parallel plug-in hybrid electric vehicle (PHEV) powertrain and transmission system
(1—Touque Coupler; 2—Clutch; 3—Engine; 4—Motor; 5—Energy Storage System; 6—Gearbox;
7—Final Drive; 8—Wheels).

In Equation (1), v is the vehicle velocity in m/s, ρa is the air density (1.2258 kg/m3), rw is the
radius of wheel in m,ωw is the wheel rotating speed in rad/s, TW is the wheel torque in N ·m, A f is
the frontal area in m2, Cd is the drag coefficient, fr represents tire rolling resistance coefficient, m is the
vehicle mass in kg, J represents total vehicle rotational inertia in kg ·m2, α is vehicle slope angle in rad,
dv/dt is the acceleration in m/s2. Model of transmission torque and speed is given in Equation (2),
where ωin is the required input rotating speed of transmission in rad/s; i0 is the total transmission
ratio; Tin is the required input torque of transmission in N ·m; η is the efficiency from transmission
input to tire [26]. The model of engine fuel consumption rate is given in Equation (3), where

.
m f is the

engine fuel consumption rate, which is a function of its rotation speedωe and torque Te:
Tin =


Tw

i0η
, Tw ≥ 0

Tw

i0
η, Tw < 0

ωin = ωW i0

(2)

.
m f = fm f (ωe, Te) (3)

According to the engine fuel consumption data, the relationship between fuel consumption
rate

.
m f and torque under different rotating speed is curve-fitted using the least squares method

and is plotted in Figure 2. In Equation (4), a0 and a1 are the fitting coefficients in linear expression
(see Appendix A).
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Figure 2. Linear fitting curve of engine fuel consumption rate and torque.
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.
m f = a1(ωe)Te + a0(ωe) (4)

.
mm =


λU0 I(ωm, Tm)/R, Tm > 0

0, Tm = 0

λU0 I(ωm, Tm)R, Tm < 0

(5)

λ = (Pe/3600/1000/ηc)/(Po/R/ρ) (6)

Equation (5) is the model of equivalent fuel consumption rate of electric motor, where
.

mm is
the rate of fuel consumption which is equivalent to the electric power the motor used, R is the mass
calorific value of diesel (43,000 kJ/kg), ωm is the motor speed in rad/s, and Tm is the motor torque
in N·m, U0 is the open-circuit voltage in V, I is the battery output current in A. λ is the equivalent
fuel factor of the battery power, it is decided by the ratio of electricity and fuel price as can be seen
in Equation (6), Po is the fuel price (5.6 RMB/L), Pe is the electricity price (1 RMB/kWh), ρ is the fuel
density (835 kg/L), ηc is the efficiency of the charging pile.

According to the battery output current [27] given by Equation (7), the relationship between
motor torque and the rate of change of state of charge (SOC) of the battery under a certain motor
speed is plotted in Figure 3, and the approximate linear function obtained using least square method
is given by Equation (8), where

.
x is the rate of change of SOC, b1 and b0 are the fitting coefficients

(see Appendix A). Ri is the equivalent resistance of the battery in Ω, and Qmax is the capacity of the
battery in C:

I =



U0 −
√

U2
0 − 4RiωmTm/η

2Ri
, Tm > 0

0, Tm = 0

U0 −
√

U2
0 − 4RiωmTm · η

2Ri
, Tm < 0

(7)

.
x = −I/Qmax = b1(ωm

)
Tm + b0(ωm) (8)
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3. Short-Term Vehicle Speed Prediction

3.1. Driving Intention Identification

Driving intention depends on the driving environment, the vehicle running state and the driver’s
driving habits, etc. It is a typical empirical model with characteristics of fuzziness. Given the obvious
advantages of fuzzy theory in dealing with the empirical models, a fuzzy logic inference system was
developed to identify the driving intention.
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Driving intention, in general, can be divided into acceleration intention and braking intention.
Based on the urgency of accelerating, accelerating intention is divided into slow acceleration,
relatively slow acceleration, normal acceleration, relatively rapid acceleration, and rapid acceleration.
When no operation on the accelerator pedal it can be considered as braking intention and is divided
into general braking and coasting based on whether the braking pedal is operated or not. Based on the
urgency of general braking, general braking intention is divided into slow braking, relatively slow
braking, normal braking, relatively rapid braking, and rapid braking.

