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Abstract: Over the recent years there has been an immense growth in load consumption due to
which, Load Management (LM) has become more significant. Energy providers around the world
apply different load management concepts and techniques to improve the load profile. In order to
reduce the stress over the load management, Demand Response Unit Commitment (DRUC), a new
concept, has been implemented in this paper. The main feature of this concept is that both the energy
providers and consumers must participate in order to get mutual benefits hence maximizing each
of their profits. In this paper we discuss the time-based Demand Response Program since there
is no penalty observed in this program. When the Demand Response was combined with Unit
Commitment and compiled it was observed that a satisfactory solution resulted, which is proved
to be mutually beneficial for both Generating Companies (GENCOs) and their customers. Here,
we have used a Cat Swarm Optimization (CSO) technique to find the solution for the DRUC problem.
The results are obtained using CSO technique for UC problem with and without DR program. This is
compared with the results obtained using other conventional methods. The test system considered
for the study is IEEE39 bus system.

Keywords: Unit Commitment (UC); Demand Response (DR); Demand Response Unit Commitment
(DRUC); Cat Swarm Optimization (CSO)

1. Introduction

With the improvements in the power sector field over the decades, there has also been a vast
increase in load consumption due to heavy demand. Sometimes the load required is very high due to
multiple consumers requiring power at the same time [1]. Due to this issue, GENCOs are sometimes not
able to meet the customer demands, hence making them unsatisfied or prompting them to terminate
their contracts. Some of the growing issues associated with power system operation include limited
supply of system resources that in turn forces the operators to operate their systems at their maximum
capacity, resulting in regular price hikes in the electricity market [2]. All the aforementioned limitations
motivate us to search for and explore novel ways to increase the efficiency of resource utilization in
power operations. As one of these new ways, Demand Response (DR) has recently become a major
concept in power system operation. The use of Demand Response management in power systems
enables the operators to efficiently utilize their resources as well as the power system operation. The
use of Demand Response Programs (DRPs) in power system operation increases the profit of customers
as well as the operators. It also encourages customers’ participation in the Demand Response Program
(DRP) by rewarding them with incentives, if they agree to reduce their load demands during the peak
hours of the day [3].
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As per the Federal Energy Regulatory Commission (FERC), Demand Response can be defined as
“Changes in electric usage by end-use customers from their normal consumption patterns in response
to changes in the price of electricity over time, or to incentive payments designed to induce lower
electricity use at times of high wholesale market prices or when system reliability is jeopardized” [4].
This is quite a different concept from energy efficiency that involves using less power for the same task.
Demand response is also a component of smart energy demand that includes energy efficiency, home
and building energy management, distributed renewable resources and electric vehicle charging [5].
The implementation of DRP in power system operation reduces the load stress on the equipment, hence
ensuring a maximum efficiency and power. According to the Federal Energy Regulatory Commissions
(FERC) report on demand response programs implemented in the US electricity markets from 2006 [6,7]
DRP is broadly divided into two major categories:

(a) Time-Based Rate Programs (TBRP):

Time-Based Rate Programs (TBRPs) are programs that involve changes in the forecasted price that
varies with the time of day, so the consumer can change or reduce their load usage for the respective
hours accordingly. TBRPs are subcategorized into three programs, namely time of use, critical peak
pricing and real time pricing programs. In time of use programs the main aim is to reduce the demand
(peak periods) by increasing the prices at the high demand hour causing customers to shift or reduce
their loads and lowering the prices where load management (off peak) use is possible. This attracts
and encourages the customers to use load during off-peak hours. It is a basic type, where the rates of
load per unit consumption vary in different time blocks. The rates during peaks are high and during
off-peak periods are low [8]. Critical peak pricing rates consist of a pre-specified high load usage price
imposed on Time of Use rates. These rates are applied for a short period of days or hours of a year. In
real time pricing programs, the consumers are faced with hourly varying prices that reflect the real
price of load in the market at that time. Customers under this program are informed in advanced
about the prices on a day before or an hour before [9].

(b) Incentive-Based Programs (IBP):

IBPs are all based on paying or receiving a small amount in the form of penalties/incentives.
IBPs are sub categorized into (i) Direct Load Control (ii) Emergency DR Program (iii) Demand
Bidding/Buyback program (iv) Ancillary Services Program (v) Interruptible/Curtailable Service
and (vi) Capacity Market program.

