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Abstract: In this paper, the sensor selection approach is investigated with the aim of using fewer
sensors to provide reliable fuel cell diagnostic and prognostic results. The sensitivity of sensors is
firstly calculated with a developed fuel cell model. With sensor sensitivities to different fuel cell
failure modes, the available sensors can be ranked. A sensor selection algorithm is used in the
analysis, which considers both sensor sensitivity to fuel cell performance and resistance to noise.
The performance of the selected sensors in polymer electrolyte membrane (PEM) fuel cell prognostics
is also evaluated with an adaptive neuro-fuzzy inference system (ANFIS), and results show that
the fuel cell voltage can be predicted with good quality using the selected sensors. Furthermore,
a fuel cell test is performed to investigate the effectiveness of selected sensors in fuel cell fault
diagnosis. From the results, different fuel cell states can be distinguished with good quality using the
selected sensors.
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1. Introduction

Due to characteristics such as zero-emissions and high efficiency, fuel cell technology has
been engineered for a range of applications, including automotive, stationary power stations,
and consumer devices.

However, the fuel cell reliability and durability are still two main barriers for its wider application,
which leads to a series of studies on fuel cell prognostics and health management (PHM). From previous
studies [1–3], PHM analysis requires several stages, including data collection, data processing,
condition monitoring, diagnostics, prognostics, and decision support. From a literature review, it is
observed that most fuel cell PHM studies focus on the diagnostic stage, which can be loosely divided
into two groups: model-based methods and data-driven techniques. Although several studies employ
a model-based method for fuel cell diagnostics, i.e., developing a fuel cell model, and identifying fuel
cell faults from residuals between model outputs and actual measurements [4–8], there are complexities
in developing an accurate fuel cell model containing complete sets of failure modes. Data-driven
approaches are more widely used for fuel cell diagnostics, that is, extracting the features by applying
signal processing techniques to the sensor data, and discriminating fuel cell faults with extracted
features [9–13]. Compared to fuel cell diagnostics, fewer studies have been devoted to fuel cell
prognostics, and among these studies, training data from a fuel cell system is required to generate the
input–output relationship of the fuel cell model for the prediction of future performance [14–18].

It can be concluded from the literature review that with commonly used fuel cell diagnostic
and prognostic approaches, the performance relies largely on the quality of the fuel cell sensor
measurements. Considering the fact that sensors may express different sensitivities to fuel cell
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performance change, and environment/measurement noise is usually contained in the collected
measurements, more sensor measurements may not provide better performance, thus it is necessary
to find the optimal sensors providing reliable results with the minimum computation cost. From a
literature review, several sensor selection approaches have been applied in different systems [19–22],
but their applications in fuel cell system PHM have not been fully investigated.

In this paper, sensor selection approaches are applied to find optimal sensors for fuel cell
diagnostics and prognostics, and the performance of these optimal sensors in fault diagnosis and
prognosis is evaluated using test data from a polymer electrolyte membrane (PEM) fuel cell system.
Section 2 presents the developed fuel cell model and validates its performance in representing fuel
cell behavior. Based on the model, the sensitivity matrix relating sensor measurements and model
parameters is generated. In Section 3, several sensor selection approaches are used to find optimal
sensors based on their sensitivity, and the performance of selected sensors in predicting fuel cell
performance is evaluated using an adaptive neuro-fuzzy inference system (ANFIS). Section 4 further
evaluates the performance of optimal sensors in identifying fuel cell faults, with test data from a
practical fuel cell system. From the findings, conclusions are given in Section 5.

2. Development of PEM Fuel Cell Model and Generation of Sensitivity Matrix

2.1. Development of PEM Fuel Cell Model

In this study, sensitivity analysis is used for the sensor selection algorithms, to determine the
relationship between sensor outputs and fuel cell failure modes. However, determination of such
a relationship using experimental analysis will be very difficult, time-consuming and expensive,
as various fuel cell failure modes should be created. Therefore, numerical analysis is taken herein
to perform the sensitivity analysis, where a fuel cell model is developed, and model parameters are
selected to represent fuel cell failure modes based on the fuel cell failure mechanisms (since different
fuel cell failure modes can affect various model parameters and thus the fuel cell performance).
With this method, the sensor sensitivities to various fuel cell failure modes can be obtained without
complex experimental analysis. Moreover, as sensor sensitivity is obtained by calculating the variation
in sensor measurements due to the unit change of model parameter, the results can be used in different
fuel cell systems at various operating conditions.