Drivers operate the accelerator pedal and braking pedal directly according to the driving
environment and the running state of the vehicle, so as to realize their driving intention. Therefore,
the acceleration pedal travel and the braking pedal travel are used as the two main identification
parameters. However, the pedal travel cannot completely reflect the urgency of driving intention.
Hence the rate of change of acceleration pedal travel and braking pedal travel are also considered to
identify the driving intention.

The acceleration intention is identified by fuzzy inference, and its identification parameters are
acceleration pedal travel and rate of change of acceleration pedal travel, membership functions of
which are shown in Figure 4a,b respectively. The membership functions of the acceleration intention
are shown in Figure 4c. The fuzzy rules for the acceleration intention identification are shown in
Table 1.
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Figure 4. (a) Membership functions of acceleration pedal travel; (b) membership functions of rate of
change of acceleration pedal travel; and (c) membership functions of acceleration intention.

Table 1. The fuzzy rules for identification of the acceleration intention.

Pedal Travel
Rate of Change of Acceleration Pedal

Negative Big Negative Small Small Middle Big

Small slow slow relatively slow relatively slow normal
Relatively Small slow relatively slow relatively slow normal relatively rapid

Middle relatively slow normal normal relatively rapid rapid
Relatively Big relatively slow normal relatively rapid relatively rapid rapid

Big normal normal relatively rapid rapid rapid

The braking intention is identified by fuzzy inference, and its identification parameters are braking
pedal travel and rate of change of braking pedal travel, membership functions of which are showed in
Figure 5a,b respectively. The membership functions of the braking intention are shown in Figure 5c.
The fuzzy rules for the braking intention identification are shown in Table 2.
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Figure 5. (a) Membership functions of braking pedal travel; (b) membership functions of rate of change
of braking pedal travel; and (c) membership functions of braking intention.

Table 2. The fuzzy rules for identification of the braking intention.

Pedal Travel
Rate of change of Braking Pedal

Negative Big Negative Small Small Middle Big

Small slow slow relatively slow relatively slow normal
Relatively Small slow relatively slow relatively slow normal normal

Middle relatively slow relatively slow normal normal relatively rapid
Relatively Big relatively slow normal relatively rapid relatively rapid rapid

Big normal normal relatively rapid rapid rapid

In this paper, the United Kingdom Bus (UKBUS) driving cycle is considered as an example,
and the driving intention identification is carried out. Figure 6 shows the speed segment of UKBUS
driving cycle. The acceleration intention identification results are in the range of 0–1, the closer that this
value is to 1, the more urgent the acceleration intention is. The braking intention identification results
are in the range of −1–0, the closer that this value is to −1, the more urgent the braking intention is.
Besides, the driving intention is identified as coasting when there are no operations on both accelerator
pedal and braking pedal. The resultant values are a continuous time sequence ranging from −1 to 1,
based on which the driving intention can be distinguished between acceleration or braking at each and
every moment, as well as the urgency of the driving intention. Then the obtained driving intention
time sequence, as well as the vehicle speed time sequence, are given as inputs to the NAR neural
network. The acceleration calculated through the real velocity is normalized in −1–1 and it is used
as the real driving intention intensity. The comparison of the driving intention identified by fuzzy
inference and the real driving intention intensity is shown in Figure 7. The mean absolute error (MAE)
of the driving intention recognition result is 0.16 when the data ranges from −1 to 1. This fuzzy
recognition result with sufficient accuracy could be used as input for the speed prediction neural
network to improve the prediction precision.
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3.2. Short-Term Vehicle Speed Prediction Using Nonlinear Auto-Regressive Neural Network

The NAR neural network is a kind of dynamic neural network, which could add the output
memory to the input automatically to calculate the output at the next instance. As the driver’s
operation can reflect the future speed variation trend, the obtained time series of driving intention are
provided as input to the network together with the past vehicle speed data.

Definition of the prediction model is given in Equation (9):

Y(t + 1) = f
(
Y(t), Y(t− 1), ...Y

(
t− dy + 1

))
(9)

where Y(t) is the output at a time t, f is the nonlinear mapping, dy is the output memory order.
The output at the time (t + 1), i.e., Y(t + 1) depends on the former dy steps of output Y(t), as the
predicted values could be fed back to the input, the long-term predictions can be achieved.

