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Abstract: The best master clock (BMC) algorithm is currently used to establish the master-slave
hierarchy for the IEEE 1588 Precision Time Protocol (PTP). However, the BMC algorithm may
create an unbalanced hierarchy that contains several boundary clocks with a large number of
slaves in comparison to other clocks. The unbalanced hierarchy can cause problems, such as high
communication load and high bandwidth consumption in boundary clocks. Additionally, the BMC
algorithm does not provide any fast recovery mechanism in the case of a master failure. In this paper,
we propose a novel balanced synchronization hierarchy with spare masters (BSHSM) algorithm
to establish a balanced master-slave hierarchy and to provide a fast recovery mechanism in the
case of master failures for the PTP. The BSHSM algorithm establishes the master-slave hierarchy
with boundary clocks that have a balanced number of slaves. In doing so, it solves the problems
caused by the unbalanced master-slave hierarchy. Additionally, the BSHSM algorithm provides a fast
recovery mechanism by selecting a spare master for each boundary clock; this allows a boundary
clock to immediately select a new master clock when its current master has failed or is disconnected.
The fast recovery mechanism reduces the period of running freely and clock drift in clocks, improving
the synchronization quality of the PTP. Various simulations were conducted using the network
simulation OMNeT++ v4.6 to analyze, evaluate, and compare the performance of the BSHSM and
BMC algorithms. The simulation results show that the synchronization hierarchy of the BSHSM
algorithm is much more balanced than the BMC algorithm, and it also has a shorter period of recovery.

Keywords: precision time protocol (PTP); best master clock (BMC) algorithm; balanced
synchronization hierarchy with spare masters (BSHSM) algorithm; fast recovery mechanism

1. Introduction

Time synchronization is required to maintain high precision for distributed systems in many
application domains, such as automation, testing and measurement, and telecommunications.
The applications commonly use communication networks that link the distributed network nodes
rather than building a dedicated synchronization infrastructure. Clocks in the distributed systems are
then synchronized by means of dedicated messages and protocols. Two prevalent protocols are used for
clock synchronization in these networks: Network Time Protocol (NTP) [1] and Precision Time Protocol
(PTP) [2]. The NTP is widely used to synchronize computer clocks on the Internet. The purpose of the
NTP is to convey timekeeping information from several primary servers to secondary time servers
and clients via both private networks and the public Internet. Servers and clients are configured
in such a way that values flow toward clients from the primary servers at the root via branching
secondary servers [1,3]. While there can be multiple NTP servers within the synchronized subnet,
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there is no election to determine the master as there is with other time protocols, such as the PTP.
The expected synchronization depends on network distances, wide area networks are at about 10 ms,
while local area networks are routinely at 1 ms [4]. For distributed computer networks in information
technology (IT) environments, this is sufficient. However, several Ethernet-based real-time networks
in other domains, such as automatic control systems or substation automation systems, require higher
synchronization accuracies. In these systems, accuracies in the µs range are often desired, and the
number of nodes can be in the range of hundreds. To meet these needs, the PTP was designed and
specified in the IEEE 1588 protocol [2]. IEEE 1588 is a standard protocol for synchronizing independent
clocks that run on separate nodes of a distributed measurement and control system [5]. As the clock
synchronization protocol specified in IEEE 1588, the PTP provides a mechanism for synchronizing
the clocks of participating nodes in a system to a high degree of accuracy and precision [2]. The PTP
defines several different kinds of clocks, as follows:

• Ordinary clock (OC): An OC only has one PTP port. The OC can be the grandmaster (GM) in a
system, or it can be a slave clock in the master-slave hierarchy.

• Boundary clock (BC): A BC typically has several PTP ports. It can function as both a master and a
slave in the master-slave hierarchy.

• Transparent clock (TC): A TC forwards all PTP messages just as it does in a normal switch
or router.

