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Abstract: Scientific evaluation of partial discharge (PD) severity in gas-insulation switchgear (GIS)
can assist in mastering the insulation condition of in-service GIS. Limited theoretical research on
the laws of PD deterioration leads to a finite number of evaluation features extracted and subjective
features selected for PD severity assessment. Therefore, this study proposes a minimum-redundancy
maximum-relevance (mRMR) algorithm-based feature optimization selection method to realize
the scientific and reasonable choice of PD severity features. PD ultra-high frequency data of
varying severities are produced by simulating four typical insulation defects in GIS, which are
then collected in the lab. A 16-dimension feature set describing PD original characteristics is
abstracted in phase-resolved partial discharge (PRPD) mode, and the more informative evaluation
feature set characterizing PD severity is further excavated by the mRMR method. Finally, a support
vector machine (SVM) algorithm is employed as the classifier for intelligent evaluation to compare
the evaluation effects of PD severity between the feature set selected by mRMR and the feature
set is composed of discharge times, amplitude value, and time intervals obtained traditionally
based on discharge change theory. The proposed comparison test showed the effectiveness of the
mRMR method in informative feature selection and the accuracy of PD severity assessment for all
defined defects.

Keywords: gas-insulated switchgear (GIS); partial discharge (PD); feature selection;
minimum-redundancy maximum-relevance (mRMR); SVM; severity assessment

1. Introduction

With the advantages of small floor space and high reliability, gas-insulation switchgear (GIS) is
outfitted in the power grid in large numbers and has already become a symbolic piece of equipment in
power transmission and transformation system [1–5]. However, the internal latent defects caused by
electricity, heat, and machinery action, as well as human factors in running GIS equipment, may result
in equipment failure, or even induce large-area power failure accidents. Thus, monitoring insulation
and evaluating its condition for GIS equipment bear practical importance.

In monitoring the condition of SF6 gas-insulated equipment, the PD signal is the most effective
evaluation information for interior insulation condition in GIS [6,7]. However, the project site requires
accurate collection of PD signals and extraction of feature information that can accurately reflect the
severity of insulation defects from PD signal. With these steps, the insulation deterioration status of
GIS equipment can be mastered and the health condition of GIS equipment can be evaluated effectively.
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Currently, studies on PD severity assessment mainly focus on experimental and theoretical
research. In [8], the study simulated and obtained ultra-high frequency (UHF) signals with
different PD severity states with typical defects to analyze the relation between the UHF signal
and discharge capacity based on discharge theory. In [9], the researcher emphatically focused on
PD development under free metal particle defects and found a strong correlation of the maximal
discharge capacity characterizing the severity with the number and position of free metal particles.
In [10], PD development under the insulation defect of surface filth for GIS insulators was simulated to
identify the PD development of this defect. The process goes through three stages of corona discharge,
coexistence of corona discharge, and streamer discharge along the surface, followed by a PD severity
assessment by the dint of the discharge phase distribution and pattern characteristics of several
statistical spectrograms.

The invigorative result [8–12] in the current research mainly looks into the rules and conditions
of PD deterioration. In the area of PD severity assessment, only basic parameters, such as discharge
times, amplitude value, and phase, are adopted to describe PD severity characteristics for evaluation,
with the evaluation effect far from satisfying power operation companies. Thus, the key problem that
remains for this field is how to select more comprehensive and reasonable evaluation features and
enable the effective evaluation of PD severity.

The minimum-redundancy maximum-relevance (mRMR) standard was first proposed by Peng
Hanchuan [13] and this standard obtains the optimal feature set by mining the correlation among
the origin features and the correlation between features and target category. This method is widely
recognized in application domains, such as artificial intelligence (AI) algorithms [14], medical disease
diagnosis [15], bioengineering [16], and electric engineering [17]. The method has become a much
focused classic in the feature selection area given its effectiveness. This mRMR centers on the obtained
data in terms of statistical analysis, which can extract more feature information than the simple
theoretical analysis for PD severity assessment [11,12], and it cares more about the raw information
extraction, but not a higher recognition rate classifier [18,19]. Furthermore, in contrast to the kernel
principal component analysis (KPCA) [20,21] for feature extraction, the mRMR selects features from
the original feature set without changing the feature’s original expression and it maintains the meaning
of the original features very well for effective understanding in practical engineering applications.

