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Abstract: In the next years, modular multilevel converters (MMCs) are going to be a next generation
multilevel converters for medium to high voltage conversion applications, such as medium voltage
motor drives, medium voltage flexible AC transmission systems (FACTS) and high voltage direct
current transmission. They provide advantages such as high modularity, availability, low generation
of harmonics, etc. However, the circulating current distorts the leg currents and increases the rated
current of power devices, which further increases system cost. This paper focuses on analysis and
suppression of these currents in a MMC using two algorithms for tracking of harmonics. For this
work resonant controllers and repetitive controllers have been selected. Both controllers are analyzed
and simulations results are presented. Moreover, the controllers have been tested and validated for a
three phase MMC operating as an inverter using a real processing platform based on Zynq by Xilinx
and designed to control large multilevel converters and in a real MMC prototype. These results are
provided to demonstrate the feasibility of the proposed method.

Keywords: modular multilevel converter (MMC); circulating current; resonant controller; repetitive
controller; power quality

1. Introduction

In recent years multilevel converters have been developed extensively due to industry demands.
The achieved advances in terms of efficiency and power quality have made them more attractive for
the industry [1]. Multilevel converters have several advantages compared with the classical topologies
based on two or three level voltage source converters (VSCs). These advantages are e.g., low harmonic
distortion or reduced switching frequency [2]. The most common topologies which are widely used
in industrial applications are the cascaded H-bridge (CHB) and the neutral-point-clamped (NPC).
However, these topologies have several limitations such as the bulky transformer required by the CHB
or the limited number of levels available in the NPC [3,4].

As a solution to these limitations, the modular multilevel converter (MMC) topology was
developed. The MMC was originally designed to be used in high-voltage direct current (HVDC)
transmission lines [5]. However, in recent years, MMC has been an emerging topology used
in medium-voltage (MV) applications such as in flexible AC transmission systems (FACTS) or
medium-voltage drives (MVDs) [6,7].

The MMC can be adapted to a wide range of voltages/power by modifying the number of
series-connected submodules. In high-voltage applications the MMC can be directly connected,
avoiding the use of transformers and reducing the overall cost. Additionally, due to their modularity,
the switching frequency can be considerably reduced without worsening the power quality.

The MMC topology presents however several disadvantages which reduce its performance.
One of them is the capacitor voltage unbalance which appears due to the current that flows through
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the submodules [8,9]. Another disadvantage is the circulating current. This is the result of a mismatch
between the output voltage of different phase arms and the input direct-current (DC) voltage [10].

There are several studies in the literature where the circulating current has been studied. In [5], the
circulating current model is obtained from the energy stored in the capacitors. However, in [10] a more
accurate study related with the circulating current has been carried out. In this study, the analytical
expressions of the currents and voltages have been shown.

The circulating current generates several undesirable effects which reduce the efficiency and the
performance, such as higher capacitor voltage ripple and higher power losses [11]. Thus, a circulating
current controller is the best option to reduce the amplitude of this current.

Yang et al. [12] proposed a proportional integrator (PI)-based controller to reduce the circulating
current. The control method proposed is based on transforming the frames from an a-c-b sequence into
a dq sequence. However, this method has the disadvantage of any synchronization problem reduces
the effectiveness of the control. In addition, simulation results are provided.

Tu et al. [13] proposed a proportional resonant (PR) controller to control the circulating current
under unbalanced voltages. Under unbalanced voltages, the circulating current is composed of
positive-sequence, negative-sequence and zero-sequence, however, only the double-line-frequency
is controlled. Moreover, the proposed controller was only validated by simulation results. A PR
controller was also used in [14], but in this case, the PR controller was modified for better digital
realization and noise injection and more harmonics were controlled.

In [15] a plug-in repetitive controller to reduce the circulating current was proposed. However,
both simulation results and experimental results were carried out in a single-phase MMC, so the results
cannot be validated for a three-phase MMC since the behavior is not the same.