Figure 1 depicts the block diagram of the developed fuel cell model. It can be seen that four
modules are used in the fuel cell model to express various behavior of the fuel cell, including anode
and cathode mass flow modules determining the flow, pressure, and mass of reactant gases at the
anode and cathode sides; the membrane hydration module calculating the membrane resistance and
water across the membrane; the stack temperature module updating stack temperature using the first
law of thermodynamics; and the stack voltage module determining stack voltage based on results from
the other three modules. More details about the developed fuel cell model can be found in previous
studies [18,23,24]. From the model, the fuel cell stack voltage can be calculated as:

Vcell = En −Vact −VFC −Vtrans −Vohm (1)

where Vcell is the single cell voltage, En is the reversible voltage, Vact, VFC, Vtrans, Vohm are the
activation loss, fuel crossover loss, mass transport loss, and Ohmic loss, respectively, which can be
obtained in different modules in the developed model.
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The performance of the developed fuel cell model is evaluated with test data from the fuel cell
system in a previous study [24]. With the fuel cell parameters listed in Table 1, the fuel cell model can
be developed, and by determining the model parameters, including internal and exchange current
densities, mass transport coefficients, membrane resistance, etc., the losses in Equation (1) can be
calculated, and fuel cell voltage can then be determined with Equation (1). With this procedure,
the polarization curves from the model can be obtained and compared with that from the test;
the results are shown in Figure 2.

Table 1. Input parameters for the fuel cell model [24].

Parameter (Unit) Value

Number of fuel cells 54
Active electrode area of single cell (cm2) 46.5

Hydrogen flow rate stoichiometry 1.15
Air flow rate stoichiometry 2.0
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Figure 2. Comparison of polarization curves from the model and test.

It can be observed from Figure 2 that the polarization curves from the tested fuel cell can be
simulated using the developed model with good quality; the difference of the polarization curve
results between simulated and test data is less than 1%.

2.2. Generation of Sensitivity Matrix

With the developed fuel cell model, the sensor sensitivity to fuel cell performance can be
determined. For this purpose, several model parameters critical to the fuel cell performance
are selected based on previous studies of fuel cell failure modes and corresponding failure
mechanisms [25–27]. From the results, three model parameters are determined, including membrane
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resistance, electrochemical surface area (ECSA), and liquid water inside the fuel cell; the variation in
these parameters will cause different fuel cell failure modes.

With determined model parameters, the corresponding sensor sensitivity can be calculated. In the
analysis, a unit change (1%) is applied to the model parameters, and the variations in fuel cell responses
(sensor measurements) can be obtained, which can be expressed with Equation (2).

Sij =
Rj2 − Rj1
Pi2 − Pi1

(2)

where P is the selected model parameter, R is the sensor output, 1 and 2 represent values before and
after applying the certain change, Sij is the jth sensor sensitivity for the ith model parameter.

It should be noted that multiple fuel cell failure effect is not considered herein, thus in each case,
only one health parameter is to be changed.

With Equation (1), sensor sensitivities to various fuel cell parameters can be determined. Table 2
lists the sensors used in the analysis, while Figure 3 depicts the sensor sensitivities to different fuel
cell parameters.

Table 2. Sensors used in the analysis.

Number Sensor

s1 Cell voltage (V)
s2 Stack temperature (K)
s3 Anode inlet flow (kg/s)
s4 Cathode inlet flow (kg/s)
s5 Anode outlet flow (kg/s)
s6 Cathode outlet flow (kg/s)
s7 Compressor temperature (K)
s8 Coolant inlet flow (kg/s)
s9 Inlet water temperature (K)
s10 Outlet water temperature (K)
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It can be seen from Figure 3 that several sensors, such as anode inlet flow, compressor temperature,
and coolant inlet flow, have zero sensitivities to the model parameters, indicating that the variation of
fuel cell performance due to these parameters cannot change these sensor measurements. Therefore,
these sensors should not be used in fuel cell diagnosis and prognosis.

3. Sensor Selection Algorithm and Its Performance in PEM Fuel Cell Performance Prediction

From results in Section 2, the sensors can be ranked based on their sensitivities, and the sensor
selection method proposed in [18] is used herein to find optimal sensors. Its performance in predicting
fuel cell performance will be investigated using test data from a PEM fuel cell system.

The proposed sensor selection approach in [18] considers both sensor sensitivity and sensor
resistance to measurement noise, thus the selected sensors should be more sensitive to the fuel cell
performance change and more resistant to the measurement noise. This selection can be made based
on Equation (3).