This study centers on the feature selection for PD severity assessment. In conjunction with on-line
monitoring and fault diagnosis techniques of HV electrical equipment, the paper simulates four kinds
of typical insulation defects within GIS equipment in the lab, adopting a step-voltage method to
simulate the PD development process, and collected the corresponding PD information to structure
the feature set under the phase-resolved partial discharge (PRPD) mode. The standard of mRMR is
first introduced to objectively analyze the PRPD feature set from the correlation of the collected data to
obtain the optimal evaluation feature set for PD severity assessment. PD severity is defined as four
states, namely, normal, attention, serious, and dangerous. With a support vector machine (SVM) as the
PD severity state classifier, the evaluation effects of the PD severity assessment feature set based on
theoretical analysis and the optimal evaluation features set from the mRMR algorithm are compared.
The test result verifies the effectiveness of the proposed method.

2. Experiment

2.1. Experimental Implementation and Method

Figure 1 shows the experimental setup. The most widely applied monitoring technology in GIS
equipment, namely, ultra-high frequency monitoring, was adopted to obtain the PD signal. The PD
signals were acquired with a microstrip antenna (bandwidth: 340 to 440 MHz; center frequency:
390 MHz) through the dielectric window on the simulated GIS and then transmitted to a digital
oscilloscope (analog bandwidth: 1 GHz; maximum sampling rate: 20 GS/s; memory depth: 48 MB) via
coaxial cable (wave impedance: 50 ohm) to store the original PD information. The power frequency
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reference voltage phase signal was obtained while PD signals were collected. The defects were
incorporated into the simulated GIS, which was filled with 0.4 MPa of SF6 gas.
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Presently, scholars [4,7,23] suggested adopting the PRPD mode for feature extraction to abstract 
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Figure 1. Schematic of the PD experimental setup.

The experiment simulated the PD development by externally applying step voltage to four kinds
of typical artificial insulation defects (hereafter referred to as N defect, P defect, G defect, and M defect)
in GIS [22], as shown in Figure 2.
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Figure 2. Four typical artificial defects in GIS (unit: mm).

The applied voltage shown in Table 1 increased gradually from the initial discharge stage to the
discharge stage close to breakdown or at breakdown. In the test, the applied voltage process was
repeated thrice. This setting was adopted to explore the discharge variation law by increasing the
applied voltage by approximately 1.5 kV every 2 h, and 2000 samples were obtained for each voltage
value in each defect.

Table 1. PD experimental voltages.

Defect Type Voltage Grade (kV)

N Class Defect 7.3→8.6→9.3→10.4→11.6→13.5→14.6→16.4→19.4
P Class Defect 11.0→12.3→13.6→15.0→16.1→17.1→18.0→19.0→20.0
M Class Defect 8.7→10.0→11.5→13.0→14.5→16.0→17.5
G Class Defect 10.0→13.5→15.0→16.5→18.0→19.5→21.0→23.0→25.0→27.0

2.2. PD Data Acquisition and Analysis

Presently, scholars [4,7,23] suggested adopting the PRPD mode for feature extraction to abstract
PD information, namely the mode of analyzing UHF PD signals by gathering statistics of the fluctuation
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distribution characteristics of the discharge pulse count n and discharge charge magnitude q with
the power frequency phase angle ϕ. To guarantee the reliability of PD development law research
and discharge severity evaluation, this study collected a large number of discharge waveforms in the
power frequency cycle and then structured the ϕ-u-n three-dimensional distribution under four typical
defects. In this study, discharge pulse count n represents the number of PD pulses per cycle, and the
discharge amplitude u replaces the discharge charge magnitude q [23]. Given that collected PD data
in this test are too large, only 50 groups of PD data under four voltage classes with relatively large
spans for applied voltage were selected for each kind of defect to display its 3D PD-pattern, as shown
in Figure 3.