The PTP is based on a straightforward master-slave synchronization principle. There are two
phases in the normal execution of the PTP: (1) establishing a master-slave synchronization hierarchy
and (2) synchronizing the clocks. In the first phase, clocks in a PTP system are organized into a
master-slave synchronization hierarchy, also known as a master-slave hierarchy, with the GM clock
at the top of the hierarchy determining the reference time for the entire system. In the second phase,
the synchronization is achieved by exchanging PTP timing messages, with the slaves using the timing
information to adjust their clocks to the time of their master in the hierarchy. PTP uses the best master
clock (BMC) algorithm to establish the master-slave hierarchy for a network. Only OCs and BCs
run the BMC algorithm to build the hierarchy; TCs do not participate in establishing the hierarchy.
After an OC runs the BMC algorithm, its port can be in a master state or a slave state. If the port is in a
master state, the OC is the GM of the PTP system. Otherwise, the OC will be a slave in the hierarchy.
The master-slave hierarchy is mainly established based on BCs in the network. The BMC algorithm
divides the clocks in the network into master clocks and slave clocks. Slave clocks synchronize their
local clocks with the time of their master clocks. However, the BMC algorithm has the following issues:

1. It may generate an unbalanced master-slave hierarchy.
2. It does not provide any fast recovery mechanism.

The master-slave hierarchy established by the BMC algorithm sometimes contains several BCs
that have too many slaves. This type of hierarchy is known as the unbalanced master-slave hierarchy or
the unbalanced hierarchy. In the unbalanced hierarchy, clocks with many slaves may experience a high
communication load when exchanging PTP messages with their slaves, resulting in a high consumption
of processing and network bandwidth. Additionally, slaves in the master-slave hierarchy have no
spare master. In other words, masters are single points of failure in the hierarchy. Unfortunately,
the BMC algorithm does not provide any fast recovery mechanism for the master-slave hierarchy in
the case of a master failure. The failure of a master (e.g., device failure or link failure) requires the BMC
algorithm to re-elect a new master and re-establish the hierarchy [6]. The start of a master election is
based on timeout; thus, it requires a specific time span during which the clocks are not synchronized
so they run freely [7]. This drawback causes the loss of reference clock synchronization from the GM
clock as well as clock drift for the clocks during the re-election of the new master, thereby decreasing
the network’s clock synchronization performance.
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Several approaches have been proposed to provide fast recovery mechanisms in case of a master
failure for the PTP. Gaderer et al. [8] proposed a democratic approach to enhance the PTP with
fault-tolerance and overcome the transient deterioration of synchronization accuracy during recovery
from a master failure. In the approach, masters are distributed in a group of nodes with sufficiently
accurate clocks. The failure of one group member is not a problem because the group can still find a
fault-tolerant time value [8]. Bondavalli et al. [9] described a protocol for detecting timing failures for
internal synchronization based on a revised version of the reliable and self-aware clock (R&SAClock)
software [10]. The study showed that the system is able to detect all the failures injected on the
master under different conditions and correctly identify failures on slaves with a high probability.
Cho et al. [11] proposed enhanced precision time synchronization for wireless sensor networks (WSNs).
Valls et al. [12] proposed an enhanced middleware for real-time reconfiguration of service-oriented
distributed real-time systems. The proposed middleware supports time-deterministic reconfiguration
in distributed soft real-time environments with a software model based on services. The proposed
middleware includes time-bounded reconfiguration and service-based composition algorithms that
are built on top of real-time resource management; in contrast to other solutions, this method supports
predictable execution [12]. Valls et al. [13] also mentioned the need for timing requirements for
real-time applications in real-time virtualization and cloud computing technology.

