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Abstract: A novel primary consequent-pole tubular transverse-flux flux-reversal linear machine
(TTFFRLM) is proposed in this paper. The permanent magnets (PMs) of the machine are located on
the inner surface of the short teeth of the primary iron cores for reducing the amount of PM in long
stroke drive systems, and the primary is easily manufactured. The structure and principle of this
machine are analyzed in detail. Based on the unit machine, a no-load equivalent magnetic circuit
model is established by using the magnetic circuit method. Then, the equations of the no-load back
electromotive force (back-EMF) and the electromagnetic thrust force are deduced. The simulation
models of the unit machine are established by equivalent 2D finite element method (FEM) for saving
computation time, and the static characteristics, including the flux field, the no-load back-EMF,
and the electromagnetic thrust force, are analyzed. Detailed simulation and experimental results of a
three-phase 4-poles 12-slots machine are given. The results verify the correctness and effectiveness of
topology, model, and analysis method of the proposed TTFFRLM. Compared with the conventional
TTFFRLM, the proposed prototype has the advantages of a lower cost and smaller electromagnetic
thrust force ripple.

Keywords: permanent magnet linear machine; tubular; primary consequent-pole; magnetic circuit
method; equivalent 2D finite element method

1. Introduction

Permanent magnet linear machine (PMLM), which has the advantages of the high thrust density,
high positioning accuracy, high response speed, low noise, low maintenance, and simple structure,
is widely used in direct drive systems [1–6].

According to different mounting positions of permanent magnets (PM), the PMLM can be divided
into the primary PM type and the secondary PM type. For the secondary PM type, the PMs have a
disadvantage of heat dissipation due to the presence of induced eddy current. Therefore, the PMs
are prone to irreversible demagnetization at a high ambient temperature. Furthermore, the machine
used in the long stroke drive systems has a problem of high cost, thus engineering applications and
popularization are limited [7]. For the primary PM type PMLM, armature winding and PMs are both
located in the primary, and the secondary is only composed of magnetic iron cores. Thus, the above
shortages can be overcame [8–10].

The PMLM can be divided into single-sided plate type, double-sided plate type, and tubular type
according to different structures of primary and secondary. In the above topologies, the tubular PMLM
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has no transverse end effect and no unilateral magnetic pull. Therefore, it has been widely used in
direct drive systems [11,12].

The primary PM tubular linear machine combines the advantages of primary PM type PMLM
and tubular PMLM, hence, it has gotten more attention [13–19]. According to different mounting
positions of PM on the primary iron core, the topologies of the primary PM tubular linear machine
can be divided into: flux switching tubular linear machine (FSTLM), primary PM tubular vernier
linear machine (PPMTVLM) and flux reversal tubular linear machine (FRTLM). The FSTLM is a
combination of switched reluctance (SR) machine and PM machine. The secondary is simple and
robust. However, the axially PMs are sandwiched between stator core modules, which is composed
of soft magnetic composite (SMC) material, and the armature winding with a pan-cake structure is
embedded in stator core modules. Therefore, the primary manufacturing process is relatively complex.
In addition, the utilization rate of stator core modules is low because of the unipolar flux linkage in the
armature winding, and the no-load back-EMF is asymmetrical [13]. Furthermore, in order to solve the
problems of the unbalanced magnetic circuit in the end armature winding and bigger detent force of
the FSTLM, the flux barrier is adopted in the primary, and the complexity of the primary structure
is also increased [14]. When compared with the FSTLM, the PMs of the PPMTVLM are mounted on
the primary iron core tooth surface, therefore, the PM fixing process is relatively simple. Based on
the magnetic gearing principle, the force density is improved by increasing the number of PM poles.
However, the armature winding is also a pan-cake structure. The tooth and yoke of the primary iron
core are axially distributed alternately, which cannot be shaped by pressing die at once with silicon
steel sheet. Therefore, the manufacturing of the armature winding and the primary iron core are also
complex [15–17]. In order to simplify the manufacturing process of the primary in the conventional PM
tubular linear machine, the FRTLM is investigated [18,19]. The primary iron core of the FRTLM is made
of silicon steel sheet, and the tooth and yoke can be shaped by pressing die at once with silicon steel
sheet. The armature winding adopts a concentrated winding structure. The PMs are mounted on the
tooth surface of the primary iron core. Hence, the primary is easily manufactured. However, the PMs
in the primary are not a consequent-pole distribution, the amount of PM is relatively large. In addition,
the machine, which is a single-phase machine with a problem of self-starting, is not suitable for long
stroke drive systems.