In this paper two approaches to reduce the circulating current and thus the power losses are
proposed. The circulating current controllers proposed are based on an αβ-frame. The use of an
αβ-frame avoids the synchronization problems and reduces the control complexity [16]. The first
approach presented in this paper is based on parallel-connected PR controllers tuning to the frequencies
presented in the circulating current.

The second approach is based in a digital plug-in repetitive controller. The proposed repetitive
controller has the advantage of a simple structure and good harmonic suppression [17]. In this paper,
these two algorithms to track harmonics will be compared, similar to [18], but focusing on the reduction
of the circulating current fundamentally due to the use of the proposed algorithm to eliminate this
current, which is a relevant contribution with respect to previous work.

In addition, due to the fact that it is difficult to find in the literature studies where the proposed
controllers are tuned to reduce the circulating current, in this paper, the authors propose tuning
techniques for both dq-frame-based controllers and αβ-frame-based controllers in order to reduce
the circulating current. This article aims to provide several guidelines to choose, design and tune
circulating current controllers.

Moreover, a stationary frame saturator has been proposed in order to limit the output voltage
reference. The output voltage saturator in MMCs is a key issue that has not been well studied in the
technical literature and greatly affects the performance of the controllers. This paper is organized as
follows: Section 2 presents the MMC topology and the circulating current is fully analyzed. Section 3
presents the dq-frame based controllers where are explained and tuned. The proposed controllers, both
resonant controllers and the repetitive controller are analyzed in detail in Section 4. Finally, Section 5
shows the experimental results. In addition to the experimental results, both the processing platform
and a prototype are described. This paper’s conclusions are summarized in Section 6.

2. Modular Multilevel Converter

Figure 1 shows the structure of a three phase MMC, which is composed of six arms. Each arm
consists of n/2 series-connected submodules (SMs), where n is the number of SM per phase, and an arm
inductor LMMC. The submodule is a half H-bridge that contains two insulated-gate bipolar transistors
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(IGBTs), two reversing diodes and a DC storage capacitor. The two switches (Sw and Sw) in each SM
are controlled with complementary signals, resulting in two active switching states that can connect or
bypass the respective capacitors to the converter leg. Consequently, the output voltage VSM (Figure 1)
can be determined based on the switching states. When Sw is switched ON, Sw is switched OFF. Here,
the output voltage is Vc. In contrast, when Sw is switched OFF, Sw is switched ON, and the output
voltage is zero.
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Figure 1. Modular multilevel converter architecture.

The mathematical model of the power converter is essential since it allows one to know the
behavior and performance of the converter. The MMC mathematical model is calculated using the
MMC structure shown in Figure 2, which is a simplification of the structure shown in Figure 1. It shows
one phase of the MMC connected to the grid across an inductor filter.

The SM can be modeled as an alternative current (AC) power supply thus, the generated voltage
in the upper arm is Vu and the generated voltage in the lower arm is Vl . The DC-bus can be also
modeled as two DC power supplies connected in series with the common point connected to ground.

Ideally the current that flows through the arms, iu which is the current that flows through the
upper arm and il which is the lower arm, are the sum of a DC component and an AC component
of the fundamental frequency. However, due to the AC current flow through the SM capacitors, the
capacitor voltages vary with time. As result, there is a voltage difference between DC-bus voltage and
each arm voltage, which leads to a problem of circulating currents in each arm [13]. Figure 3 shows
the abovementioned existing currents in the MMC. As demonstrated in the figure, each current has
different paths. Therefore, the value of iu and il are given by (1) and (2), respectively:

iui =
igridi

2
+

iDC
3

+ iciri (i = a, b, c) (1)
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ili = −
igridi

2
+

iDC
3

+ iciri (i = a, b, c) (2)