However, no previous study has solved the issue of the unbalanced master-slave hierarchy
generated by the BMC algorithm. In this paper, we propose the balanced synchronization hierarchy
with spare masters (BSHSM) algorithm to solve both of the BMC algorithm issues mentioned above.
The BSHSM algorithm establishes a balanced master-slave synchronization hierarchy for the PTP.
In addition, it also provides a fast recovery mechanism for PTP in the case of master failures by electing
a spare master for each slave. Thus, the BSHSM algorithm enhances the synchronization performance
of the PTP. The contribution of the proposed BSHSM algorithm can be summarized as follows:

1. It establishes a balanced master-slave hierarchy for the PTP.
2. It provides a fast recovery mechanism in case of master failures for the PTP.

The remainder of this paper is organized as follows: Section 2 introduces the PTP and its BMC
algorithm. Section 3 describes the proposed BSHSM algorithm. Section 4 presents information on
various simulations and their results to evaluate and compare the performance of the BSHSM and
BMC algorithms. Finally, conclusions are presented in Section 5.

2. The BMC Algorithm

2.1. Overview

To build a synchronization hierarchy, the PTP permits the use of one of the following two
options [10]:

• By default, the BMC algorithm;
• An alternate algorithm, if specified in a PTP profile.

The BMC algorithm compares datasets describing two clocks to determine which describes the
better clock. The BMC algorithm is run locally in OCs and BCs to determine which clock is better.
By running the BMC algorithm locally, clocks do not need to negotiate which clock should be the
master and which clock should be the slaves. Instead, each clock only computes the state of its own
ports [10]. The BMC algorithm analyzes and compares the contents of the Announce messages received
by clocks and datasets associated with the clocks to determine the state of each port of the clocks.

2.1.1. Port States

Each OC and BC port maintains a separate copy of the PTP state machine. This state machine
defines the allowed states of the port and the transition rules between the states. The port states that
determine the master-slave hierarchy include:
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1. Master: The master port is the source of time on the path served by the port.
2. Slave: The slave port synchronizes to the clock on the path with the port that is in the master state.
3. Passive: The passive port is not the master on the path, and it does not synchronize to a master.

2.1.2. Announce Messages

The BMC algorithm works based on the data contained in the Announce messages received by a
given clock and on the datasets maintained by the local clock. Announce messages provide status and
characterization information about the transmitting clock and its GM. The information is used by the
receiving node when executing the BMC algorithm.

• grandmasterPriority1: the value of the parentDS.grandmasterPriority1 of the transmitting clock.
• grandmasterClockQuality: the value of the parentDS.grandmasterClockQuality of the transmitting

clock.
• grandmasterPriority2: the value of the parentDS.grandmasterPriority2 of the transmitting clock.
• grandmasterIdentity: the value of the parentDS.grandmasterIdentity of the transmitting clock.
• stepsRemoved: the value of the currentDS.stepsRemoved of the transmitting clock.

The structure of an Announce message is shown in Figure 1.
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2.1.3. Datasets

OCs and BCs locally maintain datasets, including defaultDS, currentDS, parentDS, timePropertiesDS,
and portDS, that are used by the BMC algorithm to establish the master-slave hierarchy for the PTP.
It is important to note that only datasets and their attributes used by the BMC algorithm are described
in this paper.

1. defaultDS: The defaultDS is the default dataset that describes the attributes of the local clock.

The members of the defaultDS dataset are:

• defaultDS.clockIdentity: the clockIdentity of the local clock;
• defaultDS.numberPorts: the number of PTP ports on the clock;
• defaultDS.clockQuality: the member consists of clockClass and clockAccuracy of the clock;
• defaultDS.priority1: the priority1 attribute of the local clock;
• defaultDS.priority2: the priority2 attribute of the local clock.

2. currentDS: The currentDS is the current dataset that contains the current properties of the local
clock. The dataset contains the following members:

• currentDS.stepsRemoved: the number of communication paths traversed between the local
clock and the GM clock.
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3. parentDS: The parentDS is the parent dataset that contains information of the current master of
the clock. The dataset contains the following members:

• parentDS.parentPortIdentity: the portIdentity of the port on the master;
• parentDS.grandmasterIdentity: the clockIdentity attribute of the GM clock;
• parentDS.grandmasterClockQuality: the clockQuality attribute of the GM clock;
• parentDS.grandmasterPriority1: the priority1 attribute of the GM clock;
• parentDS.grandmasterPriority2: the priority2 attribute of the GM clock.