In this paper, a novel primary consequent-pole tubular transverse-flux flux-reversal linear machine
(TTFFRLM) for long stroke drive systems is proposed. Based on the method of circumferential and
axial dislocation distribution of secondary iron core units, the topologies of two-phase, three-phase,
and multi-phase machines are realized. The PMs with consequent-pole distribution in the axis direction
are located on the primary iron core tooth surface, hence the cost for long stroke drive systems can
be reduced. The tooth and yoke of the primary iron core unit can be shaped by pressing die at once
with the silicon steel sheet. The armature winding adopts a concentrated winding structure. Therefore,
the manufacturing process of the primary is rather simple. When compared with conventional
TTFFRLM, the proposed prototype has the advantages of less PM consumption and a smaller thrust
force ripple.

This paper is organized as follows: in Section 2, the structure features and the working principle
are described. In Section 3, a no-load equivalent magnetic circuit model is established by the magnetic
circuit method. The equations of the no-load back-EMF and the electromagnetic thrust force are,
respectively, deduced. In Section 4, based on the equivalent 2D FEM of the unit machine, the static
characteristics are further studied, and some comparisons between the primary consequent-pole
TTFFRLM topology and conventional TTFFRLM are made as well. In Section 5, experimental results
from a three-phase 4-poles 12-slots TTFFRLM are given. Finally, conclusions are drawn in Section 6.
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2. Structure and Principle

2.1. Structure of the Primary Consequent-Pole TTFFRLM

Figure 1a shows the structure diagram of the conventional TFFRLM. As shown, the armature
winding and PMs are both placed on the primary [20]. The primary iron core tooth surface is all
covered by PMs, therefore, the amount of PM is relatively large. In order to further reduce the amount
of the primary PM, based on the conventional TFFRLM, the primary consequent-pole TFFRLM is
proposed, as shown in Figure 1b. The PMs of the S pole have changed into a part of the primary
iron core, thus the primary iron core tooth surface only has the PMs of the N pole, which are the
consequent-pole distributed in axis direction. Furthermore, based on the primary consequent-pole
TFFRLM, a novel primary consequent-pole TTFFRLM is designed and investigated. Figure 1c–f, show
the structure diagram of the three-phase primary consequent-pole TTFFRLM, including the primary,
the secondary, the sketch of evolution of primary iron core unit, and the primary iron core of the
unit machine.
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Figure 1. The structure diagram of the TTFFRLM: (a) The conventional TFFRLM; (b) The primary
consequent-pole TFFRLM; (c) The primary; (d) The secondary; (e) The sketch of evolution of primary
iron core unit; and, (f) The primary iron core of the unit machine.