Direct Load Control involves programs where the loads are remotely controlled by the GENCOs,
so they can be remotely committed or decommitted during peak hours in order to reduce the load
stress. Some of the remotely controlled loads may include air conditioners, pumps and water heaters.
Emergency DR Programs (EDR) require customers to curtail their loads during system emergencies [10].
The customers are in turn rewarded with incentives for curtailing their loads. In both Direct Load
Control (DLC) and EDR programs, the customers are not penalized, if they fail to achieve the objectives,
because they are involved in voluntary programs. In Demand Bidding/Buyback programs, the
customers are encouraged to curtail load at a rate by which they are satisfied or how much load they
are willing to curtail at the given price. In Ancillary Services Programs customers are made to bid and
challenge their load curtailment values in markets as operating reserves [11].

Interruptible/Curtailable Service programs are the programs where the enrolled customers are
asked to curtail their loads during the peak demand hours of a day in order to reduce load stress. They
are in turn paid certain incentives to do so. If they fail to curtail the desired amount of load, they are
penalized. In Capacity Market Programs, the customers are willing to perform pre-informed load
curtailments for certain incentive rewards. Failing to do so will cause a penalization. Implementation
of DR along UC not only reduces the load stress during peak hours, but it also increases the profits of
GENCOs and makes the system more reliable. DR helps UC by shaving off loads during peak hours
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using various methods and thus causing an increase in profits and making systems more reliable and
robust [12,13].

In order to implement demand response in smart grids, we should be able to coordinate large
number of distributed resources using sensors, communication protocols and actuators. In addition,
the increased presence of different renewable generation drives a much larger need for officials to
procure more ancillary services in order to balance the grid [14,15]. Demand response is also provided
by industrial customers. Industrial manufacturing plants’ magnitude of power consumption is very
large compared to commercial and residential loads [16]. Demand response implementation was
imposed in the United States by FERC Order No. 745 in March 2011 [4]. Reduction of loads during
peak hours decreases the need for installing new units. According to the demand response smart grid
coalition, around 10–20% of electricity costs are due to peak demand in the United States [17]. It was
found in the California electricity crisis in 2000–2001 that lowering the demand by mere 5% would
have resulted in a 50% of price reduction during peak hours [18]. A suit was filed regarding legality of
order 745 by many affected parties, including the State of California [19]. From December 2009, the UK
national grid has contracted to provide DR of 839 MW (35%) [20]. The mathematical formulation of
the Market Clearing Model based on DRP was implemented in Singapore to improve the wholesale
market profit [21]. The analysis on various power sectors of Germany was improved with wind power
prediction [22].

The impact of UC and DRUC problems was studied by a dynamic approach on an IEEE 10 unit
system [23]. Zhang et al. proposed how renewable energy resources can play a vital role in the future
power system. How it can be used along with DR and electric vehicles in a UC problem to utilize wind
power efficiently by using fuzzy chance constraints has also been studied [24]. The wind uncertainty
can be overcome using ancillary services from Pumped Hydro Energy System (PHES) and DR and
simultaneous scheduling of PHES and DR along with wind uncertainties has been attempted by
solving an LR-based probabilistic UC [25].

The IBP based multi-objective energy management system is proposed in order to optimize micro
grids by PSO [26]. Kwag et al. discussed virtual generation and the various costs reduction by using
DR [27].The growing load factors in the Spanish electric energy system causing higher loads and
increased cost and its reduction by demand shifting and curtailment were examined in [28]. The UC
model is presented for accessing the reserve requirements resulting from large scale integration of
renewable energy sources and deferrable demand in power systems and the alternative DR paradigms
are discussed for accessing the benefits of demand flexibility in [29]. A robust optimization technique
with wind power to derive an optimal UC was developed in [30]. Based on the explosion of fireworks
in the sky, a unit commitment problem in a deregulated environment was modeled and the GENCOs’
profits were maximized [31]. An economic model of responsive loads is derived based upon price
elasticity of demand and customers benefit function in [7]. Govardhan proposed a linear load economic
model for solving the demand response unit commitment problem by using an Artificial Bee Colony
algorithm [32]. The critical kick-back effect has been applied to a DR program for maximizing the
profit in peak hours in a day in [33].

2. Demand Response Unit Commitment Problem Formulation

Traditional Unit Commitment (TUC) is the process of scheduling power generation, without
violating the systems or units operational constraints. The traditional unit commitment problem
objective function focuses on minimization of generation cost along with fuel costs and startup
costs [32,34–37]. In this paper, the demand response based unit commitment problem is modeled and
the main objective of the demand response unit commitment problem is used to maximize the profits
of the GENCO using a Time-Based Demand Response Program (TBDRP) [38,39].