The NAR neural network structure, consisting a hidden layer, an output layer, and an output
feedback layer, is given in Figure 8. As shown in Figure 8, the hidden and the output layer include 15
and 1 neurons respectively. The order of output memory is 5. w1 is the connection weight between
input and output layer neuron, b1 is the threshold of the layer, f1 is the transfer function of the hidden
layer, w2 is the connection weight between hidden layer and output layer, b2 is the threshold of output
layer and f2 is the transfer function of output layer.

This paper uses a Bayesian algorithm to train the network, choosing Tan-sigmoid transfer
function as hidden layer function, and purelin linear function for the output layer. In this paper,
a plug-in hybrid electric city bus is studied which is running on pre-determined routes, thus the speed
prediction method is for known driving profiles. Taking the UKBUS driving cycle as an example,
the driving intention time series corresponding to the conditions are obtained by the aforementioned
driving intention identification method. A total of 3288 samples of vehicle speed-intention data,
choosing 2788 samples as training samples among which 75% is considered as training data, and the
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remaining 25% is used as validation data and test data. The remaining 500 samples which didn’t
participate in the training are used to test the network’s predictive ability.Energies 2017, 10, 74 8 of 18 
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The predicted speed segmentation with a receding horizon of 5 s is shown in Figure 9. As can be
observed, the NAR-based speed predictor predicts the micro-trip behaviors effectively.
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Figure 9. Short-term predicted speed compared with the real speed.

Root mean square error (RMSE) is used in this paper to estimate the error between the prediction
value and the actual value. Smaller the RMSE means higher prediction accuracy. In Figure 10,
the comparison between the real value and the single-step prediction value of vehicle velocity segment
is given. It can be seen in the figure that the error falls into (−2.5, 2.5) km/h and has good prediction
results, based on which the length of the step is increased further. The RMSE results within different
prediction horizon are shown in Table 3. Along with the increase in estimation time of vehicle velocity,
the prediction error is in the increasing trend. And in order to verify the effect of introducing driving
intention data as NAR input, the RMSE results of the NAR prediction model with the same parameters
which only use the past speed data are also shown in Table 3. As can be seen, the RMSE results of
prediction model without using driving intention data is higher, which reflects that the introduction of
driving intention recognition results as NAR input can improve the prediction accuracy.
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Table 3. Prediction results comparison of NAR neural network at different prediction horizon.

Model Input
Type

Prediction
Horizon and
Result Type

Prediction Results

NAR Model
Using Driving
Intention Data

Prediction
Horizon (s)

1 2 5 10 20 30 40 50

RMSE 0.6416 1.1260 2.8917 5.6310 9.0878 10.9024 12.0005 12.6537

NAR Model not
Using Driving
Intention Data

Prediction
Horizon (s)

1 2 5 10 20 30 40 50

RMSE 0.8757 1.4081 3.1606 6.0167 10.0957 12.6161 13.9765 14.5821

4. Mixed Logic Dynamical Model Predictive Control Strategy

4.1. Modeling of Mixed Logic Dynamical Predictive Control Strategy

The short-term future vehicle speed in each receding horizon can be obtained through the
proposed speed prediction method in Section 3. Then the predicted vehicle speed is used to calculate
the vehicle required torque at each moment within the receding horizon. The proposed MLD-MPC
control strategy aims to distribute the vehicle required torque between motor and engine reasonably
at each moment within the prediction horizon to achieve optimal fuel economic. Thus MLD model
is established to tackle this optimization problem with the objective function of equivalent fuel
consumption, the control variable of motor torque u(k) and the state variable of SOC x(k). The optimal
control variable sequence are obtained by minimizing the total equivalent fuel consumption in the
receding horizon through MLD model and only the first control variable need to be applied in the
controlled PHEV model at the present moment. The MLD-MPC receding horizon control procedure is
described as follows:

(1) at time k, predict the short-term future speed profile for the current control horizon (k–k + N,
where N is the receding horizon) and calculate the corresponding required torque through
Equations (1) and (2);

(2) the MLD model calculates the optimal control policy (u(k)–u(k + N)) for the current prediction
horizon (k–k + N);

(3) apply the first time-step of the optimal control policy u(k) in the controlled PHEV model;
(4) update the state variable and system constraints, repeat the computation procedure 1–3 at the

next time instant (time k + 1).