As shown in Figure 1c, the primary is composed of nm (m is the phase number of machine,
and m ≥ 2; n is a natural number representing unit machine number of each phase) primaries of
the unit machine. The primary of the unit machine consists of primary iron core units, armature
winding, and PMs. As shown in Figure 1e, in order to achieve the primary iron core unit of the primary
consequent-pole TFFRLM, the S pole PM in the primary iron core unit of the conventional TFFRLM is
removed. The length of the tooth corresponding to the S pole PM is extended. The extended tooth is
called the long tooth, and the tooth corresponding to the N pole PM is called the short tooth. The length
ltl of the long tooth is equal to the sum of the length lts of the short tooth, and the thickness hpm of the
N pole PM. The primary iron core unit is made of silicon steel sheet, and the tooth and yoke of the
primary iron core unit can be shaped by pressing die at once with silicon steel sheet. The primary iron
core of the unit machine is laminated by 2p (p is the pole pairs of the machine) primary iron core units
in accordance with the long and short teeth alternately, and then the number of the primary iron core
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units is 2pnm. The armature winding of the unit machine is composed of two coils, respectively, wound
on the long tooth and the short tooth, thus the number of the coils in the machine is 2nm. The PMs are
arranged on the inner surface of the short tooth of the primary iron core units, then the number of the
PMs is the same as the primary iron core units. The PMs have the same polarity (all of the N poles or all
of the S poles, this paper selects N pole type), and the magnetization direction of the PMs is radial. The
secondary is composed of the secondary iron core units, which are made of silicon steel sheet as well,
and the nm columns secondary iron core units are distributed in circumferential direction. An axial
groove is arranged on the outer surface of each secondary iron core unit. The groove is aligned with
the notch of the primary iron core unit. The large circumferential direction detent force between the
secondary and the primary would be produced, which can limit the relative circumferential rotation
motion between the secondary and the primary.

The circumferential distribution of the secondary iron core units adopt a continuous ladder
structure. The m columns correspond to a group. The n groups are set along the circumference,
and there are nm columns secondary iron core units in circumferential direction.

Taking m = 3 and n = 2 for example, Figure 2 shows the circumferential outspread diagram of the
secondary. The L is the axial length of the primary iron core unit. The axial center lines ladder spacing
of the m columns secondary iron core units is La = L/mp.
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2.2. Working Principle and Topology Structure of the Primary PM Consequent-Pole TTFFRLM

Considering the unilateral magnetic pull, the manufacturability, and the universality of the
three-phase machine in engineering application, this paper takes a three-phase 4-poles 12-slots machine
as an example, the working principle and topology of the continuous ladder type primary PM
consequent-pole TTFFRLM are analyzed.

Figure 3 shows the outspread diagram of the machine topology. As shown, A phase consists of
two groups of coils A1 and A2; B phase consists of two groups of coils B1 and B2; C phase consists
of two groups of coils C1 and C2. The subscript “1” represents that the coil is wound around the
teeth in a clockwise direction. The subscript “2” represents that the coil is wound around the teeth
in a counterclockwise direction. Two coils of the primary of unit machine are connected in series,
and the coils between two unit machines corresponding to any phase can be connected in series or
in parallel. The axial length of PM is τ (pole pitch). In the axial direction, the PMs are alternately
distributed by a single N pole type. In the circumferential direction, the PMs are alternately distributed
by dual N poles type or by single N pole type, as shown in Figures 3 and 1a, respectively. However,
the arrangement of single N pole type PMs will cause leakage between the adjacent primary of the unit
machines, and reduce the utilization ratio of PMs. Therefore, the arrangement PMs dual N poles type
is adopted in this paper, and the magnetic circuit between the adjacent primary of the unit machines is
independent of each other. The secondary is composed of two groups of secondary iron core units.
In each group, the three columns of secondary iron core units are corresponding, respectively, to A
phase, B phase, and C phase, in the circumferential direction. The ladder spacing of the axial center
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lines of the secondary iron core units of the three columns is La = 2τ/3. The axial distance between the
axial center lines of each column adjacent secondary iron core units is 2τ.
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Figure 3. Outspread diagram of the machine topology.