4. portDS: The portDS is the port dataset that characterizes a PTP port. Each OC or BC port maintains
one portDS dataset. Some members of the dataset are:

• portDS.portIdentity: the portIdentity of the local port;
• portDS.portState: the current state of the port.

2.2. The BMC Algorithm

The BMC algorithm is used to determine the synchronization hierarchy among OCs and BCs in a
network. It classifies the clocks into master clocks and slave clocks. Slave clocks trace the frequency
and time of the master clocks. Since OCs only have one port, they are always slave clocks in the
master-slave hierarchy, except for the GM. Therefore, the main purpose of the BMC algorithm is to
establish the synchronization hierarchy for BCs. In terms of networks, the BMC algorithm establishes
the synchronization hierarchy with the GM as the root of the hierarchy. In term of nodes, the BMC
algorithm determines the master clock for each BC.

The BMC algorithm selects the best master clock by comparing the data contained in the Announce
messages received from different ports and the datasets describing the local clock. If the local clock is
selected as the best master clock, the local clock functions as the GM. If an external clock is selected as
the best master clock, the local clock traces the master clock.

The BMC algorithm consists of two separate algorithms:

• A dataset comparison algorithm that compares the datasets of clocks and the data of received
Announce messages to determine the best clock;

• A state decision algorithm that computes and assigns the state for each port involved.

In the dataset comparison phase, the BMC algorithm compares one clock with another by
comparing the datasets representing those clocks. Dataset comparison algorithms are shown in
Figure 2a,b. As shown, the datasets are indicated as DA and DL, where DA is the dataset of the
received Announce message and DL is the dataset of the local clock. Figure 2a shows the dataset
comparison algorithm of two clocks that have different GM clocks, whereas Figure 2b shows the
dataset comparison algorithm of two clocks that have the same GM clock.

The information sources for the dataset values in the BMC algorithm are presented in Table 1.

Table 1. Information sources for dataset comparison in the BMC algorithm.

Notations Dataset of the Announce Message Dataset of the Local Clock

GMPriority1 grandmasterPriority1 defaultDS.priority1
GMID grandmasterIdentity defaultDS.clockIdentity
GMClass grandmasterClockQuality.clockClass defaultDS.clockQuality.clockClass
GMAccuracy grandmasterClockQuality.clockAccuracy defaultDS.clockQuality.clockAccuracy
GMPriority2 grandmasterPriority2 defaultDS.Priority2
GMDistance stepsRemoved currentDS.stepsRemoved
ClockIDs sourcePortIdentity defaultDS.clockIdentity
PortNumber portIdentity.portNumber The value 0
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OCs are slave clocks that synchronize time to their masters that are the BCs to which the OCs
are connecting. Since the OCs are always slaves in the master-slave hierarchy, the main task of the
BMC algorithm is to establish a synchronization hierarchy for the GM and the BCs in the network.
Therefore, in this paper, we focus on establishing the master-slave hierarchy for BCs.

After clocks independently execute the BMC algorithm, a master-slave hierarchy of the sample
network is created (Figure 4a). The hierarchy can be represented as a synchronization tree (Figure 4b).

In the sample network, there is only one GM, the comparison algorithm shown in Figure 2b is
used to compare the datasets for each BC. The clock with the lowest stepsRemoved and clockIdentity is
selected as the best master clock.