MLD model is suitable for solving problems combining binary variables and continuous variables.
In [28], a constrained optimal problem is formulated and solved based on MPC using the simplified
MLD model for DC-DC boost converter. Similarly, in our PHEV energy management control strategy,
based on the simplified powertrain model in Section 2, the state transition equation and evaluation
equation of MLD model can be described in Equation (10):{

x(k + 1) = x(k) + B1δ(k) + B2z(k)

y(k) = D1δ(k) + D2z(k)
(10)

where,

B1= [b0(k) 0 b0(k) b0(k) b0(k) 0]

B2= [b1(k) 0 b1(k) b1(k) b1(k) 0]

D1= [−λU0b0(k)Qmax/R, a0(k) + a1(k)Tin(k), −λU0b0(k)Qmax/R + a0(k) + a1(k)Tin(k),

−λU0b0(k)Qmax/R + a0(k) + a1(k)Tin(k), 0, 0]
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D2= [−λU1b0(k)Qmax/R, 0, −λU0b1(k)Qmax/R− ita1(k),

−λU0b1(k)Qmax/R− ita1(k)− λU0b1(k)Qmax/R, 0]

where x(k) is the SOC of battery at time k, y(k) is the equivalent rate of fuel consumption at time k,
δ(k) is the operation mode matrix at time k, which is a 6× 1 matrix whose entries are either 0 or 1
(logic variables), and only one of the six elements of the matrix is 1 and others are all 0. z(k) is the
auxiliary variable, z(k) = δ(k) · u(k), in which u(k) is the control variable which represents the torque
of electric motor, and its inequality constraints are described in Equation (11). it is the transmission
ratio of the torque coupler which connects the engine to the motor. In the equation, the variables are
obtained based on the linearized engine and battery model in Section 2. B1, B2 is used to calculate the
SOC change corresponding to the specific motor torque, b0(k) and b1(k) are the fitting coefficients for
the specific motor speed at time k, and they are obtained from Equation (8). Similarly, D1 and D2 is
used to calculate the sum of engine fuel consumption and motor equivalent fuel consumption, a0(k)
and a1(k) are from Equation (4):

−TMδ(k) + z(k) ≤ 0
−TMδ(k)− z(k) ≤ 0
TMδ(k) + z(k)− u(k) ≤ TM
TMδ(k)− z(k) + u(k) ≤ TM

(11)

The inequality constraint of the six operation modes for PHEV presented in Table 4 includes
electric power mode, fuel consumption mode, mixed driven mode, drive charging mode, regenerate
braking mode and stopping mode. The constraint describes the relationship of motor torque u
and the vehicle required torque Tin in each operation mode. In Table 4, Mm and Min are the
maximum motor torque and vehicle required torque respectively; Te_max and Tm_max are the maximum
engine torque and motor torque respectively; Tdec_max is the maximum regenerative braking torque;
Tdec_max = max(Tin/it,−Tm_max); ε is the machine accuracy, ε = 0.0001; Tin is the required torque,
which can be can be calculated from Equations (1) and (2); δi is the logic variable representing the
operation mode of the vehicle (if δi = 1, it means that the vehicle is running under the operation
mode i); Consider the inequality constraints above into time sequence k and transfer them into the
unified matrix inequality as follows, where E1, E2, E3 and E4 are all the coefficients in the form of
Matrix converted from Table 4.

Table 4. Constraints during various operation mode for PHEV.

Electric Power Mode Drive Charging Mode
Minδ1 ≤ Min + Tin − ε
Minδ1 ≤ Min − Tin + itTm_max

−Tinδ1 + itz1 ≤ 0

Tinδ1 − itz1 ≤ 0


Minδ4 ≤ −itu + Min + Tin − ε
Minδ4 ≤ itu + Min − Tin + Te_max

Mmδ4 ≤ u + Mm + Tm_max

Mmδ4 ≤ −u + Mm − ε
Fuel Consumption Mode Regenerate Braking Mode
Minδ2 ≤ Min + Tin − ε
Minδ2 ≤ Min − Tin + Te_max

z2 ≤ 0

−z2 ≤ 0


Minδ5 ≤ Min − Tin − ε
−Tacc_maxδ5 + z5 ≤ 0

Tacc_maxδ5 − z5 ≤ 0

Mixed Driven Mode Stopping Mode
Minδ3 ≤ −itu + Min + Tin − ε
Minδ3 ≤ itu + Min − Tin + Te_max

