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Abstract: Due to our limited knowledge about silicon carbide metal–oxide–semiconductor field-effect
transistors (SiC MOSFETs), the theoretical analysis and change regularity in terms of the effects of
temperature on their switching characteristics have not been fully characterized and understood.
An analysis of variation in voltage (dVDS/dt) for SiC MOSFET during turn-on and turn-off has been
performed theoretically and experimentally in this paper. Turn-off variation in voltage is not a strong
function of temperature, whereas the turn-on variation in voltage has a monotonic relationship with
temperature. The temperature dependence is a result of the competing effects between the positive
temperature coefficient of the intrinsic carrier concentration and the negative temperature coefficient
of the effective mobility of the electrons in SiC MOSFETs. The relationship between variation in
voltage and supply voltage, load current, and gate resistance are also discussed. A temperature-based
analytical model of dVDS/dt for SiC MOSFETs was derived in terms of internal parasitic capacitances
during the charging and discharging processes at the voltage fall period during turn-on, and the
rise period during turn-off. The calculation results were close to the experimental measurements.
These results provide a potential junction temperature estimation approach for SiC MOSFETs. In SiC
MOSFET-based practical applications, if the turn on dVDS/dt is sensed, the device temperature can
be estimated from the relationship curve of turn on dVDS/dt versus temperature drawn in advance.

Keywords: power semiconductor device; temperature; switching transients; variation in voltage

1. Introduction

Although silicon power devices have developed rapidly in the past few decades, many of
them are reaching their physical limits. In recent years, silicon carbide (SiC) power devices have
offered a probable solution to this problem due to their wide bandgap and electrical and physical
characteristics [1]. In comparison with Si devices, the superiority of SiC metal–oxide–semiconductor
field-effect transistors (MOSFETs) has been demonstrated [2]. Since Si insulated-gate bipolar transistors
(IGBTs) are widely used to construct power electronics converters in many industrial products, such as
photovoltaic generation, motor drives, and uninterruptable power supplies, many efforts have been
devoted to the promotion and expansion of the applications of SiC MOSFETs [3]. In the future,
SiC MOSFETs may replace Si IGBTs in the voltage range of 1200 V and above, due to the fact they offer
considerable performance and smaller switching time.

Due to our limited knowledge about SiC MOSFETs, the theoretical analysis and change
regularity in terms of the effects of temperature on its switching characteristics have not been fully
characterized and understood. Previous work by Zhu et al. [4] analyzed the temperature dependence
of on-resistance. In [5,6], the threshold voltage has been investigated, which is not stable under
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different temperatures because of electron tunneling into and out of the oxide traps. The switching
characteristics of SiC MOSFETs were investigated in [7,8], but the impact of temperature was not
considered. The relationship between dVDS/dt and temperature for SiC MOSFET can be observed in
some published reports [9–14]. In [9] and [14], the characterization and comparison of three types of
1.2 kV SiC MOSFETs produced by different manufacturers is presented at 25 ◦C and 175 ◦C. Similar
measurements have also been performed in [10,11]. In [12], a SiC Implantation and Epitaxial MOSFET
(SiC-IEMOSFET) has been evaluated at the temperatures of 25 ◦C and 125 ◦C. In reference [13],
a behavioral model of SiC MOSFET in Pspice over a wide temperature range is provided. The static
and dynamic behavior is simulated using the presented model and compared to the measured
waveforms. However, the effects of temperature on switching characteristics were only examined at
two temperature conditions. From the aforementioned literature, we don’t know if the dVDS/dt varies
linearly with temperature due to the absence of measurement data. Furthermore, many issues still
remain unclear, such as the effects of supply voltage, load current and gate resistance on dVDS/dt and
the modeling of dVDS/dt. However, these are important for SiC MOSFET-based practical applications.
It is necessary to investigate the effects of temperature on the switching characteristics, which is useful
for understanding how the variation of voltage varies with temperature. Alternatively, in future
SiC MOSFET-based practical applications, the junction temperature measurement will become an
important topic. However, for SiC MOSFETs there is less temperature sensitivity for the same electrical
parameters as in Si IGBTs owing to their unipolar nature. Because of the wider bandgap, the lower
intrinsic carrier concentration and the faster switching speed, some conventional indicators of junction
temperature estimation for Si devices would fail for SiC MOSFETs [15,16]. Hence, it is also important
to find a temperature-sensitive electrical parameter to evaluate device temperature in SiC MOSFETs.