From (1) and (2) it is obtained that the circulating current icir is given by:

iciri =
iui + ili

2
+

iDC
3

(i = a, b, c) (3)
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The circulating current is in negative sequence and is composed of several harmonics as
demonstrated previously [8]. The harmonics present in the circulating current are the second-order
harmonic, fourth-order, sixth-order and eight-order harmonic as shown in Figure 4. Thus, the
circulating current can be expressed as the sum of multiple harmonics and a DC component
(see Equation (4)):

icir(t) = iDC
3 + Icir1 sin(2ω0t +ϕ1) + Icir2 sin(4ω0t +ϕ2)

+Icir3 sin(6ω0t +ϕ3) + Icir4 sin(8ω0t +ϕ4)
(4)
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The amplitude and the phase of each component are analyzed in detail in [10]. The circulating
current model shown in Figure 3c can be simplified as shows Figure 5. The circulating current generates
several undesirable effects which reduce the efficiency and the performance. Some of these effects are
listed below:

• Capacitor voltage ripple: the circulating current increases the voltage ripple since it depends on
the amplitude of the arm currents.

• Power losses: The circulating current increases the arm currents and thus, the power dissipated
by RMMC is higher. Moreover, the power losses in the switching devices are also increased.

• Inductor saturation: As in the previous case, the amplitude of the arm current is affected by
the circulating current. Therefore, if the circulating current is high, the inductor LMMC can be
saturated in the case of ferromagnetic core inductors.

• Power quality: As demonstrated above, the circulating current is composed of several harmonics
which reduce the quality of the power exchanged with the grid. Moreover, the reactive power
exchanged greatly increases its value. These energy consumptions, reduce the performance of
the controllers as well as the capability of the MMC. This fact is critical if the MMC is intended
to be used in FACTS applications where the voltage support or reactive power compensation is
intended to be used.

• The circulating current can be minimized by increasing the SM capacitors or increasing the
inductors. Nevertheless, the cost of the capacitors has to be taken into account. In addition,
the size of the inductors has an impact in the MMC performance increasing the losses. Thus,
a circulating current controller is the best option to reduce the amplitude of this current.
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The three differential equations which describe the behavior of the circulating current can be
obtained from Figures 2 and 5 and are the following:

vcira(t) = 2RMMCicira(t) + 2LMMC
dicira (t)

dt = VDC − (vua + vla)

vcirb(t) = 2RMMCicirb(t) + 2LMMC
dicirb

(t)
dt = VDC −

(
vub + vlb

)
vcirc(t) = 2RMMCicirc(t) + 2LMMC

dicirc (t)
dt = VDC − (vuc + vlc)

(5)

Equations (5) can be transformed into the αβ-frame as follows:

vcirα(t) = 2RMMCicirα(t) + 2LMMC
dicirα (t)

dt

vcirβ(t) = 2RMMCicirβ(t) + 2LMMC
dicirβ (t)

dt

(6)

Assuming steady-state operation condition, Equations (6) are then transformed to the dq-frame:

vcird(t) = 2RMMCicird(t) + 2LMMC
dicird

(t)
dt − 4ωLMMCicirq(t)

vcirq(t) = 2RMMCicirq(t) + 2LMMC
dicirq (t)

dt + 4ωLMMCicird(t)
(7)

Equations (7) demonstrate that there is a cross coupling between icird and icirq . This cross coupling
increases the control complexity. The circulating current obtained in shown in Figure 6.
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In order to eliminate this coupling a decoupling feed-forward with gain −4ωLMMC is used. Then,
the transfer function of the circulating current is given by:

T(s) =
1

2LMMCs + 2RMMC
(8)

In order to control the circulating current, the model must be discretized. The plant shown in (8)
is discretized using zero-order hold (ZOH) discretization technique. The discretized model obtained is:

T(s) =
1

2RMMC
z−1

1− e−
RMMC Ts

LMMC z−1
(9)

Depending on the frame used, αβ-frame or dq-frame different control strategies are adopted.