Mmδ3 ≤ u + Mm − ε
Mmδ3 ≤ −u + Mm + Tm_max


Tinδ6 ≤ 0

−Tinδ6 ≤ 0

z6 ≤ 0

−z6 ≤ 0
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Applying receding horizon optimization based predictive control theory to the MLD model,
and the optimal model is set-up as given in Equations (13) and (14), where the optimization metric
is the sum of equivalent fuel consumption in the receding horizon at time k, the state transition
and evaluation equality constraint are from Equation (10), the inequality constraints are taken from
Equation (12):

E1δ(k) + E2z(k) ≤ E3u(k) + E4 (12)

min
{uk

k ,uk+1
k ,uk+2

k ...uk+N
k }

J =
N

∑
i=0

y(k + i) (13)

s.t. 

xmin(k) ≤ x(k) ≤ xmax(k)

x(k + 1) = x(k) + B1δ(k) + B2z(k)

y(k) = D1δ(k) + D2z(k)

E1δ(k) + E2z(k) ≤ E3u(k) + E4

(14)

within it, B1, B2, D1, D2 is the same as Equation (10), and E1, E2, E3, E4, is defined as follows:

E1 =



Min 0 0 0 0 0
Min 0 0 0 0 0
−Tin 0 0 0 0 0
Tin 0 0 0 0 0
0 Min 0 0 0 0
0 Min 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 Min 0 0 0
0 0 Min 0 0 0
0 0 Mm 0 0 0
0 0 Mm 0 0 0
0 0 0 Min 0 0
0 0 0 Min 0 0
0 0 0 Mm 0 0
0 0 0 Mm 0 0
0 0 0 0 Min 0
0 0 0 0 −Tacc_max 0
0 0 0 0 Tacc_max 0
0 0 0 0 0 Tin
0 0 0 0 0 −Tin
0 0 0 0 0 0
0 0 0 0 0 0
−Mm −Mm −Mm −Mm −Mm −Mm

−Mm −Mm −Mm −Mm −Mm −Mm

Mm Mm Mm Mm Mm Mm

Mm Mm Mm Mm Mm Mm



E3 =



0
0
0
0
0
0
0
0
−it

it

1
−1
−it

it

1
−1
0
0
0
0
0
0
0
0
0
1
−1



E2 =



0 0 0 0 0 0
0 0 0 0 0 0
it 0 0 0 0 0
−it 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 −1
1 1 1 1 1 1
−1 −1 −1 −1 −1 −1
1 1 1 1 1 1
−1 −1 −1 −1 −1 −1



E4 =



Min + Tin − ε
Min − Tin + itTm_max

0
0

Min + Tin − ε
Min − Tin + Te_max

0
0

Min + Tin − ε
Min − Tin + Te_max

Mm − ε
Mm + Tm_max

Min + Tin − ε
Min − Tin + Te_max

Mm + Tm_max

Mm − ε
Min − Tin − ε

0
0
0
0
0
0
0
0

Mm

Mm



In the equation, N is the prediction horizon, k is the specific second in the prediction horizon,
xmin(k) and xmax(k) are the upper and lower limit of SOC accessible domains respectively at time k.
Considering the values of matrices B1, B2, D1, D2, E1, E2, E3 and E4 at every sampling time k and
according to the objective function of minimal equivalent fuel consumption, Equations (13) and (14)
can be converted into a MILP problem.

4.2. Solution of Mixed Integer Linear Programming

The MILP problem can be modeled using YALMIP toolbox in the Matlab platform and solved
using the Gurobi optimizer. The optimal control variable sequence (u(k)–u(k + N)) in the prediction
horizon (k–k + N) can be calculated at time k, and the first value of the optimal control variable sequence
u(k) is applied to the controlled object. Then utilizing the receding horizon optimization method,
the former solving steps are repeated to get a new control value at time k + 1 to realize the PHEV
MPC. In the process of updating the model state variable, SOC, the original nonlinear model as shown
in Equation (6) is used instead of the simplified linear equality constraint model in MILP to obtain
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a better estimate of the true SOC value at the end of the control time domain. The obtained value
is considered as the initial state value to the next receding horizon optimization, so as to realize the
feedback correction in predictive control.