In this paper, a thorough analysis was completed of the variation in voltage for SiC MOSFETs
during turn-on and turn-off. The temperature dependency of turn-off variation in voltage and turn-on
variation in voltage were found to be different. The turn-off variation in voltage was not strongly
correlated with temperature, while the turn-on variation in voltage was a function of temperature.
The relationship is nearly linear. From the relationship curve, the junction temperature of SiC MOSFET
can be derived. Hence, turn-on variation in voltage is suitable as a temperature-sensitive electrical
parameter for junction temperature measurement. In addition, a temperature-based analytical model
of variation in voltage is presented and the effects of supply voltage, load current, and gate resistance
on the temperature dependency of variation in voltage are analyzed. Finally, the implementations of
the temperature dependence of variation in voltage are discussed.

2. Model

2.1. Overview of the Turn-On and Turn-Off Process

Figure 1 shows the typical structure of a SiC MOSFET consisting of three electrodes, namely drain,
gate, and source, gate oxide, JFET region, and N-drift. It is a vertical device with a planar gate.
Apart from that, the equivalent circuit of SiC MOSFET is also shown, including three internal parasitic
capacitances: gate–drain (CGD), gate–source (CGS), and drain–source (CDS).

Based on an inductive load circuit, the switching characteristic of a power MOSFET is illustrated
in Figure 2, showing the four phases during turn-on and turn-off. Due the existence of switching loop
stray inductances, the induced voltage across stray inductances will reshape the waveforms of a drain
source voltage VDS, causing a drop in turn-on and a peak in turn-off, as a result of the induced positive
voltages and negative voltages, respectively [17].

The current distribution in the device is changed due to the effect of the drain–source capacitance
CDS of the SiC MOSFET, which usually cannot be observed outside the SiC MOSFET. During the turn-on
process, the energy stored in CDS discharges through MOS channel, which causes the channel current
Ichannel to be larger than the drain current ID measured outside. While at turn-off, the capacitance CDS

is charged as the drain-source voltage VDS rises. In this process, a part of the load current flows to CDS,
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which causes Ichannel to be smaller than ID. As a result, the gate-source plateau voltage VGP in turn-on
is higher than that in turn-off.
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2.2. Temperature-Based dVDS/dt Model

The dynamic behavior of SiC MOSFETs is strongly dependent on their terminal capacitances: CGD,
CGS and CDS. The capacitances CGD and CGS govern the switching transient since they are charged
and discharged during the turn-on and turn-off processes. The effect of capacitance CDS can’t also be
neglected since it also charges and discharges. In Figure 2, the MOSFET is in the saturation region
and VGS remains almost unchanged at the voltage fall period during turn-on. Consequently, the gate
current deviates from the gate source capacitance CGS and the Miller capacitance CGD to mainly charge
the CGD. In addition, the drain source capacitance CDS is discharged in this phase and the discharging
currents will inject into the channel of the MOSFET. Similarly, the CDS is charged during the voltage rise
period during turn-off, and a part of the load current will be shunt. Owing to the discharging/charging
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of terminal capacitances, the current flowing through MOSFET, named the channel current, is not
equal to the current measured through the drain terminal, namely ID, which is larger or smaller than
ID. Figure 3a shows the discharging of capacitances CGD during turn-on, whereas the charging of
capacitances CGD is shown in Figure 3b. The discharging/charging process of Miller capacitance is
also exhibited in this figure.
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In the voltage rise phase during turn-off, the voltage across the inversion channel is higher
than the saturation voltage, VDS,sat, defined as VGS − VTH, and the SiC MOSFET is in the saturation
region [18,19]. The channel current is a function of saturation voltage VDS,sat and can be given as :

Ichannel =
B
2

V2
DS.sat(1 + λVDS) =

Wµ0COX

2L
(VGS − VTH)

2(1 + λVDS) (1)

where B = Wµ0COX/L is the transconductance parameter, W is the channel width, L is the channel
length, VTH and VGS are the threshold voltage and gate-source voltage, respectively, λ is the channel
length modulation parameter, µ0 is the effective mobility of the electrons in the channel, and COX is
the gate–oxide capacitor.