For the sample network, BCs 3, 8, 11, 12, and 13 have the same stepsRemoved value; and BC 13 has
the lowest clockIdentity value, whereas BC 3 and BC 11 have the highest clockIdentity value. Since the
sample network has one GM, the BMC algorithm compares the clocks based on the stepsRemoved and
clockIdentity values. After all the clocks locally run the BMC algorithm, BC 13 has five slaves, BC 8 and
BC 12 have only one slave, and BC 3 and BC 11 have no slaves (Figure 4). The example illustrates that
the BMC algorithm does not balance the number of slaves in BCs. In other words, some of the BCs
have many slaves, whereas others only have a few. A BC with many slaves has a higher load than a BC
with few slaves. As a result of this unbalanced hierarchy, BC 13 has to exchange too many messages
with its slaves, resulting in the high consumption of processing and network bandwidth.
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Additionally, the BMC algorithm does not provide any fast recovery scheme for the master-slave
hierarchy in the case of a master failure. Thus, a slave in the hierarchy will lose its synchronization
source if its current master has failed or is disconnected. For example, if the link between BC 13 and BC
19 has failed, BC19 will lose its current master (BC 13), and it must change to the free-running mode.

3. The BSHSM Algorithm

Previous studies have mainly focused on providing a recovery mechanism for the PTP in the
case of master failures. However, no study has solved the unbalanced master-slave hierarchy issue
generated by the BMC algorithm. In this paper, we propose a novel BSHSM algorithm to build a
balanced master-slave hierarchy with a balanced number of slaves in BCs and to provide a fast recovery
mechanism with spare masters in the case of master failure. The BSHSM algorithm consists of the
following phases:

• Establishing the balanced synchronization hierarchy;
• Providing fast recovery in the case of master failures.
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3.1. Balanced Synchronization Hierarchy

The comparison algorithm for datasets with different GMs of the BSHSM algorithm is similar to
the BMC algorithm. However, in comparison to the BMC algorithm, the BSHSM algorithm enhances
the comparison algorithm for datasets with the same GM. To ensure that the number of slaves in the
master-slave hierarchy is balanced in clocks, the BSHSM algorithm uses a new numberSlaves attribute
to compare the datasets. The value of the numberSlaves attribute of a clock is the number of slaves
tracing the clock. To use the numberSlaves attribute in the BSHSM algorithm, the following updates
must be made to the datasets of clocks and the structure of the Announce message, as noted below.

3.1.1. Updated Datasets

In the BSHSM algorithm, the new numberSlaves attribute is used to compare datasets and to select
the best master clock. The numberSlaves attribute is added to two datasets, including currentDS and
parentDS.

1. currentDS dataset

The numberSlaves attribute of currentDS indicates the number of slaves of the local clock.
The updated members of the currentDS dataset used in the BSHSM algorithm are as follows:

• currentDS.stepsRemoved
• currentDS.numberSlaves

2. parentDS.dataset

The numberSlaves attribute of parentDS indicates the number of slaves of the master of the clock.
The updated members of the parentDS dataset used in the BSHSM algorithm are as follows:

• parentDS.parentPortIdentity
• parentDS.grandmasterIdentity
• parentDS.grandmasterClockQuality
• parentDS.grandmasterPriority1
• parentDS.grandmasterPriority2
• parentDS.numberSlaves

3.1.2. Revised Announce Message

In the BSHSM algorithm, the reserved field of the original Announce message is replaced by the new
numberSlaves field. Figure 5 shows the structure of the revised Announce field. The numberSlaves field
indicates the value of the currentDS.numberSlaves of the master clock issuing this Announce message.
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When a master clock sends an Announce message to its slave clocks, it sets the numberSlaves field
of this message to the value of its currentDS.numberSlaves attribute. Upon receiving the Announce
message, a slave clock uses the value of the numberSlaves field to compare datasets and to select its
master clock.

3.1.3. Dataset Comparison Algorithm

To compare datasets that have the same GM, such as the BMC algorithm, the BSHSM algorithm
first compares the stepsRemoved values of the datasets. If the values are the same, the BSHSM algorithm
then compares the numberSlaves values of the datasets instead of comparing the clock identity (clockID)
values, as done by the BMC algorithm. The clock that has the dataset with a lower numberSlaves value
is selected as the best master lock. Finally, if those values are equivalent, clockIDs are used to compare.
The comparison algorithm of the BSHSM algorithm is presented in Figure 6.

