energies MBPY

Article
Comparative Study on Uni- and Bi-Directional Fluid
Structure Coupling of Wind Turbine Blades

Mesfin Belayneh Ageze 1>* (), Yefa Hu ! and Huachun Wu !

1 School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan 430070, China;

huyefa@163.com (Y.H.); whc@whut.edu.cn (H.-W.)
Department of Mechanical Engineering, Woldia University, Woldia, Ethiopia
*  Correspondence: elzmeal@yahoo.com; Tel.: +86-159-2722-5432

2

Received: 26 July 2017; Accepted: 1 September 2017; Published: 27 September 2017

Abstract: The current trends of wind turbine blade designs are geared towards a longer and slender
blade with high flexibility, exhibiting complex aeroelastic loadings and instability issues, including
flutter; in this regard, fluid-structure interaction (FSI) plays a significant role. The present article will
conduct a comparative study between uni-directional and bi-directional fluid-structural coupling
models for a horizontal axis wind turbine. A full-scale, geometric copy of the NREL 5SMW blade with
simplified material distribution is considered for simulation. Analytical formulations of the governing
relations with appropriate approximation are highlighted, including turbulence model, i.e., Shear
Stress Transport (SST) k-w. These analytical relations are implemented using Multiphysics package
ANSYS employing Fluent module (Computational Fluid Dynamics (CFD)-based solver) for the fluid
domain and Transient Structural module (Finite Element Analysis-based solver) for the structural
domain. ANSYS system coupling module also is configured to model the two fluid-structure coupling
methods. The rated operational condition of the blade for a full cycle rotation is considered as a
comparison domain. In the bi-directional coupling model, the structural deformation alters the
angle of attack from the designed values, and by extension the flow pattern along the blade span;
furthermore, the tip deflection keeps fluctuating whilst it tends to stabilize in the uni-directional
coupling model.

Keywords: wind turbine; fluid structure interaction (FSI); aeroelasticity

1. Introduction

The wind turbine is one of the fast growing renewable energy sources across the globe for
generating a capacity of 282.5 GW in 2013 and is expected to raise up to 1.1 TW by the end of 2020 [1].
The growing demand for wind energy drives the design trends toward larger blades; up to 125 m
is achieved [2] with efficient aerodynamic and structural performance. The current wind turbines
tend to be slender, lighter, more flexible, made of composite materials, and equipped with more
complex control schemes [3]. However, such design trends are inherent with severe vibration loads
and instability issues due to low stiffness and large deformation, which will reduce operational life
and power production of the turbine. Along the individual effect of aerodynamic and structural
performance, their coupling has a significant influence on the performance of wind turbines. Therefore,
fluid-structure interaction (FSI) plays a significant role while dealing with such design trends, and
thorough understanding of this interaction is required for efficient and reliable output.

The numerical approaches to simulate FSI problems can be broadly classified into two classes:
the monolithic approach and the partitioned approach. The monolithic approach treats the fluid
and structure dynamics in the same mathematical framework to form a single system of equation
for the entire problem, while the partitioned approach considers them as two computational fields
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to be solved separately [4]. As of the partitioned approach, wind turbine FSI can be treated with a
different fidelity level, as in classical aeroelastic methods where the fluid and structure interaction are
treated separately and uncoupled [5], to recent full coupling to capture the real time interaction [6].
Most low fidelity methods incorporate classical models such as the blade element momentum theory
and low order structural models, with loss or one-way fluid structure interaction, which are fast and
cheaper to implement. However, they are inadequate for handling complex geometries and material
variations, unsteady and turbulent flows, and their approximations are inaccurate for such applications.
Conversely, recent aeroelastic simulation tools are capable of simulating a full-scale 3D model of a wind
turbine with fully turbulent flow condition to provide credible results, demanding highly accurate
methods and strong fluid structure interaction approximations with numerical efficiency and stability.
During recent decades, several numerical methods have been developed to simulate the full FSI, such
as Arbitrary Lagrangian-Eulerian (ALE) methods [7-9] and the deforming-spatial domain/stabilized
space-time (DSD/SST) methods [10,11], and other high order computational tools. Selecting an
aeroelastic tool for a specific application falls under a compromise between the computational effort
available and expected efficiency; therefore, an extensive investigation is required among these tools to
understand their shortcomings and strengths for the intended application.

FSI of a wind turbine can be approximated with uni-directional (two-way) coupling or
bi-directional (one-way) coupling. One-way FSI coupling requires reduced computational effort
and fast execution; however, tightly coupled two-way coupling will provide more vivid and reliable
results of the aeroelastic phenomena. Few comparison studies between the two coupling methods
are done, such as Benra et al. [12], comparing them for different cases; for simple cases, the two
methods have better agreement, whereas for complex cases the gap is significant and the one-way FSI
model fails to work well. Therefore, two-way coupling provides more credible results. Chen et al. [13]
also compared the two methods for micro (0.85 m rotor diameter) horizontal axis wind turbines;
mechanical loading, torque, and power output were considered; typically, the equivalent stress was
recorded to be maximum of 18.9 MPa and 21.3 MPa for the uni-directional and bi-directional method,
respectively, and showed a unique distribution for each method. Kumar and Wuma [14] studied FSI for
composite propeller blades and compared results based on uni-directional and bi-directional models,
such as deformation, which is reported to be larger for uni-directional coupling because of missing
cross coupling of solvers to take into account the flow change due to blade deformation. Few more
researchers are also devoted to investigating the merits and limitations of the two coupling methods;
however, computational demand restricted most of the researchers to deal with scaled wind turbines
and few operational conditions, creating an enormous gap in the subject.