Since the drive voltage VGG has become the low level VGG_L in this phase, and the gate source
voltage VGS reaches its Miller plateau voltage that is equal to VTH+IL/gm, the gate drive current IG can
be calculated as shown in Equation (2), where RG is the gate drive resistance, IL is the load current,
and gm is the device’s transconductance:

IG =
VGS − VGG_L

RG
=

VTH + Iload
gm

− VGG_L

RG
=

VTH +
√

Iload L
Wµ0COX

− VGG_L

RG
(2)

The capacitance CDS is a drain–source voltage VDS –sensitive parameter due to the variation in
depletion region width of the drain–body junction with VDS, which is given by [20,21]:

CDS = ADS

√
qNAεSiC

2(VDS + Vbi)
(3)

where:
Vbi =

kT
q

ln(
NAND

n2
i

) (4)

while q is the fundamental electronic charge, εSiC is the dielectric constant in SiC, NA is the p-well
region doping, ADS is the drain–source overlap area, Vbi is the junction potential in drain-body junction,
ND is the doping in drift region, and ni is the intrinsic carrier concentration of SiC.
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The capacitance CGD is consisted of the gate oxide capacitance COX = εOXAGD/tox in series with
the bias-dependent depletion capacitance under gate oxide CGDJ = AGD(qNAεSiC /2VDS)1/2, which is
given by:

CGD =
COXCGDJ

COX + CGDJ
(5)

According to the charging and discharging processes of CGS, CGD, and CDS as seen in Figure 3,
the variation in voltage can be calculated for the voltage rise period during turn-off:

dVDS

dt
=

ID − Ichannel +
CGD

CGS+CGD
IG

CDS +
CGSCGD

CGS+CGD

(6)

where CGS is gate-source capacitance and ID is drain current of the SiC MOSFET, which is equal to
load current IL. According to different operating conditions, Mc Nutt et al. [22] found that capacitance
CGD can be further simplified. Figure 4 shows how the capacitance CGD varies under different
operating conditions. When gate-source voltage VGS is greater than threshold voltage, and drain-source
voltage VDS is greater than zero, capacitance CGD is approximately equal to the gate oxide capacitance
COX because depletion capacitance CGDJ is far in excess of the COX. Hence, Equation (6) can be
further simplified by using COX instead of CGD. Additionally, during turn-on, the expression of the
variation in voltage can also be derived is similar to Equation (6), where gate current is defined as
IG = (VGG_H − (IL/gm + VTH))/RG.
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2.3. Dependency Analysis

Equation (6) shows that the variation in voltage is dependent on temperature, since the channel
current and gate current are correlated with temperature. The load current, voltage, and gate drive
resistance also have some influence on variation in voltage. The relationship between channel current
and temperature depends on the temperature dependency of the threshold voltage and the effective
mobility in SiC MOSFET. When the surface potential of the channel in the MOSFET is exactly twice the
bulk potential, the value of the gate voltage is called the threshold voltage. This means that the gate
potential has induced sufficient band bending for the intrinsic Fermi level in the p-type body of the
device to be below the Fermi level. The electron concentration in the channel is exactly equal to the
p-body doping and the channel is properly inverted, which is the minimum gate voltage to make the
device work. Hence, the threshold voltage can be calculated as shown below in Equation (7), where ψB



Energies 2017, 10, 1456 6 of 19

is Fermi-potential, Qf is the fixed oxide charges, and ϕms is the work function difference between metal
and semiconductor [23]:

VTH = φms −
Q f

COX
+ 2ψB +

√
4εSiC · q · NA · ψB

COX
(7)

with:
ψB =

kT
q

ln(
NA

ni
) (8)