The information sources of the dataset values in the BSHSM algorithm are presented in Table 2.
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Table 2. Information sources for dataset comparison in the BSHSM algorithm.

Notations Dataset of the Announce Message Dataset of the Local Clock

GMDistance stepsRemoved currentDS.stepsRemoved
NumberSlaves numberSlaves currentDS.numberSlaves

ClockIDs sourcePortIdentity defaultDS.clockIdentity

After a BC chooses a new master clock, it sends a masterSEL message to the new master to
confirm the election. It also sends a masterREM message to the previous master to signal that the
previous master is no longer its master. Upon receiving the masterSEL and masterREM messages,
the BC confirms the receipt of the messages by sending back a masterACK message, and then it updates
its currentDS.numberSlaves value. As seen in the sample network shown in Figure 3, after running the
BSHSM algorithm for BCs, the master-slave hierarchy is established (Figure 7a). Figure 7b shows the
corresponding synchronization tree of the master-slave hierarchy.

It is clear that, with using the numberSlaves attribute as a criterion to compare and select the best
master clock, the BSHSM algorithm establishes a master-slave hierarchy with a balanced number
of slaves in clocks. Therefore, the BSHSM algorithm solves the problems caused by the unbalanced
master-slave hierarchy, as seen in the BMC algorithm.
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3.2. Fast Recovery with a Spare Master

The BMC algorithm does not provide a fast recovery mechanism for clocks in the master failure
case. It supports a timeout mechanism defining the announceReceiptTimeoutInterval, with a value
of announceReceiptTimeout multiplied by the announceInterval. The value of announceReceiptTimeout
specifies the number of accounceIntervals that must pass without the receipt of an Announce
message before the ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES event occurs. When the master clock
of a BC fails, the BC will not receive Announce messages from its master. The ANNOUNCE_RECEIPT_
TIMEOUT_EXPIRES event then occurs at the expiration of this timeout, plus a random number of
announceIntervals is uniformly distributed in the range (0, 1). Since the BC has no other port in the
slave state, the BMC algorithm updates the port’s datasets to the master state configuration and the BC
changes to the free-running mode.

This paper presents a fast recovery mechanism provided by the proposed BSHSM algorithm. To
provide fast recovery, the BSHSM algorithm allows each BC to select a spare master clock. The spare
master of a BC is the clock with the next best dataset. The comparison algorithm of selecting the
spare master clock is the same as that of the BMC algorithm. When a BC loses its current master,
it immediately selects its spare master as its new master clock and sends a masterSEL message to the
new master. In other words, the BC does not have to change to the free-running mode and re-elect
its new master in the case of a master failure. Therefore, the BSHSM algorithm avoids the loss of
synchronization, as well as clock drift in the master failure case.

The BSHSM algorithm defines a new spareParentDS dataset for BCs to contain information on
the spare master. The spareParentDS dataset members are the same as the parentDS dataset members.
Below is a list of some of the members of the spareParentDS dataset used by the BSHSM algorithm:

• spareParentDS.parentPortIdentity
• spareParentDS.grandmasterIdentity
• spareParentDS.grandmasterClockQuality
• spareParentDS.grandmasterPriority1
• spareParentDS.grandmasterPriority2
• spareParentDS.stepsRemove
• spareParentDS.numSlaves

The dataset values used by the comparison algorithm of the BSHSM algorithm to select the spare
master clock are presented in Table 3.
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Table 3. Information sources for the dataset comparison used to select the spare master in the
BSHSM algorithm.