When the secondary moves along the axial direction by movement velocity v, because of the
alternating distribution of PMs, an alternating flux linkage that is perpendicular to the direction of
motion is generated in the primary iron cores, therefore, the machine has the same characteristics with
transverse-flux machine [20]. As shown in Figure 4, the working principle of A phase is given. When
the axial center lines of the secondary iron core units are aligned with the axial center lines of the N
pole corresponding to the coil A2, the flux linkage is maximum and the direction is counterclockwise,
as shown in Figure 4a. When the axial center lines of the secondary iron core units are aligned with
the axial center lines of the N pole corresponding to the coil A1, the flux linkage is maximum and
the direction is clockwise, as shown in Figure 4c. When the secondary is in the position of b or d,
the flux linkage is zero, as shown in Figure 4b,d. When the secondary is moving between the above
four positions, the flux linkage ψpm and back-EMF e are alternating, as shown in Figure 4e,f, indicating
that the primary iron core is better used [18]. When the axial distance between the axial center lines
of the adjacent secondary iron core units is 2τ/3, the phase position difference of the three-phase
back-EMF is 120 electrical degrees. The magnitude of the three-phase back-EMF is the same, and the
frequency is f = v/2τ. When the three-phase alternating current with the same amplitude and phase
position difference of 120 electrical degrees are fed into the three-phase symmetrical armature winding,
if the secondary is fixed, the primary will move along the axial direction according to the principle of
least resistance.
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To sum up, for the three-phase 4-poles 12-slots primary PM consequent-pole TTFFRLM,
the optimal topology has the following characteristics, the axial direction distribution of the PMs is
the alternating distribution of single N pole type, the secondary is suitable for the continuous ladder
structure, and the machine can be simplified as a unit machine for analysis. The following sections of
this paper will do further research on this topology and unit machine.

3. Mathematical Model Analysis Based on Magnetic Circuit Method

3.1. Equivalent Magnetic Circuit Model of the Unit Machine and No-Load Back-EMF

Figure 5 shows the structure of the unit machine of the three-phase 4-poles 12-slots primary
PM consequent-pole TTFFRLM. As shown, considering the circumferential and axial magnetic flux
leakage, the equivalent magnetic circuit model of the unit machine is given, as shown in Figure 6,
Fm and Rm are the equivalent magnetomotive force source and equivalent internal reluctance of PM.
Rp, Rδ, and Rs are equivalent reluctance of primary iron core unit, airgap reluctance, and equivalent
reluctance of secondary iron core unit. Rpσ, Rtσ and, Rlσ are leakage reluctance of primary iron core
unit, circumferential, and axial leakage reluctance of PM.
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Fm = ΦmRm + ΦpRp + ΦtσRtσ

Fm = ΦmRm + ΦpRp + 2ΦδRδ + ΦsRs

Fm = ΦmRm + ΦpσRpσ

Fm = ΦmRm + ΦpσRpσ + ΦδRδ + Φδ1Rδ1 + ΦlσRlσ
Fm = Φm1Rm + Φp1Rp1 + Φtσ1Rtσ1

Fm = Φm1Rm + Φp1Rp1 + 2Φδ1Rδ1 + Φs1Rs1

Φm = Φp + Φpσ

Φm = Φδ + Φtσ

Φδ = Φs + Φlσ
Φm1 = Φpσ + Φpσ1 + Φp1

(1)

According to the equivalent magnetic circuit model of the unit machine, a set of magnetic flux
loop Equation (1) are listed. As shown in Equation (1), Φm, Φp, Φpσ, Φδ, Φs, Φtσ, and Φlσ sequentially
represent the total magnetic flux, the main magnetic flux, the leakage magnetic flux of the primary iron
core unit, the airgap magnetic flux, the magnetic flux of the secondary iron core unit, the circumferential,
and axial leakage magnetic flux of the PM.

Figure 6 and Equation (1) give the equivalent magnetic circuit model and magnetic flux loop
equations of the unit machine at any time. When the axial center lines of the secondary iron core units
are aligned with the axial center lines of the N pole corresponding to the coil A2, the maximum of
main magnetic flux is Φpm, then the expression of the main magnetic flux of the unit machine can be
expressed in the following form:

Φ = KgΦpm cos(2π f t) (2)

where Kg is the wave coefficient of airgap magnetic flux. Φ is the function of time t. At this point,
the maximum no-load magnetic flux of the unit machine is:

Φpm = Φp + Φp2 (3)

where Φp2 is the main magnetic flux of loop Rp2. Considering the airgap reluctance is much greater
than the reluctance of the primary iron core and the reluctance of the secondary iron core, Φp, and Φp2

are simplified as Equations (4) and (5), according to Figure 6 and Equation (1):