Due to the work-function difference ϕms and fixed oxide charges Qf being essentially independent
of temperature, the threshold voltage temperature dependency can be given through differentiating
Equation (7) with respect to temperature:

dVTH
dT

=
dψB

dT
(2 +

1
COX

√
εSiC · q · NA

ψB
) (9)

From Equation (3), assuming a constant drain-source voltage VDS, it is known that CDS

varying with temperature is dominated by the temperature dependency of Vbi. In the expression
of Vbi in Equation (4), as temperature T increases, kT/q rises and ln(NAND/n2

i ) decreases.
Hence, the more dominant parameter will determine how CDS changes with temperature. Theoretically,
the ln(NAND/n2

i ) term dominates the temperature dependency of CDS since Vbi decreases with
temperature shown in Figure 5, where the drift region doping ND is 3.8 × 1015 cm−3. From Figure 5,
CDS increases with temperature owing to its inverse proportional relationship with Vbi, according to
Equation (4). As reported by Chen et al. [7], experimentally, the C-V characteristics of SiC MOSFET
almost overlap under different temperatures. Hence, the temperature dependency of CDS is neglected
in the following analysis. Additionally, the CGS and COX are generally considered to be constant.
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From Equation (2), gate current is also correlated with threshold voltage and effective mobility,
since the Miller plateau voltage is determined by the two parameters, resulting in the gate current
varying under different temperatures. Hence, according to the temperature derivative of Equation (6),
the temperature dependence of dVDS/dt can be obtained, as shown in Equation (10):

d2VDS
dtdT

=
−1

CDS +
CGSCOX

CGS+COX

(
dIchannel

dT
− COX

CGS + COX

dIG

dT
) (10)
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According to Equations (1) and (2), the temperature dependence of the channel and gate currents
can be given by:

dIchannel
dT

=
1
2
(1 + λVDS)(VGS − VTH)[(VGS − VTH)

dB
dT

− 2B
dVTH

dT
]

=
WCOX

2L
(1 + λVDS)(VGS − VTH)[(VGS − VTH)

dµ0

dT
− 2µ0

dVTH

dT
]

(11)

dIG

dT
=

dVTH

dT
− IL

g2
m

dgm

dT
=

dVTH

dT
− 1

2µ0

√
IloadL

Wµ0COX

dµ0

dT
(12)

The equation of mobility can be adopted from Mudholkar et al. [22]:

µ0 =
947

1 + ( ND
1.94×1017 )

0.61 (
T

300
)
−2.15

(13)

Substituting Equations (9), (11) and (12) into Equation (10), the temperature sensitivity of
dVDS/dt can be derived via the temperature dependency of threshold voltage and effective mobility.
From Equation (13), mobility µ0 possesses a negative temperature coefficient and decreases with
temperature. However, for SiC MOSFET, dµ0/dT is very low and can be neglected due to its wide
band-gap characteristics as reported in Hasanuzzaman et al. [24]. Hence, the temperature sensitivity
of dVDS/dt is dominated by dVTH/dT and is negative because the temperature coefficient of threshold
voltage is negative. Hence, turn-off dVDS/dt decreases as temperature increases. Similarly, the variation
tendency of dVDS/dt under different temperatures during the turn-on process can also be predicted.

From Equation (6), the variation in voltage is also affected by load current, supply voltage,
and gate drive resistance. Since the derivative of dVDS/dt with respect to the load current is positive,
as shown in Equation (14), it has a positive impact on the variation in voltage, which means the
variation in voltage increases with increasing load current:

d2VDS

dtdIL
=

1

CDS +
CGSCOX

CGS+COX

(1 +
COX

RGgm(CGS + COX)
) (14)