Notations Dataset of the Announce Message Dataset of the Local Clock

GMPriority1 grandmasterPriority1 spareParentDS.grandmasterPriority1
GMID grandmasterIdentity spareParentDS. grandmasterIdentity
GMClass grandmasterClockQuality.clockClass spareParentDS.grandmasterClockQuality.clockClass
GMAccuracy grandmasterClockQuality.clockAccuracy spareParentDS.clockQuality.clockAccuracy
GMPriority 2 grandmasterPriority2 spareParentDS.grandmasterPriority2
GMDistance stepsRemoved spareParentDS.stepsRemoved
NumberSlaves numberSlaves spareParentDS.numberSlaves
ClockIDs sourcePortIdentity spareParentDS.parentPortIdentity

The pseudocode of the BSHSM algorithm (Algorithm 1) for establishing the balanced master-slave
hierarchy with spare masters is as follows:

Algorithm 1 BSHSM

Compare DA to DP

If (DA better than DP)
Select DA as the best master clock
Update parentDS dataset

Else
Compare DA to DS

If (DA better than DS)
Select DA as the spare master clock
Update spareParentDS dataset

Note: DA: dataset of the received Announce message; DP: datasets of the current master clock
(parentDS); DS: dataset of the spare master clock (spareParentDS).

Figure 8a shows the master-slave hierarchy with fast recovery capability established by the
BSHSM algorithm of the sample network shown in Figure 3. If a clock loses its connection to its current
master, the clock immediately selects its spare master clock as the new master clock and synchronizes
time with the new master. For example, if the link between BC 6 and BC 11 fails, BC 11 loses its current
master (BC 6) and immediately selects its spare master (BC 7) as its new master by sending a masterSEL
message to the new master. The clock then compares datasets and selects BC 12 as its new spare master
clock, as shown in Figure 8b.
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4. Simulations and Discussion

Several simulations were conducted using the simulation tool OMNeT++ v4.6 [14] to evaluate
and compare the performance of the BSHSM and BMC algorithms.

4.1. Simulation Descriptions

The two following simulations were conducted to evaluate and compare the performance of the
proposed BSHSM and BMC algorithms.

• Simulation 1: In simulation 1, both the BMC and BSHSM algorithms were applied to the sample
network shown in Figure 3. The number of slaves (numberSlaves) for each BC was recorded to
evaluate and compare the two algorithms.

The network of simulation 1 is shown in Figure 9. The simulation network includes one GM clock
and 25 BCs. These BCs connect to each other in a mesh topology.

• Simulation 2: In this simulation, several tests were performed with several different networks.
The simulation networks had a different number of boundary nodes. The number of boundary
nodes in each simulation network was N × N, where N was increased from four to 10.
The numberSlaves values of the BCs in each test were recorded. Then, the mean and standard
deviation (SD) of numberSlaves were calculated and used as metrics to evaluate and compare the
performance of the BSHSM and BMC algorithms.
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4.2. Results and Discussion

The bar chart shown in Figure 10 illustrates the number of slaves (numberSlaves) for each BC in
the master-slave hierarchies established by the BMC and BSHSM algorithms. The horizontal axis of
this bar graph shows the identity of the BCs in the simulation network, and the vertical axis shows
the number of slaves for each BC. For example, BC 7 has seven slaves in the master-slave hierarchy
established by the BMC algorithm and one slave in the hierarchy generated by the BSHSM algorithm.

As seen from the bar chart, the numberSlaves values for the BCs in the master-slave hierarchy
established by the BSHSM algorithm are more balanced than those established by the BMC algorithm.
In the master-slave hierarchy built by the BMC algorithm, BCs 7, 13, and 19 have the highest
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numberSlaves value, which is five. The total numberSlaves of the three BCs is 15, accounting for
60% of the total number of BCs. These BCs must experience a large number of synchronization
communications with their slaves, resulting in a high communication load, high processing, and high
consumption of bandwidth. Meanwhile, in the master-slave hierarchy built by the BSHSM algorithm,
the BC with the highest numberSlaves is BC 1, with three slaves. Additionally, 60% of the BCs in the BMC
algorithm have no slave, whereas 36% of the BCs have no slave in the BSHSM algorithm. Therefore,
the synchronization hierarchy is more balanced in the BSHSM algorithm than in the BMC algorithm.