{δP} = (STS)
−1

ST{δR} = G{δR} (3)

where S is the sensitivity matrix, {δR} is the variation in sensor measurements, and {δP} is the
perturbations in health parameters.

In the selection process, all possible sensor set combinations are considered, and the noise
resistance of each sensor set, i.e., {δR} in Equation (3), is evaluated as follows. Random noise is
generated (1% of the sensor measurement is used herein) and applied to the studied sensor set,
the corresponding fuel cell parameter variations {δP} can be calculated using Equation (3). This process
is then repeated a certain number of times (10 in this study), and the standard deviation of each fuel
cell parameter can be calculated and used to form the index SD below.

SD =
[
σ1 σ2 . . . σp

]
(4)

where p represents the number of fuel cell parameters, and the overall error can be used to evaluate
the noise resistance (NR) of the selected sensor set.

NR = µSD + σSD/µSD (5)

From the above analysis, one sensor set with the best noise resistance is selected from each sensor
set size, and the results are listed in Table 3.

Table 3. Sensors with the best noise resistance capability from different sizes [18].

Size of Sensor Set Sensor Set with the Best Noise Resistance Capability

1 Stack temperature

2 Stack temperature, cathode outlet flow

3 Stack temperature, cathode outlet flow, cathode inlet flow

4 Stack temperature, cathode outlet flow, cathode inlet flow, water inlet temperature

5 Stack temperature, cathode outlet flow, cathode inlet flow, water inlet temperature,
water outlet temperature

6 Stack temperature, cathode outlet flow, cathode inlet flow, water inlet temperature,
water outlet temperature, anode outlet flow

In the study, the adaptive neuro-fuzzy inference system (ANFIS) is used to evaluate the
performance of selected sensors, and its general structure is shown in Figure 4. More details about
ANFIS can be found in previous research [14,15,17].

In the analysis, the inputs of the ANFIS are the measurements from selected sensors, and the
output is the fuel cell voltage. As ANFIS is the multi-step prediction algorithm, the training data
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must be used for the prediction. In this study, the first two-thirds of the data samples are used
to train the ANFIS system, while the last one-third of the data samples are used to validate the
performance of selected sensors. It should be mentioned that the PEM fuel cell data from IEEE
2014 data challenge [28] is used herein for searching the optimal sensors, which includes a total of
16 sensors collected from the fuel cell system, including fuel cell voltage, current, inlet and outlet
flow/temperature at anode/cathode, etc.Energies 2017, 10, 1511  6 of 13 

 

 
Figure 4. Adaptive neuro-fuzzy inference system (ANFIS) structure. 

In the evaluation analysis, the size of the sensor set is increased gradually based on Table 3, and 
the optimal sensors can be determined when further improvement cannot be observed with increase 
of sensor set size. 

Figure 5 evaluates the performance of sensor sets in Table 3, in terms of mean prediction error 
and computational time. It can be seen clearly that sensor set 3 (contains three sensors listed in  
Table 3) can represent the fuel cell performance accurately with reasonable computational time. 
Figure 6 depicts the prediction results using selected sensors. It can be seen that with selected 
sensors, reliable prediction can be made after the proper training. 

 

Figure 5. Prediction performance and computational time of different sensor sets. 

 

Figure 6. Prediction performance of selected sensors (the vertical blue dashed line separates the 
training and validation stages). 

1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

M
ea

n 
pr

ed
ic

tio
n 

er
ro

r 
(V

)

sensor set number
1 2 3 4 5 6

0

200

400

600

800

C
om

pu
ta

tio
n 

tim
e 

(s
)

200 400 600 800 1000

3

3.1

3.2

3.3

3.4

Time (h)

S
ta

ck
 v

ol
ta

ge
 (

v)

 

 

Actual
Prediction

Figure 4. Adaptive neuro-fuzzy inference system (ANFIS) structure.

In the evaluation analysis, the size of the sensor set is increased gradually based on Table 3,
and the optimal sensors can be determined when further improvement cannot be observed with
increase of sensor set size.