For the voltage, the impact on the variation in voltage is similar to that of the load current
because the capacitance CDS varies under different voltages, as described in Equation (3). As seen
from Equation (2), the higher the gate resistance, the lower the gate current. Hence, the variation in
voltage decreases with increasing gate resistance. Likewise, for the voltage fall period during turn-on,
the variation in voltage also depends on the gate resistance, load current, voltage, and temperature,
and their impacts on variation in voltage can be obtained through a similar analysis process as for
turn-off. A flow diagram for the proposed temperature-based analytical model, described in function
blocks, is given in Figure 6. The temperature dependency of variation in voltage is a result of the
variation of the intrinsic carrier concentration ni and the effective mobility of the electrons µ0 with
temperature. Owing to the positive temperature effect of the intrinsic carrier concentration ni and
the negative temperature effect of effective mobility of the electrons µ0, dVDS/dt decreases with
temperature for turn-off and increases for turn-on. Since SiC MOSFET has wider band-gap energy,
the temperature sensitivity of the effective mobility of the electrons µ0 can be neglected and can be
considered approximately constant in the model.
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3. Experiment Details

The static characteristics of SiC MOSFET were measured using a B1505A curve tracer (Agilent,
Santa Clara, CA, USA) with the device placed in an environment chamber to control the temperature.
The switching characteristics were obtained by the clamped inductive double-pulse test circuit shown
in Figure 7.
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Figure 7. Schematics of the transient characteristics test.

The switching waveforms were captured using a 610Zi digital oscilloscope (Lecroy, New York,
NY, USA) which has a bandwidth of 1 GHz and a sample rate of 20 GS/s. During the experiment,
different ambient temperatures were simulated using a heater, and the SiC MOSFET was mounted at
the bottom of the test circuit board, connected to the heater through an aluminum plate with some
thermal paste for reliable heat transfer, shown in Figure 8. The heater can vary the temperature from
room temperature to 450 ◦C. Theoretically, the SiC MOSFET chip can be normal operation above 300 ◦C
due to its wider band gap and higher thermal conductivity. However, the maximum recommended
operation temperature per the device manufacturer is 175 ◦C, owing to the considerations listed on
the packaging and reliability issues. Hence, the maximum of 175 ◦C was selected for experimental
measurements. A fan was used for the heat dissipation of the test circuit board to reduce the effects
of temperature on the other components. In the test, the SiC MOSFET and diode were SCT2080KE
(Rohm, Kyoto, Japan) and SCS220AM (Rohm, Kyoto, Japan) devices, respectively.
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Figure 8. Schematic of the simulation of different ambient temperatures.

4. Experimental Results

4.1. Static Characteristics under Different Temperatures

Figures 9 and 10 show SiC MOSFET transfer and output characteristics at varying temperatures,
respectively. The temperature dependence of the threshold voltage was obtained, as shown in Figure 11.
The square represents the tested values under different temperatures, the solid line represents the
fitted values, and the dashed line is representative of the calculation based on Equation (7). As seen,
the threshold voltage significantly decreases with temperature increase, which is typical for 4H-SiC
MOSFETs and has been observed in previous studies [13,14]. The effect is caused by the increase of
intrinsic carrier concentration at higher temperature, seen in Equation (7), due to increased thermal
generation of carriers across the band gap, which forms the channel easier.
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Figure 11. Threshold voltage of SiC MOSFET under different temperatures.

From Figure 11, the temperature dependency of threshold voltage is approximately linear.
The temperature sensitivity coefficient kVT is about −6.37 mV/◦C. If nominal threshold voltage
VTH0 at room temperature is known, a simple expression can be used to describe threshold voltage at
any measured temperature T:

VTH(T) = VTH0 − kVT(T − T0) (15)

Figure 11 also shows the calculated values of threshold voltage according to Equation (7). Reasonably
good agreement exists between calculations and measurements. Nevertheless, the analytical model of
threshold voltage, given by Equation (7), is often used for theoretical analysis since its parameters relate
to the physics of the device. These parameters are usually hard to obtain. The linear fitting expression
of the threshold voltage, given by Equation (15), is usually adopted in practical applications. In order
to simplify the calculation, Equation (15) is used for the following calculations. The temperature
dependency of transconductance gm is dominated by the effective mobility µ0. As aforementioned
analysis, the dµ0/dT of SiC MOSFET is very low and can be neglected due to its wide band-gap
characteristics. Hence, the temperature dependency of transconductance gm is also not considered.