To enhance the performance and satisfy the complex design constraints of the wind turbine
system, a comprehensive understanding of the aeroelastic characteristic of the system and an integrated
optimization is vital. The present paper will take part by investigating a comparative study between
uni-directional and bi-directional fluid-structure interaction models, considering a geometric copy
of the NREL 5MW wind turbine blade [15]. To highlight the background of the problem, the
mathematical formulations for fluid domain and structural domain, and also the fluid-structure
coupling, are included. ANSYS Fluent and Transient Structural modules are employed for the fluid
and structural domain, respectively, and the system coupling module is configured according to the
coupling model selected.

2. Mathematical Formulation

2.1. Flow Model

Several flow models are available for wind turbine aerodynamics, such as Blade Element
Momentum (BEM), actuator disk model, vortex model and others. However, one will apply
Computational Fluid Dynamics (CFD) based tools which intend to incorporate Reynolds Averaged
Navier-Stokes (RANS) equations to model the flows, with simplified closures. Navier-Stokes equations
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are comprised of the continuity equation and conservation of momentum equations along each
coordinate. As of wind turbine application, the flow pattern is categorized as low Mach flow, nearly
0.1 [16]; thus, the incompressible flow model suits well. Therefore, N-S equations for three-dimensional
incompressible flow will be:

7-(V)=0 @
% + (uV)V= —%Vp + %Vzu + %
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where: V = ui + vj + wk: velocity vector, p: air density, p: pressure, 7: kinematic viscosity, and
F = Fii+ Fyj + Fk body force vector.

To alleviate the numerical difficulty to solve incompressible N-S equations, two common remedies
are available: preconditioning and artificial compressibility. Applying the latter method, the artificial
compressibility term will be added to the continuity equation and results (Equation (3)), pressure
based or pressure corrected continuity equation.

aal +a*(V-V) =0 ®3)
t
where: a is a pseudo speed of sound.

Finally, Equations (2) and (3) will be solved to determine the flow characteristic. One has chosen
the pressure based solver scheme with coupled algorithm in which momentum (Equation (2)) and
pressure based continuity (Equation (3)) are solved simultaneously. Pressure based coupled solver
provides a merit of faster solution convergence rate as compared to the segregated algorithm, aside
from its high memory requirement. Other parameters can be determined using energy equation and
the equation of state relations, Equation (4).

Conservation of energy:

p2(E)+V-(EV)

2PV (B4 2) (B %—’;)2 (4)

where: E = e+ %VZ, e: internal energy of the fluid, g: is the rate of heat source, k: thermal conductivity,
and also the relation between T: temperature, p: density and the equation of state, p = pRT.

Closure for turbulence:

Flow around the wind turbine can be fairly considered as turbulent and so including the effect
of turbulence in the flow model is mandatory. Several turbulence models are available, such as the
Spalart-Allmaras model, two equations k-e model and k-w model, Reynolds stress model, Detached
Eddy Simulation (DES), Large Eddy Simulation (LES) model, and others. Among those, Shear Stress
Transport (SST) k-w model will be utilized in this specific work. The SST k-w model is a special
treatment of the standard k-e¢ model in the far field and the standard k-w near the walls [17,18].
The transport equation for k and w will be expressed as [18]:

) 2 ) w\ ok =
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The generation terms of k and w are Gy = min(Gy, 10pp*kw) and G, = ”f/—‘;’@k, respectively, with
Gy = —pu/iu/]-Buj /0x;, Sy and S, are the source terms for k and w, respectively, v; = k/w, and the term
uf;ul; is the Reynolds stress tensor [12]; the dissipation terms are, Yy = pfkw and Y, = pBkw?; and the
cross diffusion term that blends the two models is given by D, = 2(1 — F;)p0y, 2 % %‘j g—;; 0 and oy, are

the turbulent Prandtl’s numbers; y and ji; are dynamic and turbulent viscosity; and the coefficients 8*,
B, &y, 02 and Fy are damping functions, and can be determined based on Menter et al. [17,19].

The transport equations will be solved and modify the previous governing equations to include
the effect of turbulence in the flow.

2.2. Structural Model

The structural dynamics of the blade can be described with a set of differential equations of
motions and discretized and solved using the finite element analysis approach. In the earlier attempts
to formulate the equation of the motion of a blade, the works of [20,21] developed an equation of
motion for combined flapwise and chordwise bending and torsion of a twisted non-uniform rotor
blade. More comprehensive models are developed subsequently to include pitch action, rotor speed
variation, the effect of gravity [22], the coupling between blade and tower, and other phenomena.