Φp =
Fm
(

RlσRm − Rm − 2RmRδ + 2RlσRδ − 2R2
δ

)
Rlσ(Rm + 2Rδ)

2 (4)

Φp2 =
Fm(RlσRm + 2RlσRδ − 2RmRδ − 4RδRδ2)

Rlσ(Rm + 2Rδ)(Rm + 2Rδ2)
. (5)

Based on Figure 5, the expressions of the Rm, Rδ, Rδ2, Rlσ, Fm, in Equation (4) and (5) can be
simplified as follows:

Rm =
hpm

µpmτwpm
(6)

Rδ = Rδ2 =
g

µ0τwpm
(7)

Rlσ =
π

4µ0ws
(8)

Fm = Hchpm (9)

where µpm and µ0 are magnetic permeability of PM and vacuum, respectively. Hc is the
intrinsic coercivity.
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Assuming that the number of turns of the unit machine armature winding in series is N and each
phase of the machine is composed of two unit machines with the same phase position, the no-load
back-EMF of the phase is expressed in the following form:

e = −2N
d(Φ)

dt
= 4πN f KgΦpm sin(2π f t) (10)

Then root mean square (RMS) value of no-load back-EMF of the phase is:

E0 = 4πN f KgΦpm/
√

2 =
√

2Nπ f KgΦpm =

√
2NπvKgΦpm

2τ
=

√
2NπvKgΦpmP

L
(11)

Known by Equation (11), the RMS value of no-load back-EMF of the phase is directly proportional
to the number N of the armature winding turns, the coefficient Kg of airgap magnetic flux, the amplitude
Φpm of the main magnetic flux, and velocity v, but inversely proportional to the pole pitch τ. Based on
the above analysis, a higher RMS value of no-load back-EMF can be obtained by increasing the pole
pairs when the volume of the motor is certain.

3.2. Electromagnetic Thrust Force

Taking A phase as the research object, and assuming that the permanent magnetic flux linkage,
the back-EMF and the armature current waveform are the ideal sine waves, the armature current of A
phase is:

ia =
√

2Ia sin(2π f t) (12)

where Ia is the RMS value of the armature current of the A phase.
When the machine adopts id = 0 vector control algorithm, the phase position of phase back-EMF

is the same as the phase position of phase current, and then the electromagnetic power Pema of the A
phase is equivalent to:

Pema = eaia = 4
√

2πN f KgΦpm Ia sin2(2π f t) (13)

where ea is the back-EMF of A phase, and ea = e.
The electromagnetic thrust force expression of A phase is expressed in the following form:

FA =
Pema

v
=

2
√

2πNKgΦpm Ia sin2(2π f t)
τ

(14)

Similarly, the electromagnetic thrust force expression of B and C phase are obtained:

FB =
2
√

2πNKgΦpm Ia sin2(2π f t− 2π
3 )

τ
(15)

FC =
2
√

2πNKgΦpm Ia sin2(2π f t + 2π
3 )

τ
(16)

The three-phase electromagnetic thrust force is expressed as:

F =
3
√

2πNKgΦpm Ia

τ
=

6
√

2πNKgΦpm IaP
L

(17)

Known by Equation (17), the three-phase electromagnetic thrust force is directly proportional to
the number of turns of the armature winding, the coefficient of air gap magnetic flux, the amplitude of
the main magnetic flux, and the armature current, but inversely proportional to the pole pitch, which
is equal to the sum of the electromagnetic thrust force generated by each phase. The magnitude value
of the three-phase electromagnetic thrust force is 1.5 times that of single-phase. Based on the above
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analysis, a higher electromagnetic thrust force of the machine can be obtained by increasing the pole
pairs when the volume of the motor is certain.

4. Equivalent Two-Dimensional Finite Element Method

The equivalent magnetic circuit model is useful when analyzing and studying the relationship
between the machine performance and the structure size, which provides a theoretical basis for the
optimal design of the motor. As the accuracy of the model is not high, in this paper, the FEM is used to
analyze the machine further. Because the machine is a 3D magnetic structure, the simulation results
are highly accurate if it is analyzed by 3D FEM. However, the simulation requires a large amount of
calculation and takes much time, which is not conducive to the engineering application. This paper
uses equivalent 2D FEM to analyze the static characteristics of the unit machine [19,21].