Heuristic rules for some special driving conditions are set to reduce the range of feasible solution
of MILP and improve the real-time performance of the control strategy. The introduced heuristic
rules are presented in Table 5. While the condition in the first column is satisfied, the corresponding
operation mode δ(k) and motor torque can be decided respectively. Total required torque Tin can be
used as a measure to judge whether the car is braking or stopping. Based on the value of total required
torque, whether it is less than or equal to zero, the vehicle can choose regenerate braking mode or stop
mode directly, and the corresponding control variable value can be determined directly. When the
vehicle is in urgent acceleration or at high speed, and the total inquired torque is larger than the
maximum engine torque at that speed, the vehicle can choose mixed driven mode directly. Otherwise,
the control strategy can switch among four modes, i.e., electric power mode, fuel consumption mode,
mixed driven mode, drive charging mode. The control variable value in electric power mode and fuel
consumption mode can be directly obtained. The control variable in the mixed driven mode and drive
charging mode can be selected through the optimization of the objective function. These heuristic rules
can significantly reduce the search space of MILP and thus improve the efficiency of the algorithm.

Table 5. Heuristic rules.

Driving Condition Operation Mode Motor Torque Decision

Tin = 0 δ6 = 1 u = 0
Tin < 0 δ5 = 1 u = Tin/it

SOC < SOCmin δ4 = 1 u = (Tin − Temax)/it
Tin > Te_max δ3 = 1 u > 0, 0 < Tin − itu < Te_max

Else

δ1 = 1 u = Tin/it
δ2 = 1 u = 0
δ3 = 1 u > 0, 0 < Tin − itu < Te_max
δ4 = 1 u < 0, 0 < Tin − itu < Te_max

When SOC approaches to the lower limit, once the required torque is larger than the maximum
torque of the engine and the objective function in MLD-MPC is not modified, the motor needs to
output the power which would make the SOC of the battery to exceed the lower limit. This violates the
constraints defined in MILP problem and cannot find a feasible solution. Thus, when SOC is around
the lower limit, the heuristic rule is applied to solve the control problem. First, estimate the highest
SOC at each step in the prediction horizon under the assumption that the engine outputs its maximum
torque. If the estimated highest SOC is higher than the lower limit of SOC, the current SOC constraints
are imposed in MILP, otherwise the corresponding SOC constraints will be removed. When the current
SOC is lower than the lower limit of SOC, the algorithm will stop solving the MILP problem and
change to the heuristic solver mode. In this mode, the maximum charging torque (or the minimum
discharging torque) of the motor is calculated directly while the engine is set to output its maximum
torque. After the SOC rises to a certain value higher than the lower limit of SOC, the MILP solver will
be restarted.

5. Simulation Experiments and Analysis

5.1. Simulation Experiments

Parameters of the PHEV are given in Table 6. The diesel engine displacement is 7.3 L with a rated
power of 177 kW, and maximum engine speed is 2300 r/min.
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Table 6. Parameters of the PHEV.