The objective function is as follows:

Max PR = [TRV − TOCOST] (1)
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where, PR—is the total profit of the GENCOs and Demand Response Service Provider (DRSP)
combined, TRV—is the total revenue calculated from the GENCOs and DRSP, TOCOST—is the total
operating cost of the GENCOs and DRSP combined:

TRv =

[
T

∑
t=1

N

∑
i=1

Pi,t
gen Si

price Ui,t
stat

]
+

[
T

∑
t=1

dN

∑
di=1

Pdi,t
gen Sdi

price Udi,t
stat

]
(2)

TOcost =

[
T

∑
t=1

N

∑
i=1

Fi
cost

(
Pi,t

gen

)
Ui,t

stat + SUcost

]
+

[
T

∑
t=1

dN

∑
di=1

Fdi
cost

(
Pdi,t

gen

)
Udi,t

stat + SUcost

]
(3)

Fi
cost = ai

(
Pi

gen

)2
+ bi

(
Pi

gen

)
+ ci (4)

2.1. Mathematical Modelling of DRUC

The main objective of GENCOs in a deregulated environment is to maximize their profits, their
objective being minimizing the cost of energy supplied to the consumers. Hence the traditional unit
commitment is modeled with demand response program. The market clearing price in the demand
response program is calculated from the DRSP supply curve coefficients and based on customer’s
willingness to participate in a Demand Response Program. The demand response market clearing
price is formulated by the following equation:

DRprice = θdiDRdi
gen + δdi

(
1− µdi

)
; (di = 1 · · · dN) (5)

Here, µdi is the customer’s willingness to participate in a DR program. Its value is between 0 and
1, and the higher the willingness of customers, the less is the DR cost. θdi and δdi are DRSP coefficients
for all customers [40]. Rewriting the above equation as:

DRprice = θdiDRdi
gen + ∆δdi (6)

where:
∆δdi = δdi

(
1− µdi

)
(7)

Rearranging the above equation, we get:

DRdi
gen =

DRprice − ∆δdi

θdi , i = 1 · · · dN (8)

Equality must be maintained between the sold and purchased value of DR, and using this
constraint the following equation is modeled:

DRreq =
dN

∑
di=1

DRdi
gen =

dN

∑
di=1

DRprice − ∆δdi

θdi (9)

DRprice =

DRreq +
dN
∑

di=1

∆δdi

θdi

dN
∑

di=1

1
θdi

(10)

The higher the willingness of customers to participate in DPR, the less will be the value of ∆δdi.
Similarly, the value of ∆δdi increases as customer willingness decreases. The profit maximization
equation for DRSPs is defined as:

PDRdi
f = DRpriceDRdi

gen − DROdi
cost ; di = 1 · · · dN (11)
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Substituting DR di
gen and DRO di

cost in Equation (11), we get:

PDRdi
f = DRprice ×

(
DRprice−∆δdi

θdi

)
−
[

θmdi ×
(

DRprice−∆δdi

θdi

)2
+ δmdi ×

(
DRprice−∆δdi

θdi

)
+ φmdi

]
; di = 1 . . . dN (12)

where, the coefficients θmdi, δmdi and φmdi are referred to the customers’ supply curve cost coefficients.
θdi is always considered equal to θmi. Taking derivation of the profit function with respect to ∆δdi

we get:


∆δ1(k)
∆δ2(k)

...
∆δdN(k)

 =



0 θ1

θ2 × 1
(θ1)

2
K2−1

. θ1

θdN × 1
(θ1)

2
K2−1

θ2

θ1 × 1
(θ2)

2K2−1
0 . θ2

θdN × 1
(θ2)

2K2−1
...

...
...

...
θdN

θ1 × 1
(θdN)

2
K2−1

θdN

θ2 × 1
(θdN)

2
K2−1

· · · 0


×


∆δ1(k)
∆δ2(k)

...
∆δdN(k)

 +



θ1K
θ1K+1 0 · · · 0 θ1

(θ1)
2
K+1

0 θ2K
θ2K+1 · · · 0 θ2

(θ2)
2K+1

...
...

...
...

...
0 0 . θdN K

θdN K+1
θdN

(θdN)
2
K+1




∆δm1(k)
∆δm2(k)

...
∆δmdN(k)

DRreq



and:

DRprice =
[

1
θ1K

1
θ2K · · · 1

θdN K

]


∆δ1(k)
∆δ2(k)

...
∆δdN(k)

+

(
1
K
× DRreq

)
(13)

Equating Equations (10) and (13) we get:

DRprice =

DRreq + ∆δdi

θdi +
dN
∑

di 6=dj

∆δdj

θdj

dN
∑

di=1

1
θdi

(14)

Rearranging the above equation, we get:

∆δdi =
dN
∑

di 6=dj

(
θdi

θdj × 1
(θdi)

2
K−1

× ∆δdj
)
+

(
θdi

(θdi)
2

K−1
× DRreq

)
+
(

θdi K
θdi K−1

× δmdi
)

(15)

where:

K =
dN

∑
di=1

1
θdi

2.2. Traditional Unit Commitment Constraints

2.2.1. Equality Constraint

N

∑
i=1

(
Pi,t

gen Ui,t
stat

)
= Pt

dem ; (t = 1 · · · T) (16)