4.2. Temperature Dependency of dVDS/dt

From Equation (6), dVDS/dt depends on device temperature, load current, gate resistors,
and voltage. Here, the effects of these factors are investigated and the results are shown in Figures 12–19,
where the turn-off waveforms of drain voltage are shown in Figures 12–15, and the turn-on waveforms
are shown in Figures 16–19. The test conditions were set to voltages of 200, 400 and 600 V, and load
currents of 10, 15 and 20 A. The gate resistor varied from 10 Ω to 150 Ω and the temperature ranged
from 25 ◦C to 175 ◦C. An external drive system with 24/–5 voltage was used in the test and a double
pulse signal was generated by a pulse generator. The current was measured using a Pearson current
sensor. As seen, load current, voltage, temperature, and gate resistor have different impacts on dVDS/dt
during turn-off and turn-on. During turn-off, the relationship between dVDS/dt and temperature
is strongly dependent on the gate resistor. With larger values for the gate resistor, the curves nearly
overlap under different temperatures. With smaller values for the gate resistor, the variation in voltage
barely changed as temperature increased. However, the time at which the voltage rose obviously
increased with temperature, which means the delay time varied as temperature increased.

In the voltage fall period during turn-on, at larger gate resistor values, the impact of temperature
on the variation in voltage is obvious and its magnitudes increased as temperature increased. The time
at which the voltage falls is different, and decreased with temperature. For smaller gate resistor
values, the variation in voltage was nearly the same under different temperatures, since the waveforms
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Figure 12. Turn-off waveforms for drain-source voltage (VDS) at a voltage of 200 V, a load current 15 A,
and at different temperatures with a gate drive resistance (RG) = 10 Ω.
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Figure 13. Turn-off waveforms for VDS at a voltage of 400 V, a load current 15 A, and at different
temperatures with RG = 10 Ω.
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Figure 14. Turn-off waveforms for VDS at a voltage of 400 V, a load current 20 A, and at different
temperatures with RG = 10 Ω.
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Figure 15. Turn-off waveforms for VDS at a voltage of 400 V, a load current 20 A, and at different
temperatures with RG = 150 Ω.
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Figure 16. Turn-on waveforms for VDS at a voltage of 200 V, a load current 15 A, and at different
temperatures with RG = 10 Ω.
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Figure 17. Turn-on waveforms for VDS at a voltage of 400 V, a load current 15 A, and at different
temperatures with RG = 10 Ω.
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Figure 18. Turn-on waveforms for VDS at a voltage of 400 V, a load current 20 A, and at different
temperatures with RG = 10 Ω.
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Figure 19. Turn-on waveforms for VDS at a voltage of 400 V, a load current 20 A, and at different
temperatures with RG = 150 Ω.

From the above curves, the measured values of dVDS/dt, which varies with temperature
under different measurement conditions, were obtained. The results are shown from Figures 20–25,
where Figures 20–22 are the results for turn-off, and Figures 23–25 are for turn-on. The calculated
values are also shown in these figures. In the calculations, the values of CGS and COX are 2.192 nF
and 3.387 nF, respectively, extracted by a constant gate current circuit during turn-on. Indeed, for a
SiC MOSFET the relative change in channel length is very small comparing with the long channel,
λ can be treated as zero. According to some points in the device output characteristic saturation
region, the values of W and L were obtained. The drain–source overlap area ADS was 5.3676 mm2.
Equation (15) was adopted as the expression of threshold voltage under different temperatures.