For the present work, the formulation presented in [22] is adopted with constant rotor speed.
Consider the following coordinates: In Figure 1, the Cartesian coordinate X, Y, Z is the inertial
reference frame R, with Z-axis pointing downwind direction and the origin set at the center of the hub.
The (x,y,z) p frame is rotating with the blade at a constant speed of () about Z-axis, with x, axis lies
along the elastic axis (ea) of the undeformed beam, and is blade pitch axis. Note that (x,y, z) p frame is
inclined with a pre-cone angle of By from the plane of rotation (Z, X). The two X() and Y() axes are
included in Figure 1 for the sake of clarity; they are found when the pre-coned axes rotate (t about the
Z-axis. B is the pitch angle. The coordinate frame (X, y, z) is aligned with (x, y, z) p but rotating about
the pitch axis xp, (see Figure 1); the transformation of these coordinates for the sake of brevity it is not
discussed here, although thorough information is available in [22].

The generalized coordinate to express the location of a point on the blade, with u, v, w and B; are
translational displacement of the point along, X, y, z and angular displacement about the x (pitch axis),
respectively; u = u(r,t), v = v(r,t), w = w(r,t), and By = B(t) (it included all angular displacement
including elastic twist, control pitching, as well as the section built-in twist), written as Equation (7);

gi=[u o v p] %

Dividing the blade into a finite number of segments or elements along the blade span (Figure 1),
the equation of motion of the ith element of the blade can be formulated using the Lagrangian equation

as follows:
d { oL oL
— — —_—— = : 8
dt <aql> 8ql Ql ( )

where: L; = T; — (Velastici + Vgrai). Subsequently, the individual components of the above equation
will be formulated for the ith element.

Considering uniaxial stress assumption, the elastic (strain) energy of the ith element can be
defined as:

1
Velastici = 2 fj (Uxxexx + Oxn€xy + ngexg)dﬂdg )

where: the stresses, 0xx = Ep€xx, Oxy = G€xy, 0xg = G€,g, and the strains, €xx = €11, €xy = 2€12 and
€x; = 2€13, [20], EL: Young’s modulus (along the longitudinal direction) N/ m?, G: Shear modulus
N/m2.
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Figure 1. (a) Coordinate frames (3D); and (b) blade cross-section. Note: 77 and ( : section coordinate,
M,: pitching moment, 0: elastic twisting deflection, L,, and Ly: are the aerodynamic forces.

The gravitational potential energy of the ith element is given by:
Vgrai = mircgiTg (10)

where: r:D,l. is position vector for the center of gravity of ith element, g =100, —g O}T: gravitational
field, m; = p-dv: mass of the ith blade element/segment, the product of density p and elemental
volume dv.

The kinetic energy of the ith element is also described as:

1 - =
Ti=3 H m; V-V, dndg (11)

N
where: V; = % (r;;i) + Qk x r;gi = the absolute velocity of the center of gravity of the ith element, ():
constant spinning speed of the rotor.

The generalized forces (such as aerodynamic forces), acting at the elastic axis of the section can be

expressed as:
— — —

QUi =[ Lunt) Lont) Ln(t) Mty ] 12

- = — -
where: L,, L, and Ly are the aerodynamic forces along u, v and w, respectively, and M, pitching
moment about the pitch axis x;.
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Substituting Equations (9)—(12) into Equation (8) will provide the equation of motion for the ith
element as:

(M]; {4}, + [D]:{q}; + [Kl{q}; = {Q(t) }: (13)

This equation of motion of each element will be assembled to give the system equation of motion
of the whole blade as,

M], {4}, + [D]y{a}, + [Klp{at, = {Q() } b (14)

where: [M]: the mass matrix, [D]: damping matrix, and [K]: stiffness matrix, the subscripts i and b
referring the ith element and for the whole blade assembly, respectively.

Finally, Equation (14) will be simultaneously solved to calculate displacements, velocity, and
accelerations of each element. Based on these results, other structural parameters, such as reaction
forces, moments, and stress, will be determined.

2.3. Coupling Methods and Algorithms

Considering the partitioned approach, once separate solutions are attained for each physical field
(i.e., fluid flow and structural dynamics), the fluid-structure interface will serve as a boundary to
communicate information among the two solvers.

The two separate fields are governed by the equations derived in the preceding sections.

For the structural domain: [M], {4}, + [D], {4}, + K|, {9}, = {Q(t) } »

(Vv = = - T
For the fluid domain: (atf) + (Vf-V) Vi= —%Vp + %VZVJ: + %
However, at the intersection of the two domains, the governing equations from both sides

have to agree, imposing boundary conditions, i.e., no-slip, no-penetration, and traction conditions,
mathematically expressed as Equation (15):

Displacements of the fluid and structure are equal; X = {q},
Velocity of the fluid is equal to the velocity of the structure; Vf = {q} b at FSI (15)
Stresses imposed on the fluid and structure are equal : (0j;m;) I (gijni)

These boundary conditions will couple the two solvers and demand us to communicate
them according to the available and required coupling strength on hand. For the present study,
two fluid-structure couplings are considered: uni-directional (one-way) and strong bi-directional
(two-way).