2.2.2. Inequality Constraint

Pi,min
gen ≤ Pi,t

gen ≤ Pi,max
gen ; (i = 1 · · ·N) (17)

2.2.3. Ramp up Rate

Pi,t max
gen = min

(
Pi max

gen , Pi(t−1)
gen + ψRi

up

)
(18)
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2.2.4. Ramp down Rate

Pi,t min
gen = max

(
Pi min

gen , Pi(t−1)
gen − ψRi

down

)
(19)

2.2.5. Minimum up Time

ONi ≥ Mi
up (20)

2.2.6. Minimum down Time

OFFi ≥ Mi
down (21)

2.2.7. Reserve Constraints

0 ≤ Ri,t
gen ≤

(
Pi,max

gen Pi,min
gen

)
(22)

Pi,min
gen ≤

(
Pi,t

gen + Ri,t
gen

)
Ui,t

stat ≤ Pi,max
gen (23)

N

∑
i=1

Ri,t
gen Ui,t

stat ≤ Ri,t max
gen (24)

2.2.8. Spinning Reserve

Si
res =

N

∑
i=1

(
Pi max

gen − Pi
gen

)
(25)

2.2.9. Startup Cost of Units

SUi
cos t =

{
Hi

cos t
Ci

cos t

, if Mi
down ≤ OFFi ≤ CSi

time
, if OFFi ≥ CSi

time
(26)

CSi
time = CSi

Hour + Mi
down (27)

2.3. Demand Response Unit Commitment Constraints

2.3.1. Equality Constraint

N

∑
i=1

(
Pi,t

gen Ui,t
stat

)
+

dN

∑
di=1

(
Pdi,t

gen Udi,t
stat

)
= Pt

dem ; (t = 1 · · · T) (28)

2.3.2. Minimum up Time

ONdi ≥ Mdi
up (29)

2.3.3. Minimum down Time

OFFdi ≥ Mdi
down (30)
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2.3.4. Ramp up Rate

Pdi,t max
gen = min

(
Pdi max

gen , Pdi(t−1)
gen + ψRdi

up

)
(31)

2.3.5. Ramp down Rate

Pdi,t min
gen = max

(
Pdi min

gen , Pdi(t−1)
gen − ψRdi

down

)
(32)

3. Cat Swarm Optimization (CSO)

CSO optimization overcomes the limitations of PSO and DE that they are influenced by parameters
and stagnation problem [41]. CSO is a meta-heuristic evolutionary optimization technique that
intimates the natural behavior of felines. Cats have a strong curiosity towards objects that move.
The cat group has superior hunting skills. Although it may be seen as always being at rest and
they may seem to move slowly, they are always alert and aware of their surroundings [42]. Upon
sensing the presence of prey, they chase it very quickly thereby spending a large amount of energy.
These mentioned two characteristics, that is, the slow movement resting and sudden chase with high
speed are described as seeking and tracking modes [43,44]. Each of these modes can be separately
modeled mathematically.

3.1. Seeking Mode

There are four essential factors used in seeking, these factors are described as:

(a) Seeking Memory Pool (SMP): number of copies of a cat produced.
(b) Seeking Range of selected Dimension (SRD): difference between the new and old in the dimension

selected for mutation.
(c) Counts of Dimensions to Change (CDC): number of dimensions to be mutated.
(d) Mixture Ratio (MR): to state that most of the time spent by the cats is resting and observing.

Steps executed in seeking mode:

(1) Randomly select MR fraction of population as seeking cats: rest of them as tracing cats.
(2) SMP copies of the ith seeking cat is created.
(3) Update the position of each copy based on CDC by randomly adding or subtracting SRD fraction.
(4) Evaluate error fitness values of copies.
(5) Best candidate is picked from all copies and placed at ith seeking cat.
(6) Repeat Step 2 until all seeking cats are involved.

3.2. Tracing Mode

This mode corresponds to the local search technique of an optimization problem. This method
involves the cats tracing a target while spending a huge amount of energy. The rapid chase of cats is
mathematically modeled as follows:

Define the position and velocity of ith cat in the D-dimensional space as:

Xi = (Xi
1, Xi

2, . . . . . . , Xi
D) (33)

and:
Vi = (Vi

1, Vi
2, . . . . . . , Vi

D) (34)

The global best position of a cat is represented as:

Gbest =
(

G1
best, G2

best, . . . . . . , GD
best

)
(35)
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Updated equations are:

Vi
D = w×Vi

D + C× r
(

GD
best − Xi

D

)
(36)

and:
Xi

D = Xi
D + Vi

D (37)

The proposed method algorithm is given by the following steps:

Step 1: Create N number of population.
Step 2: Initialize time t = 0 and i = 0.
Step 3: Find the overall cost and revenue for TUC and DRSP from the data provided using

iterations and store the values and evaluate the profit for TUC and DRSP using the formula
Pf = Rv − Tcost.