The equivalent methods are as follows, Figure 7a shows the axial diagram of unit machine.
The yoke of the unit machine is stretched and extended along the circumferential direction, then,
the circumferential stretching model is given, as shown in Figure 7b. The long and short tooth magnetic
circuit is connected by an arc auxiliary magnetic bridge made of superconducting magnetic material.
Furthermore, based on the circumferential stretching model, the equivalent 3D model of the unit
machine is deduced, as shown in Figure 7c. The arc auxiliary magnetic bridge is divided into two
parts, which are arranged at the left and right sides of the teeth, including the right auxiliary magnetic
bridge and the left auxiliary magnetic bridge. Considering the circumferential leakage of the unit
machine, in the equivalent process, the effective magnetic path length hw of the secondary iron core
unit is equal to (wn + ws)/2, which improves the accuracy of the equivalent 3D model.

Based on the above equivalent method, the model of equivalent 2D FEM of the unit machine can
be established, as shown in Figure 7d. The model depth De of the equivalent 2D FEM is the same as the
width of the tooth ws. Table 1 shows the main design parameters of the unit machine and the model of
equivalent 2D FEM.
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Figure 7. The equivalent model of the unit machine: (a) The axial diagram of unit machine; (b) The
circumferential stretching model; (c) Equivalent 3D model; (d) The model of equivalent 2D finite
element method (FEM).

Table 1. The design parameters of unit machine and model of equivalent 2D FEM.

Parameter(Unit) Symbol Value

Outer diameter (mm) Do 100
Internal diameter (mm) Di 54

Primary iron core length (mm) L 60
Minimum mechanical airgap (mm) g 1

Pole-pitch (mm) τ 15
PM thickness (mm) hpm 3

PM width (mm) wpm 10
Primary iron core unit thickness (mm) hp 15

The width of the tooth (mm) ws 10
The length of the short tooth (mm) lts 15.2
The length of the long tooth (mm) ltl 18.2

The width of the notch (mm) wn 4
The bottom width of the slot (mm) wb 13

Secondary iron core unit thickness (mm) hs 15
The effective magnetic path length (mm) hw 7.5

The model depth of the equivalent 2D FEM (mm) De 10
The number of turns of the unit machine armature

winding in series N 150

PM residual flux density (T) Br 1.3
Rated current (A) - 7.5

4.1. Magnetic Field Analysis of the Unit Machine

Figure 8 shows the magnetic field distribution diagram of the four typical electrical degrees
positions of the unit machine under no-load condition. When the secondary iron core units are at the
position of 0 electrical degrees, which is shown in Figure 8a, the main magnetic flux is the negative
maximum. As shown in Figure 8c, at the position of 180 electrical degrees, the main magnetic flux
is the positive maximum. As shown in Figure 8b,d, at the positions of 90 and 270 electrical degrees,
the main magnetic flux is zero. As mentioned above, the magnetic flux is alternating from 0 to 270
electrical degrees positions. Therefore, the working principle of the unit machine is further verified.
Meanwhile, as shown in Figure 8a,c, we can know that the leakage magnetic flux mainly consists of
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end leakage magnetic flux, circumferential, and axial leakage magnetic flux of PM. The axial leakage
magnetic flux of PM is the largest proportion of all leakage magnetic flux, which is the main factor that
influences the utilization ratio of the PM and the power factor of the machine.
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4.2. Harmonic Analysis of the No-Load Back-EMF

The no-load back-EMF of the primary consequent-pole TTFFRLM can be obtained by changing
the initial position of the secondary of the unit machine according to the principle of three-phase
machine. Figure 9 shows the simulation waveform of the no-load back-EMF by the equivalent 2D FEM.
As shown in Figure 9a, the phase difference of the phase no-load back-EMF is 120 electrical degrees
and the amplitude of the phase back-EMF is equal. The amplitude of the line no-load back-EMF is
9.9 V when the movement velocity of the secondary is 1 m/s, as shown in Figure 9b.
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Figure 9. No-load back-EMF: (a) The three-phase; (b) The line.