3. dq-Frame Controller

Most of the proposed circulating current controllers in the literature are based on dq-frame
controllers. PI-based controllers are widely used due to the fact PI controllers provide good performance
and fast response.
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The approach based on PI controllers are valid if only the double-line frequency component is
considered in the circulating current. The control scheme using PI controllers is shown in Figure 7 and
it is obtained from the model shown in Figure 6.
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The PI controller can be tuned using the equations shown below:

kp =

(
e−RMMCTs/LMMC + 1− 2e−ξωnTs · cos

(
ωnTs

√
1− ξ2

))
1

2RMMC

(
1− e−

RMMC Ts
LMMC

) (10)

αi =

(
e−RMMCTs/LMMC − e−2ξωnTs

)
kp

2RMMC

(
1− e−

RMMC Ts
LMMC

) (11)

ki =
kp(1− αi)

Ts
(12)

where Ts is the sample period,ωn is the natural pulsation and ξ is the damping factor.

4. αβ-Frame Controller

As described in Section 2, the circulating current is composed of even order harmonics. This means
that in order to reduce it value, if the dq-frame transformation is used, a different phase from the grid
must be used. The use of dq-frame based controllers presents several problems. One of them is the
phase estimation since there is no guarantee that the circulating current phase is in phase with the grid
voltage. Moreover, the circulating current is composed of n-harmonics, however in the literature this
n-harmonics are neglected and the double-frequency harmonic is only considered. This simplification
is not valid under grids with voltage unbalances and harmonics.

In this paper the use of circulating current controllers in the αβ-frame is proposed. The use of
an αβ-frame instead of a dq-frame presents the advantage that the circulating current phase does
not need to be determined. Two approaches to reduce the circulating current are presented in this
paper. The first approach is based on the use of a resonant controllers. The second approach consist of
reducing the circulating current by means of a repetitive controller.
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4.1. Resonant Controllers

In order to control the circulating current, a resonant controller (RC) has been chosen since
theoretically it achieves an infinite gain at the frequency of interest. This frequency is also called
resonant frequency ( f0). Since a resonant controller presents an infinitive gain at the frequencies ± f0,
it is able to track or reject a sinusoidal signal of frequency f0 with zero steady-state error. In this
paper the second order generalized integrator (SOGI) has been chosen as resonant controller [18].
The transfer function of the SOGI is shown in (13) and its continuous time block diagram is represented
in Figure 8 where x(t) is the input signal and y(t) is the output signal.

This controller has infinite gain and no phase control at the resonant frequency. The Bode diagram
is shown in Figure 9a and the zero-pole map is shown in Figure 9b. It has an excellent selectivity but
the addition of several SOGIs in parallel may endanger the system stability.

CSOGI(s) =
sω0

s2 +ω2
0

(13)
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As demonstrated in Figure 4b, the circulating current is mainly composed of three harmonics.
Hence, three resonant controllers are used. The RCs are tuned to control the second (h = 2), the fourth
(h = 4) and the sixth harmonic (h = 6). The control scheme proposed is shown in Figure 10. The proposed
configuration ensures that all the harmonics presented in the circulating current are eliminated.
The Bode diagram of the proposed controller is shown in Figure 11. The figure illustrates that
controller has only high gain at the selected resonant frequencies (h = 2, h = 4 and h = 6).
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The proposed overall control scheme is shown in Figure 12. The control scheme has been divided
into two control loops: the outer control loop and the inner control loop. The outer control loop
is composed by the DC-bus voltage controller and the reactive power controller. The output outer
control loop is the id and iq reference currents. The inner control loop is composed by the circulating
current controller and the current controller. The inner control loop is the responsible to generate the
output voltage reference. In the approach presented in this paper, both current controller output u∗αβ
and circulating current controller output u∗cirαβ

are added in αβ-frame. Finally, a stationary-frame
saturator is used to limit the reference. The use of a saturator is an important key which are analyzed
in detail below.
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The SOGI is digitally implemented using the difference equation of the controller. Thus,
a discretization technique must be used. There are several discretization techniques that can be
used. The most common discretization techniques are Forward Euler, Backward Euler, Tustin, or
Zero-Order Hold. In this paper the discretization technique used is Tustin with prewarping (TPW)
since it has low resonant frequency deviation [18]. The correspondence between the s-plane and the
z-plane using TPW is shown in Equation (14):

s =
ω0

tan
(
ω0Ts

2

) ·1− z−1

1 + z−1 CSOGI(s) =
sω0

s2 +ω2
0

(14)
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Applying (14) in (13) the SOGI discrete model is obtained:

CTPW(z) =
sin(ω0Ts)

2
× z2 − 1

z2 − 2 cos(ω0Ts)z + 1
(15)

If Equation (15) is decomposed in difference equation, the following expression is obtained:

y(k) =
sin(ω0Ts)

2
(x(k)− x(k− 2)) + 2 cos(ω0Ts)y(k− 1)− y(k− 2) (16)

Each RC block in Figure 10 is replaced with a block that implements Equation (16) plus an integral
gain kih. In parallel with the RC controllers a proportional gain k0 is used in order to decrease the
settling time. The tuning of each RC is described by Equation (17), where a = e−(2RMMC ·Ts/2LMMC),
b = (1− a)/2RMMC. Ts is the sampling period used by the controller, h is the harmonic order (in this
paper it is supposed h = 2 and h = 4), ρ = e−ξωnTs , ϕ = ωn

√
1− ξ2Ts, ωn is the natural pulsation

and ξ is the damping factor, typically chosen as 1/
√

2:

α = a−ρ2

bβ β = 1+a+2ρ cosϕ
b

kp = αβ; kih =
β−kp
hω0Ts

(17)

The gain k0 used to reduce the settling time should be enough high in order to increase the
stability and reduce the oscillations. Figure 13 shows the step response of the RC controller for
different k0 values.
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4.2. Repetitive Controllers

The repetitive controller emulates a bank of PR filters, introducing only gain peaks at the
frequencies of interest. The advantage of this control scheme is that there is no need to repeat the
control structure for each harmonic. Thus, only one control loop is needed in order to compensate all
the harmonics. This controller can eliminate harmonics of the input signal up to the Nyquist frequency.
The scheme of a plug-in repetitive controller is shown in Figure 14.
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The repetitive loop has an infinite gain to all frequencies that are multiples of 1⁄T Hz, where
T is the period of the fundamental signal (Figure 15). This ensures disturbance rejection and zero
steady-state error for signals with spectral content at these frequencies. However, this controller is
very sensitive to frequency variations.

C(s) =
CN(s)

1− e−sT (18)
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In this paper the use of a repetitive controller based on the discrete cosine transform (RC-DCT) is
proposed. RC-DCT is the best structure to use in digital processors ensuring the best performance [19].
The main advantage of this approach is that the specific harmonics to be eliminated can be selected
by means of an offline calculation of the DCT coefficients. Thus, the complexity of the controllers is
independent of the number of harmonics to be eliminated. One of the main advantages of RC-DCT
compared to the study performed in [15] is that no additional filtering is needed to ensure its stability.

This type of repetitive controller is based on moving discrete Fourier transform (DFT) filters with
a window equal to one fundamental period. The filter equation is given by:

FDFT(z) =
2
N

N−1

∑
i=0

(
∑

h∈Nh

cos
[

2π
N

h(i + Na)

])
z−i (19)

where N = T/Ts is the number of samples within one fundamental period, Nh is the set of selected
harmonic frequencies to eliminate and Na the number of delay steps.

In this paper it is assumed that T = 20 ms and Ts = 100 µs thus, N = 200. Na is set to 5 and its
value is obtained by means of an optimization process during the simulation stage.

The internal structure of the RC-DCT is shown in Figure 16, and it is formed by an N-position
shift register, a block that performs the DCT and a block that implements Na delays. The DCT block
consists of a pass-band FIR filter of N taps with unity gain at all selected harmonics of order h.