Step 4: Check if all units are over and whether the cat is in seeking mode based on MR value
Step 5: If yes, Seeking Mode.

Create SMP copies and update position based on CDC, then take best value from SMP copies.
Step 6: If no, then Tracing mode.

Update position and velocity by using the equations:

Vi
D = w×Vi

D + C× r
(

GD
best − Xi

D

)
Xi

D = Xi
D + Vi

D

And save the highest profit unit.
Step 7: Check if all cats are updated, if yes, then proceed or else go back to Step 4.
Step 8: Check if maximum iteration is over, if yes, then stop and display the result, else go back to

Step 2.

4. Result and Discussion

In this paper, we have used IEEE 39 bus system with conventional 10-units for a scheduling
period of 24 h. The data for the load demand curve of the 10 unit systems is listed in Table 1. The
operator data are listed in Table 2. The load data for the 10 unit 39 bus system is shown in Table 3.
The forecasted price values for 24 h in a 10 bus system are shown in Table 4 and plotted in Figure 1.
Six separate DRSPs are considered here, each generating load at a capacity of 50 MW. The load data
curve value for these DRSPs is given in Table 5. The curve for forecasted price along with load demand
variation for 24 h is plotted in Figure 2. Here it is noted that the price value during peak hours is high
compared to the non-peak hours.

Table 1. Load curve data for the 10 unit IEEE 39 bus system.

Unit No. ai bi ci

U-1 1000 16.19 0.00048
U-2 970 17.26 0.00031
U-3 700 16.6 0.002
U-4 680 16.5 0.00211
U-5 450 19.7 0.00398
U-6 370 22.26 0.00712
U-7 480 27.74 0.00079
U-8 660 25.92 0.00413
U-9 665 27.27 0.0022
U-10 670 27.799 0.00173
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Table 2. Operator data for the 10 unit IEEE 39 bus system.

Unit No. Pmax
gen

(MW)
Pmin

gen
(MW)

Mi
up

(h)
Mi

down
(h)

Ci
cost
($)

Hi
cost

($)
CSi

time
(h)

Ui
stat

(h)

U-1 455 150 8 8 4500 9000 5 8
U-2 455 150 8 8 5000 10,000 5 8
U-3 130 20 5 5 550 1100 4 −5
U-4 130 20 5 5 560 1120 4 −5
U-5 162 25 6 6 900 1800 4 −6
U-6 80 20 3 3 170 340 2 −3
U-7 85 25 3 3 260 520 2 −3
U-8 55 10 1 1 30 60 0 −1
U-9 55 10 1 1 30 60 0 −1
U-10 55 10 1 1 30 60 0 −1

Table 3. Load demand for 24 h.

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12

Load Demand (MW) 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500

Time (h) 13 14 15 16 17 18 19 20 21 22 23 24

Load Demand (MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800

Table 4. Forecasted price values for 24 h.

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12

Price ($) 22.15 22 23.1 22.65 23.25 22.95 22.5 22.15 22.8 29.35 30.15 31.65

Time (h) 13 14 15 16 17 18 19 20 21 22 23 24

Price ($) 24.6 24.5 22.5 22.3 22.25 22.05 22.2 22.65 23.1 22.95 22.75 22.55
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5. Simulation Results

The CSO formulation and solution methodology was implemented in MATLAB (2015,
The MathWorks, Natick, MA, USA) and executed on a core i5 (2.6 GHz) personal computer equipped
with 4 GB RAM. The proposed methodology that has been tested on a 10 unit generating system to
solve TUC and DRUC problem is shown in Tables 6–8. The parameters assumed here are as follows;
population size = 50, max iterations cycles = 100, SMP = 5, CDC = 0.6, SRD = 2, MR = 0.1, inertia weight
w = 0.4 and acceleration constant C = 1.5 [41].

Table 6. Output data for base case using Traditional Unit Commitment (TUC).