In the uni-directional FSI simulation, each solver runs separately and only the effect of one solver
transfer to the other solver serves as the boundary or load condition, but not vice versa. In most
cases, the CFD solves the aerodynamics to calculate the wind pressure on the blade, so that it will
be applied to the structural solver (FE), but the effect of structural deformation on the fluid flow
will not be considered (Figure 2). First, the fluid flow will be solved for each time step until the
convergence criteria is attained; the pressure/force distribution calculated at the surface of the blade
will be transferred to the structure side of the solver. Similarly, the structural dynamics will be solved
until convergence is attained. This process will be repeated for each time step until the full study
domain is covered. It is noteworthy to see that the displacement of the blade has no impact on the
fluid flow, according to uni-directional coupling.

However, in bi-directional FSI, to capture the effect of structural deformation on aerodynamics, the
deflection will be feedback to CFD and will improve the prior solution making a closed loop between
the two solvers. The fluid solver will provide the forces acting on the blade and these forces will be
transferred to the structural dynamics, and will be solved under the effect of these forces, resulting
in nodal deformation. Unlike uni-directional coupling, the displacement at the boundary between
the fluid and the blade will have to be transferred to the fluid field and interpolated as the fluid
displacement. The fluid solver will be solved under the new configuration result in a new set of forces
to be transferred to the structure solver. These steps will be repeated until the convergence criteria
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is attained, and the next time step will advance to cover the whole study domain. In addition, for
bi-directional coupling, the mesh deformation at FSI boundary is critical, as it is the bridge to exchange
whole information (force and displacement); therefore, either the conformal mesh method (which
needs re-meshing or updating as the solution advances) or non-conformal mesh method (in which
each solver works within their independent respective girds) can be incorporated, depending on the
numerical constraints imposed. The latter method will be utilized for this specific work. The coupling
algorithm for the two methods are shown below; uni-directional (Figure 2) and bi-directional (Figure 3).

| 1
| I
| I
1
| I | 1
| I | !
| I | !
‘ Solve momentum (2q.2) 1 1 !
I and pressure based | | !
| continuity(2q.3) equations 1 | |
| 1 | Solva aquations of motion |
| i o (2a14) '
| | Time series Solve for 1
| T— Diglacement | | |
| ) Force 1
‘ IP:.,sm loads | Moments |
|
1
‘ Solve enerzy (2q.4), ! | 1
‘ turbulence (2q.5 &6) and | 1 |
: other scalar aquations | | |
I
| .
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| Yes I N oo -7
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N o o o - - - - — -

-

Solve momentum (2q.2)
and prassure based
continuity(2q.3) equations

Solve equations of motion

(Eq.14)

Displacement
Force
Moments

Solve enerzy (2q.4),
turbulence (2q.5&6) and
other scalar equations

R

1
1
1
1
1
1
1
1
1
1
1
!
1| Solvefor
1
1
1
1
1
1
1
1
1
1
|

Next timestep
n=n+l

1
' i
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
i l

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1
1

______________‘
— o o o o o o o o o e o o

Figure 3. Bi-directional fluid structure coupling algorithm.
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3. Computational Model

The mathematical formulation in the previous section will be implemented using the Multiphysics
package ANSYS (Version 16), each domain will be modeled in their respective solver and coupled
according to coupling method selected, as stated below. The geometric copy of NREL 5-MW
baseline wind turbine blade is considered [15,23], with certain amendments, refer Table 1. The two
fluid-structure interaction models will be compared at the rated speed operation conditions of the
turbine blade.

Table 1. Sectional properties of the blade.

Principal Moment of Inertia at

. y Solid . .
Station No. ** Radius Aerofoil szid Twist (°) the Section Centroid Cross-Sectional Sectlo::nC)intr01d
Ixx (m*)  Iyy (m?) J (m?) Area (m?)
1 1.5000 Cyclinder1 3.5420 13.3080 1.05 1.07 2.12 0.671 (1.7,0.402, 1.5)
2 1.9530 Cyclinderl 3.5420 13.3080 1.04 1.07 211 0.668 (1.7,0.402, 1.95)
3 3.4020 Ellipsoidal_1 3.5726 13.3080 0.96 1.06 2.02 0.651 (1.73,0.416, 3.4)
4 5.5440 Ellipsoidal_2 3.8060 13.3080 0.951 1.24 2.19 0.959 (1.8, 0.448, 5.54)
5 8.6330 Ellipsoidal_3 4.0997 13.3080 0.626 127 1.9 0.874 (1.89, 0.502, 8.63)
6 11.7500 DU40_A17 45570 13.3080 0.27 1.23 15 0.728 (2.05,0.486, 11.7)
7 15.8500 DU35_A17 4.6520 11.4800 0.179 1.2 1.37 0.675 (2.13,0.413,15.9)
8 19.9500 DU35_A17 4.4580 10.1620 0.15 1.0 1.15 0.617 (2.05,0.349, 19.9)
9 24.0500 DU30_A17 4.2490 9.0110 0.103 0.771 0.873 0.528 (2,0.309, 24.1)
10 28.1500 DU25_A17 4.0070 7.7950 0.0528 0.601 0.653 0.458 (1.9,0.3,28.1)
11 32.2500 DU25_A17 3.7480 6.5440 0.0411 0.466 0.507 0.406 (1.79, 0.241,32.3)
12 36.3500 DU21_A17 3.5020 5.3610 0.0229 0.35 0.373 0.347 (1.68, 0.223,36.4)
13 40.4500 DU21_A17 3.2560 4.1880 0.0171 0.265 0.282 0.304 (1.57,0.176, 40.5)
14 44.5500 NACA64_A17  3.0100 3.1250 0.00884 0.191 0.2 0.256 (1.46,0.15, 44.6)
15 48.6500 NACA64_A17  2.7640 2.3190 0.00648 0.138 0.145 0.219 (1.34,0.119, 48.6)
16 52.7500 NACA64_A17 25180 1.5260 0.00462 0.0973 0.102 0.186 (1.22,0.091, 52.7)
17 56.1667  NACA64_A17 23130 0.8630 0.00338 0.0708 0.0742 0.16 (1.12, 0.0704, 56.2)
18 58.9000 NACA64_A17  2.0860 0.3700 0.00237 0.0493 0.0517 0.137 (1.01, 0.0543, 58.9)
19 61.6333  NACA64_A17 14190 0.1060 0.000773 0.0149 0.0157 0.088 (0.691, 0.0332, 61.6)
20 63 NACA64_A17  1.0870 0 0.000368 0.00663 0.007 0.0658 (0.529, 0.0233, 63)