Figure 10 shows the percentage of each harmonic components of back-EMF relative to the
fundamental wave. As shown, the harmonic components of the phase back-EMF is mainly the
third-order, the fifth-order, and the seventh-order harmonic. Because of the star connection type of the
armature winding, the third-order harmonic of the line back-EMF is eliminated, but there are still the
fifth-order and the seventh-order harmonic. The THD of the line back-EMF is 5.92%.
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4.3. Detent Force and Electromagnetic Thrust Force

In order to illustrate the advantages of the primary consequent-pole TTFFRLM, the unit machine
of the conventional TTFFRLM has been designed and modeled by the equivalent 2D FEM as according
to the design parameters of Table 1. Figure 11 shows the model of equivalent 2D FEM of the unit
machine of the conventional TTFFRLM.
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areas because of the presence of the phase detent force. The three-phase electromagnetic thrust force 

of the two machines has six wave crests in an electric period because of the presence of the three-

Figure 11. The model of equivalent 2D FEM of the unit machine of the conventional TTFFRLM.

Based on the models of the Figures 7d and 11, the detent force, and the electromagnetic thrust
force of the conventional TTFFRLM, and the primary consequent-pole TTFFRLM can be obtained
according to the principle of three-phase machine.

The detent force of the two machines are shown in Figure 12a,b. As shown, the periods of their A
phase detent force are both τ, and the peak-peak values are 81.4 N and 35.7 N, respectively. However,
the peak-peak value of the detent force in the first period is different from that in the second period,
mainly due to the detent force at the end of the A phase [20]. The periods of the three-phase detent
force are both τ/3, and the peak-peak values are 35 N and 17.4 N, respectively. Meanwhile, the peak
fluctuation periods of the three-phase detent force are both 2τ/3.
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consequent-pole TTFFRLM.

Figure 13 shows the harmonic components of the three-phase detent force of the conventional
TTFFRLM and the primary consequent-pole TTFFRLM. As shown, the harmonic components of the
primary consequent-pole TTFFRLM are mainly the third-order and the sixth-order harmonic as same
as the conventional TTFFRLM. The third-order harmonic and the sixth-order harmonic, respectively,
correspond to the end detent force and the cogging detent force [20]. The end detent force of the
two machines is almost the same, however, the cogging detent force of the primary consequent-pole
TTFFRLM is much smaller than the conventional TTFFRLM, this is the main reason for the difference
between the detent forces of the two machines.

When the machine adopts id = 0 vector control algorithm, the phase of back-EMF is the same
as the current. The electromagnetic thrust force of the conventional TTFFRLM and the primary
consequent-pole TTFFRLM can be calculated by models of the equivalent 2D FEM of the two unit
machines according to the principle of three-phase machine.

The electromagnetic thrust force of the two machines at rated current 7.5 A is shown in Figure 14.
As shown, the phase electromagnetic thrust force of the two machines is negative in some areas
because of the presence of the phase detent force. The three-phase electromagnetic thrust force of
the two machines has six wave crests in an electric period because of the presence of the three-phase
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detent force. The average values of the three-phase electromagnetic thrust force of the conventional
TTFFRLM and the primary consequent-pole TTFFRLM are 93.4 N and 95.4 N, respectively. Therefore,
the primary consequent-pole TTFFRLM can save half of the amount of PMs than the conventional
TTFFRLM. In addition, the peak-peak values of the three-phase electromagnetic thrust force of the
conventional TTFFRLM and the primary consequent-pole TTFFRLM are 34.6 N and 21.7 N, respectively.
The three-phase electromagnetic thrust force ripple of the two machines are 37% and 23%, respectively.
It indicates that the primary consequent-pole TTFFRLM has smaller electromagnetic thrust force ripple.
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5. Test Results and Analysis of the Prototype

In order to verify the correctness and effectiveness of topology, model, and analysis method of the
proposed primary consequent-pole TTFFRLM, based on design parameters of Table 1, a three-phase
4-poles 12-slots primary consequent-pole TTFFRLM is designed and manufactured. The armature
winding between the two unit machines in each phase is connected in series. The three-phase armature
winding is star connected. The PMs are bonded to the inner surface of the short tooth by high strength
and high temperature resistant structural adhesive.