For a fixed voltage of 400 V and gate resistance of 10 Ω, the relationship between dVDS/dt and
temperature under different load currents is presented in Figure 20. Figure 21 shows the temperature
dependence of dVDS/dt under different voltages at 15 A load current of and 10 Ω gate resistance.
Note that dVDS/dt has little fluctuation as the temperature increases, meaning that turn-off dVDS/dt is
not a strong function of temperature. The dVDS/dt also increases with load current and supply voltage.
The positive voltage coefficient of dVDS/dt is due to the fact that drain-source capacitance and Miller
capacitance reduce with increasing supply voltage. The Miller capacitance is consisted of a fixed oxide
capacitance and a depletion capacitance that varies with voltage. The depletion width increases as
voltage increases resulting in a small depletion capacitance and hence the Miller capacitance declines
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at a large voltage. While, drain-source capacitance is comprised of the depletion region capacitance of
drain-body junction and the region width also increases with voltage. Hence drain-source capacitance
decreases. The calculated results show dVDS/dt is minimally temperature sensitive and decreases
with temperature. Some discrepancies can be found between the measurements and calculations.
The reason for this may be the temperature dependence of the effective mobility compensating for the
temperature dependence of the threshold voltage in realistic experimental conditions. Furthermore,
the impact of the gate resistors on the temperature dependence of dVDS/dt was also measured at 400 V
and 15 A. The results are exhibited in Figure 22. The dVDS/dt varied with different resistors, and was
large with smaller resistor values and was small with larger resistor values. The reason results from
the variation of gate current at different resistors observed in aforementioned analysis.
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Figure 20. Measured and calculated dVDS/dt as a function of temperature at a voltage of 400 V and a
gate resistor of 10 Ω during turn-off, shown for different load currents.
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Figure 22. Measured dVDS/dt as a function of temperature at a voltage of 400 V and a load current
15 A during turn-off, shown for different gate resistances.
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Figure 23. Measured and calculated dVDS/dt as a function of temperature at a voltage of 400 V and a
gate resistor of 10 Ω during turn-on, shown for different load currents.
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Figure 24. Measured and calculated dVDS/dt as a function of temperature at a voltage of 15 A and a
gate resistor of 10 Ω during turn-on, shown for different voltages.
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Figure 25. Measured and calculated dVDS/dt as a function of temperature at a voltage of 400 V and a
load current 15 A during turn-on, shown for different gate resistances.

During the period of voltage fall during turn-on, the relationship between dVDS/dt and
temperature, under different load currents, at 400 V and 10 Ω, is presented in Figure 23. For different
voltages, the relationship at 15 A and 10 Ω is shown in Figure 24. Notably, dVDS/dt is less than zero
and its magnitude increases with temperature, as expected. Moreover, the temperature dependency
of dVDS/dt exhibits near-linear characteristics. The results are interesting since the monotonic
relationship may be a potential indictor for junction potential measurement for SiC MOSFET. At the
same temperature, a larger load current results in a smaller dVDS/dt. For voltage, the magnitude of
dVDS/dt is larger for a larger voltage. To evaluate the effects of gate resistors on the temperature
dependency of turn-on dVDS/dt, the temperature dependency of turn-on dVDS/dt was measured at
400 V and 15 A under different gate resistor values. The results are shown in Figure 25. A variation in
dVDS/dt can be observed in Figure 25 for different gate resistors at the same temperature. A smaller
gate resistor results in a larger magnitude of dVDS/dt. Moreover, in the above figures, the calculated
and measured values show good agreement at the evaluated temperature range.

5. Discussion

The variation trend between dVDS/dt and temperature for SiC MOSFET can be also seen in
previous studies. In Chen et al. [9] and DiMarino et al. [14], the measurements were performed
at a supply voltage of 600 V and load current of 10 A with 10 Ω gate resistance. The impact of
temperature is clear and the magnitude of dVDS/dt decreases as temperature increases for turn-off,
but increases with increasing temperature for turn-on. Othman et al. [11] experimentally showed the
temperature-sensitivity of turn-off dVDS/dt is very low and approximately constant under 400 V, 15 A,
and 28 Ω gate resistance test conditions. When temperature ranges from 25 ◦C up to 175 ◦C, the value
of dVDS/dt is approximately 10.44 V/ns. However, for turn-on dVDS/dt, the magnitude increases from
4.6 V/ns at 25 ◦C to 6.62 V/ns at 175 ◦C. As reported by Takao et al. [12], the same conclusions were
drawn from the switching waveforms of SiC MOSFETs at 25 ◦C and 175 ◦C at 600 V, 10 A, with 11.36 Ω
gate resistance. The magnitude of turn-on dVDS/dt is approximately 12 V/ns at 25 ◦C and 15 V/ns for
175 ◦C, whereas the values of turn-off dVDS/dt are all approximately 29.11 V/ns for both 25 ◦C and
175 ◦C. These provide a potential solution for SiC MOSFET junction temperature estimation.