Hour 1 2 3 4 5 6 7 8 9 10 Reserve
(MW) Fcost ($) SC ($) TOcost ($) Rv ($) PR ($)

1 455 245 0 0 0 0 0 0 0 0 210 13,683.13 0 13,683.13 15,505 1821.87
2 455 295 0 0 0 0 0 0 0 0 160 14,554.50 0 14,554.50 16,500 1945.50
3 455 370 0 0 25 0 0 0 0 0 222 16,809.45 900 17,709.45 19,635 1925.55
4 455 455 0 0 40 0 0 0 0 0 122 18,597.67 0 18,597.67 21,517.5 2919.83
5 455 390 0 130 25 0 0 0 0 0 202 20,020.02 560 20,580.02 23,250 2669.98
6 455 360 130 130 25 0 0 0 0 0 232 22,387.04 1100 23,487.04 25,245 1757.96
7 455 410 130 130 25 0 0 0 0 0 182 23,261.98 0 23,261.98 25,875 2613.02
8 455 455 130 130 30 0 0 0 0 0 132 24,150.34 0 24,150.34 26,580 2429.66
9 455 455 130 130 85 20 25 0 0 0 197 27,251.06 860 28,111.06 29,640 1528.94
10 455 455 130 130 162 33 25 10 0 0 152 30,057.55 60 30,117.55 41,090 10,972.45
11 455 455 130 130 162 73 25 10 10 0 157 31,916.06 60 31,976.06 43,717.5 11,741.44
12 455 455 130 130 162 80 25 43 10 10 162 33,890.16 60 33,950.16 47,475 13,524.84
13 455 455 130 130 162 33 25 10 0 0 152 30,057.55 0 30,057.55 34,440 4382.45
14 455 455 130 130 85 20 25 0 0 0 197 27,251.06 0 27,251.06 31,850 4598.94
15 455 455 130 130 30 0 0 0 0 0 132 24,150.34 0 24,150.34 27,000 2849.66
16 455 310 130 130 25 0 0 0 0 0 282 21,513.66 0 21,513.66 23,415 1901.34
17 455 260 130 130 25 0 0 0 0 0 332 20,641.82 0 20,641.82 22,250 1608.18
18 455 360 130 130 25 0 0 0 0 0 232 22,387.04 0 22,387.04 24,255 1867.96
19 455 455 130 130 30 0 0 0 0 0 132 24,150.34 0 24,150.34 26,640 2489.66
20 455 455 130 130 162 33 25 10 0 0 152 30,057.55 490 30,547.55 31,710 1162.45
21 455 455 130 130 85 20 25 0 0 0 197 27,251.06 0 27,251.06 30,030 2778.94
22 455 455 0 0 145 20 25 0 0 0 137 22,735.52 0 22,735.52 25,245 2509.48
23 455 425 0 0 0 20 0 0 0 0 90 17,645.36 0 17,645.36 20,475 2829.64
24 455 345 0 0 0 0 0 0 0 0 110 15,427.42 0 15,427.42 18,040 2612.58

TOTAL COST ($) 55,9847.7 4090 563,937.7 651,380 87,442.31

Two cases are considered for solving unit commitment problem.

5.1. Case 1: Base Case

In this case, TUC is formulated using CSO programming for the 10 unit generating system
considering the initial loads. The output obtained for this is shown in Table 6. Here the total revenue
generated is $651,380 and the total operating cost calculated is $563,937.7. The profit obtained with
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this TUC is $87,442.31, which is 13.42% as shown in Table 9. In Table 9 the average TUC profit of the
proposed CSO method gives better results compared to the LR [45], BCGA, ICGA [46], BFA [47] and
ICA [48] methods.

5.2. Case 2: Base Case Established Using DR

In this case, we have used a real time-based demand response program to reduce load during the
peak hours of the day. The peak hours can be seen in Figure 2 where the various valleys, off peak and
peak load hours are plotted. 20% of load is reduced only in those particular hours and a TUC problem
is executed and the output is shown in Table 7. The total revenue generated is $593,389.50 and the total
operating cost calculated is $507,954.30. The profit obtained here is $85,435.21 as shown in Table 9. In
the output Table 7, it is seen that the generators 8, 9 and 10 are not committed thereby reducing the
total operating cost. The various generator running hours are depicted in Figure 3. From Figure 3, it is
observed that the TUC methodology uses the entire generators in its distribution hence causing rise in
cost. Whereas in DRUC the last three units are idle and don’t take part in generation hence reducing
the overall cost.

Table 7. Output data for base case established with Demand Response (DR) using Demand Response
Unit Commitment (DRUC).

Hour 1 2 3 4 5 6 7 8 9 10 Reserve
(MW) Fcost ($) SC ($) TOcost ($) Rv ($) PR ($)