* With reference coordinate passing through the leading edge of the blade and starting from the center of the rotor,
** Station No. refers to the cross-section of the blade at the given radius from the center of the hub.

3.1. Computation Fluid Dynamics (CFD) Model

3.1.1. Computational Domain

The aerodynamics of the blade is modeled on ANSYS Fluent, with a computational domain
sized as shown in Figure 4a. The computational domain considered is a volume encompassed in a
radius of 184.5 m and 123 m, and length of 246 m and 184.5 m at downwind and upwind of the blade,
respectively. The wind turbine mode is symmetrical about its rotational axis; therefore, to reduce
computational effort, periodic boundary will be utilized and 1/3rd of the full domain, i.e., only one
blade and 1/3rd of the fluid domain is considered.

-

Fluid Domain

Velocity
inlet

Outflow

Periodic Boundary

(@)

Figure 4. Cont.
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Figure 4. (a) Computational domain with boundary conditions and (b) meshes for the fluid domain.

3.1.2. Solver Settings and Turbulence Model

As discussed in the previous section, the flow is considered as low Mach, incompressible flow, and
therefore a pressure based coupled algorithm transient solver was chosen to solve the incompressible
RANS equations.

A viscous flow with SST k-w turbulence model is applied. It uses the e-k turbulence model for the
far filed part of the domain, and the w-k turbulence model for the boundary layer. The convergence
of the analysis is determined by using the residual monitor, and for the present study a residual
value of 0.001 is set for continuity, velocity in three directions, turbulent kinetic energy and the
specific dissipation rate, and 1 x 107 for the energy equation. The spatial discretization for pressure,
momentum, turbulent kinetic energy and the specific dissipation and energy are all approximated to
second order.

3.1.3. Boundary Conditions

The upwind side of the wind turbine is modeled as velocity inlet with a free stream velocity of
11.4 m/s. Besides the upwind side of the wind turbine, the far field enclosing surface is modeled as
velocity inlet boundary because of the tapered geometry along the flow direction. The downwind
side is modeled as pressure outlet. The blade surface is a rotating wall with no slip shear condition,
and it is a boundary between the fluid domain and the structural domain to transfer data among the
two solvers as well. The domain is discretized with an unstructured grid, as shown in Figure 4b, and
an extra inflation layer and finer meshes are applied at the blade surface to improve the resolution.
The final computational grid includes 2.5 x 10° elements encompassing 4.3 x 10° nodes. Furthermore,
only for bi-directional fluid structural coupling, dynamic mesh with re-meshing option has been
applied to ensure system coupling and data exchange with the other solver.

3.2. Finite Element (FE) Model

3.2.1. Computational Domain

ANSYS transient structural module will be employed to investigate structural dynamics in
response to the effect of wind flow. The target blade is a geometric copy of NREL 5SMW baseline wind
turbine blade [15,23] with 61.5 m length and cross-sectional distribution as described in Figure 5a and
Table 1. At the root and the tip of the blade, certain amendments have been made to maintain smooth
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transformation from the cylindrical root to the first aerofoil, and an interpolation for chord and twist
distribution at the tip portion, as per [24]. The geometry and aerodynamic property of the remaining
aerofoils are kept similar as the reference blade.

]

Figure 5. Aerofoil distribution along the blade span (a) and mesh (b) for the structural domain.

0000 3500 7000(m)

(b)

3.2.2. Geometry and Material Distribution

The structural model of the blade is composed of several components such as root, shell, priming,
finish layer, spar cap, spar, and other structural adhesives, which are made of composite material
layers. However, considering modeling difficulties and computation resources, for the present study
the blade model is composed of only two major components: the aerodynamic surface enclosing the
outermost area and the spars acting as a shear web. The material distribution is also simplified as
the spars as Saertex/EP-3, and the rest of the blade as E-LT-5500/EP-3, with an orthotropic material
property as shown in Table 2. The final FE model cross-sectional distributed properties of the blade
along the span are as tabulated below (Table 1), and the modified root aerofoil shapes are as shown in
Figure 6.