In the case of Si IGBTs, the turn-off dVCE/dt under different temperatures has been reported
by Bryant et al. [25]. The dVCE/dt possesses a negative temperature coefficient and decreases with
temperature decreases. For different load currents, the slope is the same and its value is 6.75 V/(µs◦C).
Because of this fixed sensitivity and linearity, turn-off dVCE/dt can be used as an effective indicator for
junction temperature measurement of an IGBT. However, for a SiC MOSFET, turn-off dVDS/dt is not
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strongly correlated with temperature. Hence, monitoring turn-off dVDS/dt seems to be infeasible for
junction temperature measurement of a SiC MOSFET.

Equation (10) shows the two temperature-sensitive parameters that dominate the temperature
dependency of dVDS/dt are the threshold voltage and the effective mobility. For Si MOSFET,
the effective mobility decreases with temperature and its temperature dependency is negative. But for
SiC MOSFETs, as reported in [24], the temperature dependency of effective mobility can be neglected
and be considered approximately constant due to its wide band-gap characteristics. Hence, it can be
concluded theoretically that the temperature dependency of dVDS/dt in Si MOSFETs is less than that
in SiC MOSFETs owing to the compensating effects of the temperature characteristic of the effective
mobility to the temperature characteristic of the threshold voltage in Si MOSFETs. However, it is hard
to find the experimental measurements on the temperature dependency of dVDS/dt for Si MOSFETs in
previous literature. A comprehensive comparison between Si MOSFETs and SiC MOSFETs, regarding
the dependency of the dVDS/dt on temperature, load current and gate resistor, will be performed
experimentally in the next step.

From the measurements, the turn–on dVDS/dt is shown to have good temperature sensitivity
and is approximately linear. The results are interesting and significant because it may be a potential
indicator for junction temperature measurement of a SiC MOSFET. Others factors can also effect
turn-on dVDS/dt, as shown in Figures 23–25, but this is not an issue. Because the type of device
and system parameters, such as voltage, load current, and gate resistance, are usually fixed in
practical SiC MOSFET-based applications, and turn-on dVDS/dt is only dominated by temperature.
Before the turn-on dVDS/dt–based method is used for temperature assessment, the calibration curves
between dVDS/dt and temperature should be drawn experimentally and used as a lookup table.
Indeed, the lookup table is easily implemented by digital signal processing (DSP). The dVDS/dt can
also be easily measured by a RC high-pass connected to the drain and source terminals of device from
the switching waveforms. After the dVDS/dt is measured, the corresponding junction temperature
can be estimated from the lookup table.

6. Conclusions

A thorough analysis of variation in voltage for SiC MOSFETs during turn-on and turn-off was
completed. It can be concluded that turn on variation of voltage is a function of temperature and has
near-linear dependency with temperature. The relationship between turn-off variations in voltage
and temperature was also investigated. Turn-off variation in voltage was approximately invariant
with temperature with fixed supply voltage, load current, and gate resistance test conditions. Using a
temperature-based analytical model for variations in voltage, we demonstrated that the temperature
dependency of variation in voltage results from the positive temperature dependency of the intrinsic
carrier concentration and negative temperature dependency of the effective mobility of the electrons in
SiC MOSFETs. The analytical model also demonstrated the ability to correctly predict how variation in
voltage varies with temperature. Additionally, the effects of supply voltage, load current, and gate
resistance on the temperature dependency of variations in voltage were discussed. Due to good
linearity, turn on variation in voltage may be considered as a practical temperature-sensitive electrical
parameter for junction temperature estimation in SiC MOSFETs. With a database of turn-on variations
in voltage with temperature, supply voltage, load current, and gate resistance, the junction temperature
of SiC MOSFETs can be derived from the calibration curve. Future work includes a thorough
comparison with other models, a verification of whether the turn-on variation in the voltage–based
temperature measurement method represents correctly the junction temperature at realistic operation
conditions, and a comprehensive assessment in terms of selectivity, linearity, generality, and possibility
for online measurement.
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