The shift register is used to form the N-input vector (w) necessary for the DCT block. The Na

delays are required to have zero phase shift at the desired frequencies. The output vector z is obtained
by multiplying the DCT coefficients calculated offline with the shift register. The DCT coefficients
obtained are shown in Figure 17. The overall control scheme using a repetitive controller is shown in
Figure 18.
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4.3. Stationary Reference Saturator

As shown above, the output voltage reference of the circulating current controller is added to the
output voltage reference of the current controller. Since each controller uses different phase angles
both outputs can only be added in the abc-axis or in the αβ-axis. In this paper it is proposed to sum
both signals in αβ-axis in order to implement saturators more easily.

In the literature it is difficult to find studies where the voltage reference saturation focused in
MMCs are shown. One approach to limit the voltage reference is to limit the output of each controller
independently, sum them together and apply the obtained reference to the PWM generator. However,
this approach has the disadvantage of that the is not possible to guarantee that the sum of both
controllers is inside the limit circle, whose radius is Udc/

√
2. Another approach is to limit the sum

of both controllers. Nevertheless, this approach distorts the output reference since the waveform
peaks are clipped. This distortion generates undesired harmonics and reduce the performance of
the controllers.

In the paper, the use of the distortion-free saturators based on stationary reference frames (SRFs)
is proposed. In particular, the saturators proposed in [20]. The SRF saturators reduce the amplitude of
the signal while maintaining the original waveform. Thus, the amplitude of the harmonics existing
in the reference waveform remains the same. Thereby both current controller and circulating current
controller have the same priority.

The operating principle of the SRF saturator is based on getting the complete trajectory of the
vector along a complete period and fully readapting it to the limit circle if necessary. The reduction
factor is constant along the whole trajectory thus, the sinusoidal waveforms are preserved. Figure 19
shows the SRF saturator operation. The figure shows the original signal and the limited signal with
the proposed saturator. As demonstrated in the figure, the entire trajectory is reduced rather than only
the parts which are outside the limit. Consequently, the distortion caused by the saturator is lower.
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5. Experimental Setup

The proposed controllers discussed above have been implemented in a real processing platform
designed by the authors to control multilevel converters. The used processing platform consists of two
interconnected boards: the processing board and the interface board. The processing board, which
is the core of the control system, is the ZC702 evaluation board manufactured by Xilinx (San José,
CA, USA) that is based on a Z-7020 System-On-Chip (SoC). The Z-7020 consists of a dual-core ARM
Cortex A9 (ARM, Cambridge, UK) and a FPGA. The interface board is a custom board designed by
the authors which adapts the signals sent and received by the converter. The processing platform is
shown in Figure 20. Both controllers have been implemented in C code.
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The first test consists of measure the computational burden of each controller. The computation
burden of each controller is a key factor which is not usually addressed in the literature and has been
studied in this paper. This is especially important if they are used along with more controllers in order
to meet the control time constraints. In order to obtain the execution time required by each controller,
a timer is used to count the clock ticks. The computational burden of both controllers is shown in
Table 1.

Table 1. Computational burden.

Controller Timer Ticks Time Consumed

Resonant controllers 125 2.5 µs
Repetitive Controller 1310 26.2 µs

The results have been shown that the repetitive controller requires more time to complete the
task, in fact about 10 times more than the resonant controllers. This is due to the large amount of
multiplication operations required by the DCT block. However, the harmonics that can be compensated
in the case of the repetitive controllers are greater than in the case of resonant controllers.

The second test consists of measuring the performance of each proposed controller. In order to
achieve this, both resonant controllers and repetitive controller have been tested in a MMC prototype.
The built prototype is a six-level MMC converter. Each phase consists of 10 half-bridge IGBT modules.
Therefore, the entire converter has 30 half-bridge IGBT modules. A complete description is shown
in Table 2. The nominal power of the designed prototype is 50 kW. Figure 21 shows an image of the
whole prototype together with the PC that acquires the signals and controls the converter.

Table 2. MMC Parameters.