Table 2. Material properties.

Material Lay-up EL(GPa) Er(GPa) Grr(GPa) Poisson’s Ratio (vit) Density (kg/m3)
E-LT-5500/EP-3 0 41.8 14 2.63 0.28 1920
Saertex/EP-3 45 13.6 13.3 11.8 0.51 1780
0.50 ‘ 0.50
0.25 j 0.25 \
£ 000 L_vlinuer_} = 0.00 Kllipsuidal_l

~ it

-0.50 - 0,50

0.00 0.25 0.50 075 1.00 0.00 0.25 .50 0.75 1.00
xfe xfe

@) (b)

Figure 6. Cont.
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Figure 6. Root aerofoil geometry, from blade root to tip in the order of (a—d), respectively.

3.2.3. Boundary Conditions and Mesh

The 3D FE model of the blade developed with shell elements and discretized into
8.5 x 10* elements comprised of 4.3 x 10* nodes, Figure 5b. Further refinements are made at the blade
surface as it is the coupling boundary to exchange aerodynamic forces and structural displacement, i.e.,
fluid-solid interface. A large deflection assumption is used, and remote displacement is applied as the
blade root is eccentric from the center of rotation (with a radius of hub). The centrifugal forces are also
considered by applying rotation velocity for the blade structure, i.e., rated blade velocity of 12.1 rpm.

3.3. Fluid-Structure Interaction Model

For the present study, uni-directional or one-way and bi-directional or two-way fluid-structure
interaction models are considered, with the two models incorporated on ANSYS accordingly.

For the one-way model, the two solvers run separately. First, fluent solves the fluid domain and
calculates the flow parameters such as the pressure distribution along the blade surface for the whole
simulation time. Then, the transient structural solver receives the time series pressure distribution,
calculates the aerodynamic force and determines the structural dynamics of the blade, such as stress
and deflections.

For the two-way model, a system coupling model will be employed so that both solvers run
simultaneously. The two solvers will exchange data (i.e., aerodynamic force from fluid solver to
structural solver, and displacements from the structural solver to the fluid solver), after convergence
is achieved at their respective domain. The iteration will continue until both solvers converge after
data exchange.

3.4. Model Assessment

The CFD and FE models utilized in this study will be evaluated and validated as follows.
As presented in the previous section, the structural property of the FE blade model is slightly different
than the reference NREL 5MW baseline blade (refer Tables 1-3).

Table 3. Comparison of blade FE model and NREL 5MW baseline blade.

Properties NREL 5MW FE Model
Length (w.r.t. Root Along Preconed Axis) 61.5m 61.5m
Overall (Integrated) Mass 17,740 kg 48,122 kg
CM Location (w.r.t. Root along Preconed Axis) 20.475m 23.397 m
Pre-cone 2.5° 0

Therefore, significant differences in dynamic responses are expected. In the following section, the
justification of the models (both CFD and FE) will be addressed.
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3.4.1. CFD Model

The CFD model utilized will be validated against results from NREL FAST code for NREL 5SMW
wind turbine, and also by monitoring some of the flow parameters such as mass imbalance during
the simulation.

In evaluating the mass imbalance for both FSI models between the inlet and outlet, the
net imbalance is calculated to be 0.10900877 kg/s and —0.34917137 kg/s for uni-directional and
bi-directional FSI model, respectively (Table 4). In both models, the imbalance is negligible.

Table 4. Mass imbalance of the two models.

Mass Flow Rate (kg/s)

Sub-Domain

Uni-Directional Bi-Directional
Inlet 232,138.22 232,138.22
Inlet top (far field ) 265,637.39 265,637.39
Outlet —497,775.5 —497,775.96
Net 0.10900877 —0.34917137

Another validation parameter considered is the power curve. For the present article, the rated
operational condition is the primary study domain; therefore, the power developed at the rated speed
will be calculated for both coupling models and compared with reference rated power, i.e., 5 MW [15].
The power developed by the wind turbine system is given by:

P= Q'Tb'WDT (16)

where: (): rotation speed, = 12.1RPM, Tj,: blade aerodynamic torque, and #pr: drivetrain efficiency,
= 0.925 [25]. The blade aerodynamic torque is the sum of the edgewise moment of each blade. From
the simulation result, the mean edgewise moment for a single blade is calculated to be —1.47 x 107 Nm
for one-way coupling and —1.58 x 107 Nm for the two-way coupling model. Note that the edgewise
moment calculated for a single blade should be multiplied by three to match the reference turbine.
Therefore, based on Equation (16), the rated power is calculated to be —51.7 MW and —53.6 MW
for uni-directional and bi-directional models. Comparing these values with the reference value of
5 MW [15], a large difference is recorded. This difference arises due to the simplification of the
structural model and the assumptions in the flow domain such as no wind shear, zero pitch angle and
angle of attack.