Figure 5 evaluates the performance of sensor sets in Table 3, in terms of mean prediction error and
computational time. It can be seen clearly that sensor set 3 (contains three sensors listed in Table 3) can
represent the fuel cell performance accurately with reasonable computational time. Figure 6 depicts the
prediction results using selected sensors. It can be seen that with selected sensors, reliable prediction
can be made after the proper training.
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4. Performance of Selected Sensors in PEM Fuel Cell Fault Diagnosis

4.1. Description of PEM Fuel Cell Test

In this section, a PEM fuel cell test will be designed to investigate the performance of selected
optimal sensors in identifying fuel cell faults. For this purpose, a test rig with capability of 80 W is
used, which contains a fuel cell stack, air and hydrogen supply systems, and a cooling system, which is
depicted in Figure 7.
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Figure 7. Fuel cell test rig.

In the study, a cell with active area of 100 cm2 is used, which is manufactured by Pragma Industries
using the same materials and technologies as commercial PEM fuel cells, such as Nafion polymer
electrolyte membrane, platinum nano-particle catalyst, carbon diffusion materials, silicone sealing
gaskets, and graphite flow field plates. Table 4 lists the technical details of the PEM fuel cell test and
Table 5 lists the sensors used in the test for the following analysis.

Table 4. Technical details of the polymer electrolyte membrane (PEM) fuel cell system.

Parameter Value

Membrane thickness (µm) 25
Active area (cm2) 100

Platinum loading (mg/cm2) 0.2
Gas diffusion thickness (µm) 415

Table 5. Sensors used in the fuel cell test.

Sensor Sensor

Voltage Anode inlet flow
Anode outlet pressure Cathode outlet pressure

Cathode inlet flow Anode inlet pressure
Anode relative humidity Cathode relative humidity
Cathode inlet pressure Stack temperature

As the PEM fuel cell test is used to investigate the performance of the selected sensor in fault
diagnosis, fuel cell fault should be “activated” during the test. Fuel cell flooding is selected in the
current study, as water management is extremely important in the PEM fuel cell normal operation,
and fuel cell flooding can cause fast degradation to the system performance [29]. During the test,
the PEM fuel cell stack is firstly operated at the nominal operating condition, then the stack temperature
is reduced gradually to accelerate the liquid water accumulation and thus flooding, which can be
confirmed with a clear fuel cell voltage drop. Finally, the temperature is increased to remove the
flooding effect and recover the fuel cell performance. Figure 8 illustrates this procedure with load
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current density and fuel cell stack voltage, where the periods between about 1000 and 1400 s, and 3000
and 3300 s are the time when the polarization curve is collected. It should be mentioned that the fuel
cell voltage drop at the beginning of the test is due to the instability of the fuel cell system; after the
certain time (about 300 s in the test), the fuel cell system reaches the stable operation stage.
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Figure 8. Fuel cell temperature and corresponding stack voltage during the operation.

Moreover, the performance of the developed model shown in Figure 1 in simulating fuel cell
performance under the flooding scenario is illustrated. It is known that with fuel cell flooding,
the accumulated liquid water will block the catalyst layer, gas diffusion layer and flow channel;
this can be simulated with the developed model by increasing the mass transport coefficients,
which can increase the mass transport loss Vtrans in Equation (1). Figure 9 depicts the comparison of
the polarization curves from the test and the developed model. It can be seen that by updating the
model parameters (mass transport coefficients herein), the developed model can simulate the fuel cell
performance in the flooding scenario with good quality.

In the next section, the performance of optimal sensors in fuel cell fault diagnosis will be
investigated using data-driven approaches, and the results will be compared with those using all
available sensors.



Energies 2017, 10, 1511 9 of 13Energies 2017, 10, 1511  9 of 13 

 

 
Figure 9. Comparison of polarization curves under the flooding scenario. 

4.2. PEM Fuel Cell Fault Diagnosis 

Since sensor measurements collected from the PEM fuel cell system are used for the fault 
diagnosis, data-driven diagnostic approaches are used in the study. Due to the collection of 
information from multiple sensors, kernel principal component analysis (KPCA) is used to reduce 
the dimension of collected dataset. Compared to principal component analysis (PCA), KPCA can 
give better performance in nonlinear systems [30]. Wavelet packet transform is then applied to 
extract the wavelet coefficients and generate features, and singular value decomposition (SVD) is 
utilized to determine the features containing the most useful information for the state classification. 
More details about these approaches can be found in previous studies [13,31]. Figure 10 depicts the 
flowchart of data-driven approaches used herein. 

 
Figure 10. Flowchart of data-driven approaches in PEM fuel cell fault diagnosis. 