Parameter Value

Nominal Power 50 kVA
Nominal Voltage 400 V

N◦ submodules per phase 10
Submodule Capacitor 2200 µF

IGBT Semikron SKM145GB066D
IGBT Driver Semikron Skyper 32 R UL

DC-bus voltage 1200 V
MMC inductor 0.5 mH
Grid inductor 5 mH

The prototype allows raising the DC-bus voltage up to 1200 V, therefore is possible to use this
converter in 690 V grids without transformers. Moreover, the IGBTs chosen have a rated current
of 150 A and a maximum voltage of 600 V. As result, this prototype can be used in a wide range of
applications. The control loop has a sample rate of 100 µs. The modulation technique used is the
phase-shifted sinusoidal pulse width modulation. However, other modulation techniques can be
used [21].

Firstly, a test to evaluate the resonant controllers has been carried out. The test consists of injecting
active power to a 15 kW load and during the test, activating the resonant controllers in order evaluate
the controller performance. The circulating current and the arm current are measured. The circulating
current reduction are shown in Figures 22 and 23. Figure 22 shows how the circulating current changes
when the resonant controllers are active. The figure shows that the amplitude of the circulating current
is greatly reduced. This can also be observed in Figure 23, where the circulating current without the
resonant controllers and with the resonant controllers activated are shown.
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Figure 24 shows the arm current during the test. Firstly, the arm current is composed of the
fundamental harmonic and the harmonics present in the circulating current. Once the resonant
controllers have been activated, the harmonics generated by the circulating current are reduced and
thus, the arm current is only composed of the fundamental harmonic.
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Finally, the second test consist of evaluate the repetitive controller in the same conditions as in the
case of the resonant controller test. Figures 25 and 26 show the circulating current reduction when
the repetitive controller is activated. In both scenarios, the resonant controllers test and the repetitive
controller test, the circulating current is reduced significantly.
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Figure 25. Circulating current with repetitive controllers.

Figure 27 shows the arm current waveform when the repetitive controller is activated. The figure
shows that in the same manner as in the case of the resonant controllers, when the repetitive controller
is activated, the harmonics present in the arm current disappear and then the current only has the
fundamental harmonic.

Table 3 shows the total harmonic distortion (THD) of the grid current in three scenarios: without
any controller, with the resonant controllers, and with the repetitive controller. The table shows that
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there is a substantial reduction in the THD when any of both controllers are used. Moreover, the results
shown in the table demonstrate that the THD quality improvement is similarly with both controllers.
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Table 3. Grid current total harmonic distortion.

Controller THD

Without controller 1.23%
Resonant controllers 1.058%
Repetitive Controller 1.048%

The experimental results mentioned above show that both approaches minimize the circulating
current while improving the grid quality. The resonant controllers and the repetitive controller produce
similar results, but the computational cost of the repetitive controller is considerably higher than in the
case of the resonant controllers.
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6. Conclusions

The circulating current is an undesirable current that reduces MMC performance and increases
the power losses. Thus, this current must be reduced in order to improve the efficiency. The circulating
current distorts the arm current and increases its amplitude. Consequently, the power losses in the
inductors increases. Moreover, due to the increased amplitude, the inductors can be saturated prematurely.

In this paper two new approaches to control the circulating current controllers in the αβ-frame
have been shown. As demonstrated in this paper, the use of controllers based on the αβ-frame
is the best option when there are several harmonics in the current that must be compensated.
The resonant controllers and the repetitive controller have been chosen as circulating current controllers.
Both controllers have been described and then tuned in order to reduce the circulating current.
Moreover, a saturator which reduces the distortion when the output voltage reference must be limited
has been presented. The use a saturator is an important issue that has not been well enough studied in
the despite it directly affects to the performance of the controllers.

The experimental results carried out in the prototype have demonstrated the effectiveness of
the proposed controllers, both the resonant controllers and the repetitive controller. The results
show that the circulating current is greatly reduced when either of the proposed controllers are used.
In addition, the results have been shown that the use of circulating current controllers increases the grid
current quality. Consequently, the use of circulating current controller is recommended, particularly
when the MMC is intended to be used in FACTS applications, where the power quality is the most
important thing.
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