3.4.2. FE Model

In the present study, the fluid structure interaction of the wind turbine is studied using the
geometric copy of the NREL 5MW wind turbine blade. The dynamics of a single blade is used
to compare the performance of the two FSI models, i.e., uni-directional and bi-directional models.
The FE model hence will be validated using modal analysis. To validate the FE model utilized, a
reliable modal test result for a single blade with the same structural configuration is required; to the
authors” knowledge, there is no reliable modal analysis result for a single blade of the NREL 5SMW
baseline wind turbine. In relation to NREL 5MW wind turbine modal parameters, the available data
from [15,23,26,27] can be considered. However, most of the available data for modal parameters of
the NREL 5MW turbine are the results of a full-system analysis, including the blades, drivetrain,
nacelle, and tower. With the application of Multi Blade Coordinate Transformation, the individual
modes of each blade are transformed into the whole rotor mode [27], i.e., the first flapwise modes
of each blade are summed up to be the first Asymmetric Flapwise Yaw, Asymmetric Flapwise Pitch,
and Collective Flapwise mode of the rotor, including the coupling with the nacelle-yaw and nacelle
pitching motions [15]. Based on the modal analysis of the FE model, the first five mode shapes of the
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blade structure are depicted in Figure 7, including the first to third flapwise mode shapes and the first
and second edgewise mode shapes.

i

@)
(b)

(o)

—/\/

(d)

(e)

Figure 7. Modal shape of the blade, (a—d) the 1st, 2nd and 3rd flapwise modes, and (b,e) the 1st and
2nd edgewise modes.

The modal frequency of the FE model of the blade is also presented in Figure 8. To validate the
current result, the modal frequency of a 62.7 m long blade from [28] is plotted with it. The two blades
have similar aerofoil distributions [15,28], with some differences such as pre-bended blade in [6] but
pre-coned blade in [15] and a 1.2 m length difference. Assessing Figure 8 and the modal frequencies
for each mode, the frequencies of the FE model and LMH64-5 blade are closer for the 1st, 2nd and 4th
mode but a significant difference is seen in the third mode, i.e., the 2nd flapwise mode.

° ® 1st Blade Flapwise mode
a5 (FE Model)
® [st Blade Edgewise mode
3.0 (FE Model)
[ ®2nd Blade Flapwise mode

25 (FE Model)
2nd Blade Edgewise mode
(FE Model)
. @ 3rd Blade Flapwise mode

’ P (FE Model)
1.0 e ®Flat-1 (LMH64-5 Blade)

Frequency (Hz)

° Edge-1 (LMH64-5 Blade)

Flat-2 (LMH64-5 Blade)

Mode ® Edge-2 (LMH64-5 Blade)

Figure 8. The 1st five modal frequency of the blade (FE mode) and the 1st four “reactionless” modal
frequency of LMH64-5 blade [29] at 12.1 rpm.
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Another justification for the FE model can be drawn from the Campbell diagram of the blade
given at Figure 9; the trend of the modal frequency with the rotor speed can be fairly considered to be
similar to the reference blade [26].
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6 8 10 12 14 Flapwise mode
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e
~
EN

Figure 9. Campbell diagram of the blade (FE model).

Evaluating the above justifications and comparing the FSI results with the theoretical backgrounds,
both the CFD and FE model of the wind turbine blade employed in this article can be fairly considered
valid to compare the two FSI (uni-directional and bi-directional) models. In the following sections, the
results of the two FSI model will be studied and compared.

4. Results and Discussion

Based on the models and methodologies presented in the previous section, the two fluid-structural
interaction models (i.e., unidirectional and bi-directional) are assessed and compared. The results are
categorized as aerodynamic and structural response.

4.1. Aerodynamic Responses

Both coupling methods showed that the pressure distribution along the blade span tends to
increase from the root to the tip (Figure 10). However, due to blade deformation in bi-directional
coupling, the designed angle of attack in the flow domain was altered (Figure 11b) and a slight
difference recorded in contrast to uni-directional coupling (Figure 11a).

3500] ' ' ' ' ]
—— Bidirectional

3000 -
2500 -
2000+
15004
1000
500

—— Unidirectional

Pressure (Pa)

=500 . T T . : .
0.0 0.2 04 06 038 1.0
/'R

Figure 10. Maximum pressure along the blade span at the end of the first cycle, i.e., 5-s simulation.
The pressure and velocity contour can be more illustrative of the influence of blade deformation

on the aerodynamic response. The pressure contour on the blade surface for both coupling models is
depicted in Figure 11.
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Figure 11. Pressure contour (a) uni-directional and (b) bi-directional at the 5t second of the simulation.

Comparison of velocity and pressure contour at four locations along the blade span viz. 0.15 R,
0.3 R, 0.6 R, and 0.9 R are considered as well (Figures 12 and 13). The magnitude of pressure and

velocity in bi-directional coupling excels its counterpart more significantly at the mid portion of
the blade.
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(b)

Figure 13. Pressure contour, (a) uni-directional; and (b) bi-directional coupling at the end of 5 s.

Furthermore, the effect of fluid structure coupling can also be pronounced by the flow pattern
across the flow domain, and it seems to alter the pressure and velocity gradient, tip vortex, and
downwind wake pattern (Figure 14).

(b)

Figure 14. Axial velocity contour along the downwind direction (at 0, 10, 20, 60, 80, and 200 m behind
the blade, left to right, respectively), (a) bi-directional; and (b)uni-directional.