Parameter Value Unit

Maximum mass 13,485 kg
Air resistance coefficient 0.79 -

Frontal area 7.24 m2

Wheel rolling radius 0.5 m
Rolling resistance coefficient 0.0094 -

Wheel base 6.85 m
Final ratio 1 -

Rotational inertia of wheels in total 20.5215 kg ·m2

Rotational inertia of engine and motor 2.2511 kg ·m2

The type of motor is AC induction motor, with rated power of 124 kW, and maximum motor speed
of 10,000 r/min. The type of battery used is a lithium battery with a rated capacity of 90 A · h. Mm is
272 N·m, and Min is 1170 N·m. Fitting coefficients of engine and motor are listed in the Appendix A.
ADVISOR (Advanced Vehicle Simulator, 2002, National Renewable Energy Laboratory, Golden, CO,
USA) is used to simulate the UKBUS driving cycle as shown in Figure 11, with an initial SOC value
of 0.7 (0.3 ≤ SOC ≤ 0.8), prediction horizon N of 15 s and sampling period of 1 s (the effect of
predict time domain is discussed in Section 5.2). The simulation results are presented in Figure 12.
Figure 12a is the comparison of the SOC curves between the MLD-MPC control strategy proposed
in this paper and Charge Depleting-Charge Sustaining (CD-CS) control strategy. As can be observed,
the CD-CS strategy consumes the battery energy within 8000 s, and then sustains SOC around 0.3 for
the remainder of the trip. In the MLD-MPC control strategy, the battery energy is completely consumed
by the end of the trip. Compared to CD-CS control strategy, the proposed MLD-MPC strategy can
make more reasonable use of battery energy. Figure 12b is the comparison of the fuel consumption
between the MLD-MPC control strategy presented in this paper and CD-CS control strategy. As seen
in the picture, the CD-CS control strategy makes full use of battery energy and does not consume fuel
within the first 8000 s, then the fuel consumption grow rapidly during the Charge-Sustaining mode,
while the MLD-MPC control strategy maintains a relatively slow fuel consumption rate. Up to the
end of the whole driving cycle, the fuel consumption is 12.93 L, and the end value of SOC is 0.3043 for
the MLD-MPC control strategy, while the fuel consumption is 15.39 L, and the end value of SOC is
0.3125 for the CD-CS control strategy. It can be concluded from this results that under the same driving
cycle conditions, the MLD-MPC control strategy reduces the fuel consumption of a PHEV. Figure 13
shows the comparison of engine operation points of these two control strategies. As can be observed,
the engine operation points of the CD-CS control strategy spread out on a much larger area, and a lot
of operation points in the low efficiency area. While the engine operation points of MLD-MPC control
strategy is relatively centralized and most of them are in the high efficiency area which will improve
fuel economic.

Besides the simulation of UKBUS driving cycle, driving cycles of Orange County Bus Cycle
(OCC) and New European Drive Cycle (NEDC) are simulated as well. The results can be seen in Table 7,
which shows that the fuel economy of PHEV under these driving cycles is improved to a noticeable extent.
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Figure 12. (a) comparison of SOC curves of two strategies; and (b) comparison of the fuel consumption
of two strategies.
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Figure 13. (a) Engine operation points of charge depleting-charge sustaining (CD-CS) strategy;
and (b) engine operation points of mixed logic dynamical-model predictive control (MLD-MPC) Strategy.

Table 7. Fuel consumption under two control strategies. NEDC: New European Drive Cycle;
OCC: Orange County Bus Cycle.

Driving Cycle Control Strategy Final SOC Fuel Consumption (L) Fuel Saved

5 × UKBUS
MLD-MPC 0.3043 12.93

15.98%CD-CS 0.3125 15.39

8 × NEDC
MLD-MPC 0.2939 12.46

14.36%CD-CS 0.2743 14.55

8 × OCC
MLD-MPC 0.2959 15.95

7.27%CD-CS 0.3023 17.20
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5.2. Influence of Prediction Horizon for Mixed Logic Dynamical-Model Predictive Control
(MLD-MPC) Strategy

Two key steps are included in the MLD-MPC control strategy proposed in this paper, which are
NAR neural network based vehicle speed prediction and minimal fuel consumption objective
function-based MLD model prediction control. With an increase in prediction horizon, the accuracy of
prediction results will decrease compared to the actual speed and thus affect the accuracy of the MPC
solution and increase the fuel consumption. The MPC uses the online receding horizon optimization
within the limited horizon, and when the optimal horizon increases, the optimization performance
index also increases which leads to better results. Therefore, it is important to find out the proper
prediction horizon for the optimal fuel consumption simulation.

Here, NEDC is used to study the effect of prediction horizon length on target equivalent fuel
consumption. And the same NAR neural network training method as for UKBUS is utilized for
NEDC. With a total of 1190 samples of vehicle speed-intention data, the first 900 samples are chosen as
training samples, and the remaining 290 samples which didn’t participate in the training are used to
test the network’s predictive ability. When the value of SOC does not drop to the lower limit value,
the constraints of state variable SOC are not activated. The optimal control variable can be solved
independently, and the function of prediction horizon cannot be reflected, as the state association of
each second is not restricted by constraints within the prediction horizon. The function of prediction
horizon is realized only when the value of SOC is going to cross the lower limit. Therefore, initial SOC
value of 0.7 is selected and the lower limit of SOC is set to 0.67 to simulate the condition that SOC is
going to reach the lower limit. In this phase, heuristic solver mode will be activated to recharge the
batteries up to 0.68 when SOC falls below 0.67 and then MILP solver mode will be selected.