1 455 245 0 0 0 0 0 0 0 0 210 13,683.13 0 13,683.13 15,505 1821.87
2 455 295 0 0 0 0 0 0 0 0 160 14,554.49 0 14,554.5 16,500 1945.5
3 455 370 0 0 25 0 0 0 0 0 222 16,809.45 900 17,709.45 19,635 1925.55
4 455 455 0 0 40 0 0 0 0 0 122 18,597.67 0 18,597.67 21,517.5 2919.83
5 455 390 0 130 25 0 0 0 0 0 202 20,020.02 560 20,580.02 23,250 2669.98
6 455 360 130 130 25 0 0 0 0 0 232 22,387.04 1100 23,487.04 25,245 1757.95
7 455 410 130 130 25 0 0 0 0 0 182 23,261.98 0 23,261.98 25,875 2613.02
8 455 455 130 130 30 0 0 0 0 0 132 24,150.34 0 24,150.34 26,580 2429.66
9 405 360 130 120 25 0 0 0 0 0 292 21,386.63 0 21,386.63 23,712 2325.37
10 455 380 130 130 25 0 0 0 0 0 212 22,736.83 0 22,736.83 32,872 10,135.17
11 455 395 130 130 25 0 25 0 0 0 257 24,173.33 520 24,693.33 34,974 10,280.67
12 455 435 130 130 25 0 25 0 0 0 217 24,874.02 0 24,874.02 37,980 13,105.98
13 455 355 130 130 25 0 25 0 0 0 297 23,473.63 0 23,473.63 27,552 4078.37
14 410 355 130 120 25 0 0 0 0 0 292 21,382.13 0 21,382.13 25,480 4097.87
15 455 435 130 130 50 0 0 0 0 0 132 24,199.99 0 24,199.99 27,000 2800.01
16 415 350 130 130 25 0 0 0 0 0 282 21,547.94 0 21,547.94 23,415 1867.06
17 455 260 130 130 25 0 0 0 0 0 332 20,641.82 0 20,641.82 22,250 1608.18
18 455 350 130 130 35 0 0 0 0 0 232 22,411.63 0 22,411.63 24,255 1843.37
19 455 445 130 130 40 0 0 0 0 0 132 24,174.74 0 24,174.74 26,640 2465.26
20 455 380 130 130 25 0 0 0 0 0 212 22,736.83 0 22,736.83 25,368 2631.17
21 415 360 110 110 25 20 0 0 0 0 372 21,859.06 340 22,199.06 24,024 1824.94
22 455 445 0 120 35 45 0 0 0 0 182 22,398.79 0 22,398.79 25,245 2846.21
23 455 425 0 0 0 20 0 0 0 0 90 17,645.36 0 17,645.36 20,475 2829.64
24 455 345 0 0 0 0 0 0 0 0 110 15,427.42 0 15,427.42 18,040 2612.58

TOTAL COST ($) 504,534.29 3420 507,954.3 593,389.5 85,435.21
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Along with this TUC programming, the six separate DRSPs that were installed are now used for
generation. These generators generate the 20% load that was reduced from the initial case for their
corresponding hours, respectively. The output of these generators are shown in Table 8. The same
forecasted price given in table 4 is used to calculate the revenue. The revenue generated for these
hours is $57,990.5, and the total operating cost is $40,512.5 for DRSP. The total revenue obtained when
combined with the DRUC and DRSP is $651,380. This is same as that of our base case hence proving
the same value of price is considered in our proposed case too as shown in Table 9. The total operating
cost is $548,466.80. This is lower than our base case hence increasing the profit to $102,913.20 (15.8%),
thus giving a profit rise of 2.37% shown in Table 9. Even an amount as low as a dollar saved per day
will sum up to be much greater amount at the end of a year, although upon comparison, the amount
doesn’t seem to be much higher, but considering long term generation, it will make a huge difference.

Table 8. Output data of DRSP’s during peak hours.

Hour DRSP 1 DRSP 2 DRSP 3 DRSP 4 DRSP 5 DRSP 6 Reserve
(MW) Fdcost ($) Rv ($) PDRdi

f ($)

9 50 50 50 50 50 10 40 4810 5928 1118
10 50 50 50 50 50 30 20 5110 8218 3108
11 50 50 50 50 50 40 10 5282.5 8743.5 3461
12 50 50 50 50 50 50 0 5470 9495 4025
13 50 50 50 50 50 30 20 5110 6888 1778
14 50 50 50 50 50 10 40 4810 6370 1560
20 50 50 50 50 50 30 20 5110 6342 1232
21 50 50 50 50 50 10 40 4810 6006 1196

TOTAL COST ($) 40,512.5 57,990.5 17,478

Table 9. Various data comparisons.