The diagnostic performance using all available sensors listed in Table 5 is firstly investigated; as 
the purpose of the analysis is to identify the fuel cell flooding, only the test data at higher load 
current density is studied, i.e., the fuel cell system operates under the steady state condition. In the 
analysis, each sensor measurement is divided into segments with 700 sample points, which 
corresponds to about 3 min operation. The selection of 700 sample points is based on the 
degradation rate from the flooding (0.39 V/h); 3 min operation in the flooding state can cause a 
voltage drop of about 0.019 V, which cannot lead to significant performance degradation and can 
thus be regarded as the early/medium stage fault. Moreover, three states are defined in the study: 

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

Current density (A/cm2)

V
ol

ta
ge

 (
V

)

 

 
Test data
Model data

Figure 9. Comparison of polarization curves under the flooding scenario.

4.2. PEM Fuel Cell Fault Diagnosis

Since sensor measurements collected from the PEM fuel cell system are used for the fault diagnosis,
data-driven diagnostic approaches are used in the study. Due to the collection of information from
multiple sensors, kernel principal component analysis (KPCA) is used to reduce the dimension of
collected dataset. Compared to principal component analysis (PCA), KPCA can give better performance
in nonlinear systems [30]. Wavelet packet transform is then applied to extract the wavelet coefficients
and generate features, and singular value decomposition (SVD) is utilized to determine the features
containing the most useful information for the state classification. More details about these approaches
can be found in previous studies [13,31]. Figure 10 depicts the flowchart of data-driven approaches
used herein.
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The diagnostic performance using all available sensors listed in Table 5 is firstly investigated;
as the purpose of the analysis is to identify the fuel cell flooding, only the test data at higher load current
density is studied, i.e., the fuel cell system operates under the steady state condition. In the analysis,
each sensor measurement is divided into segments with 700 sample points, which corresponds to
about 3 min operation. The selection of 700 sample points is based on the degradation rate from
the flooding (0.39 V/h); 3 min operation in the flooding state can cause a voltage drop of about
0.019 V, which cannot lead to significant performance degradation and can thus be regarded as the
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early/medium stage fault. Moreover, three states are defined in the study: voltage drop less than 5% is
defined as normal state, voltage drop between 5% and 10% is defined as transition state, while voltage
drop larger than 10% is defined as flooding state.

The data-driven diagnostic procedure shown in Figure 10 is applied to the dataset containing
all available sensors, and the diagnostic results are shown in Figure 11. It should be noted that with
KPCA, the original dataset is projected to the first two principal directions, thus the diagnostic results
of these two principal directions can be obtained.
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Figure 11. Diagnostic results using all available sensors.

It can be seen from the above figure that using all available sensors, the three states cannot be
classified clearly, and the test data samples representing normal and flooding states do not cluster
together, indicating that more sensor information may not provide better diagnostic performance;
this further highlights the necessity of using selected sensors for reliable fault diagnosis.

Figure 12 depicts the diagnostic results using the selected optimal sensors from Section 3. For the
purpose of better comparison, the same diagnostic procedure is used and the original dataset containing
three sensor measurements is projected into the first two principal directions.
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Figure 12. Diagnostic results using the selected dataset.

From the above figure, all three states can be classified clearly by using the selected sensors,
indicating that fuel cell faults can be identified effectively with selected sensors. Moreover, transition
and flooding states can be discriminated, which means that by using selected sensors and a data-driven
diagnostic procedure, fuel cell faults at different levels can also be identified, which will be beneficial
for better understanding of the fuel cell state and design of mitigation strategies.

5. Conclusions

This paper investigated the application of the sensor selection approach in fuel cell PHM.
The performance of a sensor selection technique in predicting PEM fuel cell performance was studied.
Moreover, the performance of selected sensors in PEM fuel cell fault diagnosis was investigated
using test data from a PEM fuel cell system, and the results are compared with those using all
available sensors.

The sensor selection approach used in this study is based on the sensor sensitivities and sensor
resistance to measurement noises; thus, a selected sensor set would have better sensitivity to the
PEM fuel cell performance variation and can better resist measurement noise. Results show that
with selected sensors, reliable fuel cell performance can be predicted, and compared to predictions
using more sensors, computational time can be reduced significantly using selected sensors while a
reliable prediction can still be obtained. Moreover, with data-driven approaches which are commonly
used for system fault diagnosis, the optimal sensors can provide better diagnostic performance than
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that with all the sensors, and fuel cell faults at different levels can be classified with good quality;
as computational time can be reduced significantly using fewer sensors, the sensor selection techniques
can be applied in practical PEM fuel cell systems for on-line health monitoring purposes.
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