Figure 14 shows the battery SOC curve under different prediction horizons, and the corresponding
time to reach the lower limit of SOC value is shown in Table 8. It can be seen that the time to reach
the lower limit of SOC is extended as the prediction horizon increases. That is to say, in the process
of optimization with MILP, it can predict in advance that SOC is about to reach the lower limit so
the strategy can choose to save electricity in advance and improve the fuel efficiency. Figure 15
shows the equivalent fuel consumption per hundred kilometers corresponding to the different
prediction horizons.
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Table 8. SOC bottoming time under different prediction horizons.

Prediction Horizon
Bottoming Time First Bottoming Second Bottoming

1 s 643 s 847 s
5 s 643 s 849 s

10 s 650 s 851 s
15 s 650 s 976 s
20 s 651 s 976 s
25 s 651 s 976 s
30 s 675 s 1040 sEnergies 2017, 10, 74 16 of 18 
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The change of RMSE of the predicted speed with different prediction horizons is shown in
Figure 16. Compared to Figure 15, with an increase in prediction horizon, the equivalent fuel deceases
continuously until the prediction horizon reaches 15 s, while the equivalent fuel consumption deceased
only a little when the prediction horizon is increased from 15 s to 30 s. However, RMSE of the predicted
speed is significant increased when the prediction horizon is increased from 15 s to 30 s. Therefore,
a prediction horizon of 15 s is chosen in this paper.
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6. Conclusions

A MPC strategy for PHEV based on a MLD model and vehicle speed prediction was proposed in
this paper. Firstly, to convert the PHEV control problem into a linear programming problem, the energy
consumption model of engine and motor were both linearized. After that, focusing on a city bus which
usually has determined routes and known velocity profiles, a vehicle speed prediction method using
a NAR neural network based on the combination of driving intention and historical speed data was
proposed, in which the driving intention is recognized by using fuzzy inference to analyze the driver’s
pedal operation. Then, a vehicle MLD model is established with constraints in six possible driving
modes and an objective function of minimum equivalent fuel consumption. With the predicted vehicle
speed, a MPC method was utilized and the energy management problem was converted to a MILP
problem, and the optimal motor torque and the corresponding driving mode sequence within the
speed prediction horizon can be solved. The simulation was carried out under three driving cycles,



Energies 2017, 10, 74 17 of 18

and the effect of prediction horizon on the result of the simulation is analyzed, the simulation results
verified the feasibility and effectiveness of the vehicle speed prediction based MLD-MPC strategy.
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Appendix A

Engine speed index:

FC_V = [650 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300]

Engine fitting coefficients:

a1 = [0.0037, 0.0045, 0.0050, 0.0055, 0.0060, 0.0065, 0.0069, 0.0073, 0.0078, 0.0083, 0.0088, 0.0094, 0.0100,
0.0107, 0.0113, 0.0122, 0.0130];
a0 = [0.1021, 0.1232, 0.1372, 0.1513, 0.1654, 0.1795, 0.2258, 0.2771, 0.3053, 0.3347, 0.3685, 0.4039, 0.4412,
0.4800, 0.5453, 0.5856, 0.6275]

Motor speed index:

M_V = [1000 2000 3000 4000 5000 6000 7000 8000 9000 10000];
[–1000 –2000 –3000 –4000 –5000 –6000 –7000 –8000 –9000 –10000]

Battery SOC change fitting coefficients:

b1 = 1.0 × 10−5 × [−0.0406, −0.0751, −0.1120, −0.1591, −0.2056, −0.2582, −0.2989, −0.3413,
−0.3779, −0.4234];
1.0 × 10−5 × [−0.0246, −0.0535, −0.0805, −0.1002, −0.1222, −0.1396, −0.1626, −0.1862,
−0.2117, −0.2355];

b0 = 1.0 × 10−4 × [0.0046, 0.0002, 0.0132, 0.0604, 0.0824, 0.1037, 0.0777, 0.0600, 0.0435, 0.0343];
1.0 × 10−4 × [0.0074, 0.0047, 0.0255, 0.0857, 0.1048, 0.1310, 0.1194, 0.1005, 0.0888, 0.0668]
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