- Fcost ($) SC ($) TOcost ($) Rv ($) PR ($) % Rise

TUC (LR) [45] - - 565,825 651,380 85,555 13.13
TUC (BCGA) [46] - - 567,367 651,380 84,013 12.89
TUC (ICGA) [46] - - 566,404 651,380 84,976 13.05
TUC (BFA) [47] - - 565,872 651,380 85,508 13.13
TUC (ICA) [48] - - 563,938 651,380 87,442 13.42

TUC (CSO) 559,847.7 4090 563,937.7 651,380 87,442.31 13.42
DRUC 504,534.3 3420 507,954.3 593,389.5 85,435.21 14.40
DRSP - - 40,512.5 57,990.5 17,478 30.14

DRUC + DRSP - - 548,466.8 651,380 102,913.2 15.80

% Difference Total cost variation = 2.74% Total profit variation = 2.37%

The cost comparison for the base case and the base case with DR and DRSPs is shown in Figure 4.
The base case is observed to have the maximum cost while the base case with DR has less due to the
reduced load during the peak hours. The final case being the total cost combined of base case with DR
and DRSPs. It is noticed that the profit is maximum when DRUC is scheduled rather than TUC. The
various running data for the separate DGs installed is shown in Figure 5. It is observed that all the
units are committed for peak hours and generating 50 MW each, except for the last unit, that is varied
throughout peak hours in order to equalize the demand power.

The load demand versus time curve is depicted in Figure 6. The peak time load has been reduced
using DRUC when compared with TUC. The reduced load value is generated by the DRSP’s which is
shown in Figure 5. The profit calculated for base case, base with DR and DRSPs are shown in Figure 7.
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It is noted that the profit is more using DRUC when compared with TUC. Also the curve when
only the base case with DR excluding DRSPs is plotted and depicted. The various revenues calculated
in TUC and DRUC are shown in Figure 8.
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It can be seen that the revenue when DR is established is reduced. This reduced revenue is
calculated for DRSPs using the same spot price values. It should be noted that the revenue for both
cases are one and the same. The total operating cost for the base case, base case using DR without
DRSPs and base case using DR with DRSPs are shown in Figure 9. It is observed that the overall cost is
reduced in DRUC when compared with TUC.
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6. Conclusions

In this paper, a demand response-based unit commitment model is solved using the Cat Swarm
Optimization technique. A real time-based demand response program is used here to reduce load
stress during peak hours and reduce the overall cost of the generation system. Also, six Demand
Response Service Providers are used to compensate for the reduced load values. It is observed that
using demand response unit commitment maximizes the profit for both GENCOs and the Demand
Response Service Providers. Even though the load is reduced during peak periods the GENCOs gain
higher percentage of profit. The consumer gains profit by installing DRSPs that supply the shaved-off
loads during peak hours thereby decreasing the overall cost and maximizing the profit. From the
simulation studies, although the revenue remains the same in TUC as in DRUC, it is observed that
by implementing DRUC in generation systems, there is an overall decrease of around 2.74% in total
cost and an increased profit gain of around 2.37%. Also it is proved that using DRSP the profit of the
consumer is increased by reduction in the fuel cost. The proposed algorithm gives better results when
compared to other optimization methods.
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Nomenclature

Constants
N Total number of units
Ψ Unit commitment time step (60 min)
T Dispatch period in hours
dN Total number of DRSP units
Θdi, δdi, ϕdi Supply curve coefficients of DRSP generating units
θmdi, δmdi, ϕmdi Customer’s supply curve cost coefficients
ai, bi, ci Supply curve coefficients of IEEE 10 generating units
µdi Customer willingness coefficient
Ri

up Ramp up rate of unit i
Ri

down Ramp down rate of unit i
Mi

up Minimum up time limit of unit i
Mi

down Minimum down time limit of unit i
Hi

cos t Hot start cost of unit i
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Ci
cost Cold start cost of unit i

CSi
time Cold start hour of unit i

Variables
i Index of generator unit
di Index of DRSP generator unit
PR Total profit of the GENCO’s and DRSP combined
TRV Total revenue calculated from GENCO’s and DRSP
TOcost Total operating cost of GENCO’s and DRSP combined
Fi

cost Fuel cost of generator unit
Fdi

cost Fuel cost of DRSP generating unit
DRprice Demand response clearing price
DRdi

gen DRSP generator output per hour
PDRdi

f Total profit of DRSP

DRreq Required power output from DRSP generating units
Pi,t

gen Power generator output of ith unit at tth hour
Pdi,t

gen DRSP output of dith unit at tth hour
Ui,t

stat Unit status of ith unit at tth hour
Pt

dem Total power demand at hour t
Pi,min

gen Minimum generation output power of ith unit
Pi,t min

gen Minimum generation output power of ith unit at tth hour
Pi,max

gen Maximum generation output power of ith unit
Pi,t max

gen Maximum generation output power of ith unit at tth hour

Pi(t−1)
gen Power generated in the previous hour

ONi Number of hours the unit was committed
OFFi Number of hours the unit was not committed
Ri,t

gen Reserve generation of unit i at tth hour
Si

res Spinning reserve of unit i
Si

price Forecasted spot price of unit i
Sdi

price Forecasted spot price of DRSP generating units di
SUi

cos t Startup cost of unit i
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