Figure 15 shows the physical maps of the primary iron core unit and the secondary iron core unit.
As shown in Figure 15a, the tooth and yoke of the primary iron core unit can be shaped by pressing
die at once with silicon steel sheet, and the dovetail boss is used for mechanical fixing.
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Figure 16 shows the sketch map of the experiment platform. As shown, the experiment platform
mainly consists of DC power supply, pull pressure sensor, servo driver, servo motor, ball screw, linear
grid ruler, power board, control board, the primary and the secondary. The primary is fixed on the
base of the experiment platform. The secondary can be axially moved along the guide shaft by four
linear bearings.
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Figure 16. Experiment platform.

Figure 17 shows the measured waveform of the no-load back-EMF. As shown, the amplitude
of the each phase no-load back-EMF is equal and the phase difference is 120 electrical degrees,
the validity and correctness of the design method of the proposed primary consequent-pole TTFFRLM
are verified. Figure 17b shows the measured value of the line no-load back-EMF at v = 1 m/s. As shown,
the measured amplitude is about 9.2 V, the value is 7.1% less than the simulation value of the equivalent
2D FEM shown in Figure 9b.
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Figure 18 shows the measured waveform of the total detent force of the primary consequent-pole
TTFFRLM. As shown, the measured waveform is basically consistent with the trend of simulation
waveform of the equivalent 2D FEM. The measured peak-peak value is 18.3 N, the value is 5% more
than the simulation value 17.4 N of the equivalent 2D FEM shown in Figure 12b.
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As shown in Figure 16, when the servo motor drives the ball screw at a certain speed, the secondary
moves from right to left in a straight line. Meanwhile, a three-phase alternating current is fed into
the three-phase armature winding by id = 0 vector control algorithm. Then the electromagnetic
thrust force in opposition to the motion of the secondary to block secondary movement is produced,
and the electromagnetic thrust force can be measured by the pull pressure sensor. Figure 19 shows
the measured waveform of the total electromagnetic thrust force when the rated current is 7.5 A
at v = 4.16 mm/s. As shown, the measured waveform of the total electromagnetic thrust force is
basically consistent with the trend of simulation waveform. The measured average value of the total
electromagnetic thrust force is 92.6 N, the value is 3% less than the simulation value 95.4 N shown
in Figure 14b. The peak-peak value of the total electromagnetic thrust force is 22.4 N, then the total
electromagnetic thrust force ripple is 24.1%, the value is 3.2% more than the simulation value 23%
shown in Figure 14b.
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6. Conclusions

In this paper, a novel primary consequent-pole TTFFRLM for long stroke drive systems is
proposed. The structure and operating principle of the machine are researched. Based on the magnetic
circuit method and the equivalent 2D FEM, the static characteristics are analyzed. The simulation and
experimental results verify the correctness and effectiveness of the topology and design method of
proposed machine. Through the study of this paper, the following conclusions are obtained:

(1) The primary is easily manufactured, and the secondary is only composed of magnetically
conductive iron cores, which can reduce the application cost of the long stroke drive systems.

(2) The dual N poles type of the PMs distributed in the circumferential direction can reduce
circumferential leakage magnetic flux and improve the utilization ratio of PM.

(3) When compared with conventional TTFFRLM, the proposed machine can save half the amount
of PMs. Meanwhile, the electromagnetic thrust force ripple is much smaller.

As a new machine, in future, there are many aspects deserved further investigation, such as detent
force, electromagnetic thrust force ripple, and electromagnetic thrust force density, and so on.
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