Energies 2017, 10, 1469  13 of 14 

 

consumption of bandwidth. Meanwhile, in the master-slave hierarchy built by the BSHSM algorithm, 
the BC with the highest numberSlaves is BC 1, with three slaves. Additionally, 60% of the BCs in the 
BMC algorithm have no slave, whereas 36% of the BCs have no slave in the BSHSM algorithm. 
Therefore, the synchronization hierarchy is more balanced in the BSHSM algorithm than in the BMC 
algorithm.  

 
Figure 10. The number of slaves for each BC in simulation 1. 

The mean and SD values of numberSlaves in simulation 2 are shown in Figure 11. Clearly, the 
mean values of numberSlaves in the master-slave hierarchies established by the BMC and BSHSM 
algorithms are equivalent (Figure 11a). However, the BSHSM algorithm significantly reduced the SD 
of numberSlaves in comparison to the BMC algorithm. Numerically, according to the results recorded 
in simulation 2, the BSHSM algorithm reduced the SD of numberSlaves by about 50% in comparison 
to the BMC algorithm (Figure 11b). This means that the synchronization hierarchy established by the 
BSHSM algorithm is more balanced than the one built by the BMC algorithm. Consequently, the 
BSHSM algorithm can solve the problems caused by a high communication load in some BCs. 

(a) (b)

Figure 11. The mean and SD values of the numberSlaves attribute in simulation 2. (a) The mean value 
of the numberSlaves attribute; and (b) the SD of the numberSlaves attribute. 

5. Conclusions 

This paper has proposed a novel, alternate BMC algorithm called the BSHSM algorithm. The 
proposed BSHSM algorithm contributes to the literature by establishing a balanced master-slave 
hierarchy and providing a fast recovery mechanism for the PTP. By balancing the number of slaves 
among BCs, the BSHSM algorithm solves the problems caused by the unbalanced master-slave 

Figure 10. The number of slaves for each BC in simulation 1.

The mean and SD values of numberSlaves in simulation 2 are shown in Figure 11. Clearly,
the mean values of numberSlaves in the master-slave hierarchies established by the BMC and BSHSM
algorithms are equivalent (Figure 11a). However, the BSHSM algorithm significantly reduced the SD
of numberSlaves in comparison to the BMC algorithm. Numerically, according to the results recorded in
simulation 2, the BSHSM algorithm reduced the SD of numberSlaves by about 50% in comparison to the
BMC algorithm (Figure 11b). This means that the synchronization hierarchy established by the BSHSM
algorithm is more balanced than the one built by the BMC algorithm. Consequently, the BSHSM
algorithm can solve the problems caused by a high communication load in some BCs.
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5. Conclusions

This paper has proposed a novel, alternate BMC algorithm called the BSHSM algorithm.
The proposed BSHSM algorithm contributes to the literature by establishing a balanced master-slave
hierarchy and providing a fast recovery mechanism for the PTP. By balancing the number of slaves
among BCs, the BSHSM algorithm solves the problems caused by the unbalanced master-slave
hierarchy built by the BMC algorithm, such as the high load and high consumption of bandwidth in
some BCs. Numerically, for the simulation networks used in this paper, the BSHSM algorithm reduced
the SD of the number of slaves in BCs by about 50% in comparison to the BMC algorithm. Additionally,
the BSHSM algorithm also provides a fast recovery mechanism for BCs. With this mechanism, BCs do
not need to change to the free-running mode and re-elect new masters. Therefore, the proposed
BSHSM algorithm prevents the BCs from the loss of synchronization and clock drift, thus improving
the synchronization quality of the network.
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