The maximum pressure variation with time across the blade is further evidence for the
influence of blade deformation on the flow parameters (Figure 15). In the uni-directional model,
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a maximum pressure of 3.5 MPa is achieved faster and maintained, while in the bi-directional model,

it fluctuates harmonically.

4.2. Structural Response

4000

3000+

2000+

1000

Maximum Pressure(Pa)

o
L

—— Bidirectional
—— Unidirectional

1 2 3 4

Time (s)

Figure 15. Maximum pressure variation with time.

The structural dynamic of the blade is also affected by the fluid structural coupling methods,
as the pressure distribution (Figure 15) is changing with time so as the blade deflection (Figure 16).
For uni-directional coupling, the deflections tend to stabilize; however, as for bi-directional coupling,
even though the amplitude is decreasing, there is still significant vibration and deformation variation.
The structural dynamics of the blade are also affected by the fluid structural coupling models utilized;
the total blade deformation at the end of 5 s is depicted in Figure 17. In both models, the deflection
increases from the root to the tip; however, the magnitude in the bi-directional model is larger.
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Figure 16. (a) Edgewise; (b) Flapwise; and (c) Total tip deflection at rated speed.

5000

10000 20000 (m)

15000

(b)

Figure 17. Total blade deformation; (a)uni-directional, and (b)bi-directional, at the end of 5 s.

In relation to pressure and blade deformation variation, the output power is also affected, as the
edgewise root moment is fluctuating (Figure 18). The edgewise moment for bi-directional coupling
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is 180 degrees out of phase with the tip deflection and varies inversely, and by extension, the output
power of the blade will fluctuate as the deflection affects the flow pattern.

T T T . T T T e Unidirects
0.00 —— Uni-directional 9.0x10° g.“;fj“etc.“o“l’l
—— Bi-directional 6.0x10° S
-4.10x10° - B
- ~ 3.0x10°
£ : E
Z.-8.20x10° 1 Z 0.0
5 ; 5 s
£ -1.23x107 B £ -3.0x10°
= S
I = _6.0x10°- -
g1 x10” o 4 .z
_E,, , E_-s.ouo’— g
= -2.05x10” - 1 2 120 ]
-2.46x10" - 1 -1.5x10° - 1
T T T T T T T T T T T T
[ 1 2 3 4 5 0 1 2 3 4 5
Simulation time (s) Simulation time (s)
(a) (b)

Figure 18. (a) Edgewise moment; and (b) Flapwise moment variation with time at rated speed.

Furthermore, besides the variation of power output, the structural loading is also affected by
the FSI model used, as shown in Figures 19 and 20. From the equivalent von-mises stress contour at
the suction and pressure side of the blade, one should notice the difference in stress concentration
locations for the two coupling methods. In bi-directional coupling, the root of the blade is a highly
stressed location with a magnitude of 368 MPa (Figure 19b); conversely, the leading edge is the most
stressed part of the blade in uni-directional coupling with a maximum of 330 MPa (Figure 19a).

282888
25931e8
235738
212168
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16501e8
14144e8
1.1787e8
942937
70727

AT47e7
235737
0.00021391 Min
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—

(@)

0.000
—

7.8925e7
5.261%7
26313e7
6539.3 Min

0,000 10.000 20000 (m)

Figure 19. Von-mises stress contour at the end of 5 s; (a) uni-directional; and (b) bi-directional.
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Figure 20. Maximum equivalent von-mises stress variation with time.

5. Conclusions

This paper presents an extensive comparison between uni-directional and bi-directional fluid
structure interaction models, using a geometric copy of the NREL 5MW wind turbine blade at the
rated wind speed of 11.4 m/s. In bi-directional coupling, the originally designed angle of attack altered
due to blade deflection, as did the aerodynamic performance and by extension the structural dynamics,
while the uni-directional coupling failed to pronounce such phenomena.

e  The pressure on the blade, the total tip deflection and the blade root moments in the uni-directional
model fluctuates for one second and maintains a constant value; however, in the bi-directional
model the fluctuation continues.

e  Comparing the tip vortex and the axial velocity gradient along the downwind side of the blade, the
free stream velocity was attained faster in the bi-direction model than the uni-directional model.

e In the bi-directional model, the root of the blade is a highly stressed location with a magnitude
of 368 MPa, and the leading edge is the most stressed part of the blade in the uni-directional
model with a maximum of 330 MPa. In relation, the power developed would also fluctuate in the
bi-directional model whereas it would have a constant value in the bi-directional coupling model.

It is observed that the bi-directional model is more natural and reliable to model the fluid-structure
interaction of the wind turbine. In multi-MW wind turbines with flexible and thin blades, the
fluid-structure interaction is very tight and influential, hence strong bi-directional coupling can provide
more credible results and insights than uni-directional coupling. However, enormous computation
resources are required; in this regard, the uni-directional model could be a possible alternative for
preliminary design and load forecasting. The computation effort limitation related to full tightly
coupled FSI can be reduced with a certain fidelity compromise, using reduced models and hybrid
solvers (zonal hybrid) for the individual solver, applying optimal grid size, using simplified geometry
and material distribution.
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