For the same kind of defects, the outlines of 3D PD-pattern in different PD severity levels were
made for comparison. The PD pulse amplitude value, pulse count, and the phase interval showed a
certain linear variation trend. Thus, we can evaluate the PD severity by mining related differences of
the change fluctuation rule [24].
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half cycle. This step indicates using a change of discharge position to differentiate PD severity 
of the N defect, which is more advantageous than the three other kinds of defects. 

Figure 3. PD ϕ-u-n PD-pattern of the four artificial defects. (a) The 3D PD-pattern of the N defect;
(b) the 3D PD-pattern of the G defect; (c) the 3D PD-pattern of the P defect; and (d) the 3D PD-pattern
of the M defect.

For different kinds of defects, the 3D PD-patterns along with PD development were compared.
The discharge times, amplitude value, and phase of the four types of defects exhibit their
own characteristics.

The above analysis shows that the features, such as discharge amplitude, number of times, and
phase, can characterize the PD deterioration rule. In characterizing PD severity, the significance levels
of different features under the four types of defects are not identical. Thus, objectivity is necessary in
choosing evaluation features in structuring the PD severity assessment feature set.

(1) In the N defect, the development is observed from almost no discharge to discharge and finally
being close to discharge intensity of negative half cycle with PD deterioration in the positive half
cycle. This step indicates using a change of discharge position to differentiate PD severity of the
N defect, which is more advantageous than the three other kinds of defects.
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(2) The discharge amplitude fluctuation in the G defect is significant, and this feature information is
more obvious in G than that in the three other kinds of defects.

(3) Discharge times, amplitude, and position of the P and M defects do not change significantly,
like the N and G defects, during PD development. Compared with the M defect, the change of
the aforementioned characteristics is less obvious for the P defect.

3. Statistical Features for PD Development

3.1. Statistical Features under the PRPD Mode

The PRPD mode characterizes the original PD information by describing the 3D PD-pattern
outline composed of the PD phase, discharge charge magnitude, and discharge times. Effectiveness is
generally recognized in condition monitoring of GIS equipment [23]. The statistical feature descriptions
on this mode are arranged in Table 2.

Table 2. Statistical characteristics under PRPD mode.

No. Features Description

1–6 SK+
m , SK−m , SKm

SK+
n , SK−n , SKn

Skewness of positive half cycle, negative half cycle, and whole cycle.

7–12 K+
um

, K−um
, Kum

K+
un

, K−un
, Kun

Steepness of positive half cycle, negative half cycle, and whole cycle.

13–14 Qm, Qn Amplitude and discharge time ratio between positive and negative half cycles.
15–16 CCm, CCn Cross-correlation coefficient of positive and negative half cycles.

3.2. PD Severity Assessment Features Based on Theoretical Study

In [24], the characteristics of ϕ-u and ϕ-n distribution are described under different discharge
voltages under the N defect based on UHF PD data, and structure the 9D feature set Fs according to
the theoretical analysis. Table 3 explains the concrete meaning of features. This feature set structures
a relatively perfect characteristic parameter set for PD severity assessment from a theoretical point
of view.

Table 3. Statistical features based on theoretical analysis.

Type Parameters Description

Statistical Features
u+

max, u−max
The maximum discharge pulse amplitude in
positive and negative positive half-cycle.

N+, N− The discharge times in positive and negative
positive half-cycle.

Time Interval of
Adjacent Discharge

∆T+ = 1
N+−1

N+−1
∑

i=1
∆t+i

∆T− = 1
N−−1

N−−1
∑

i=1
∆t−i

The time interval of two adjacent discharge pulse
in positive and negative positive half-cycle.

∆Tmax
The maximum time interval of two adjacent
discharge pulses in one power cycle.

Equivalent Cumulative
Discharge Quantities Qacc =

N
∑

i=1
u2

i Discharge quantities in a certain period.

Signal Entropy En = −
N
∑

i=1
(ui

N
∑

i=1
ui) log ui

N
∑

i=1
ui

The PD Information complexity is denoted by
signal entropy [19].

3.3. Definition of PD Severity Stage

Currently, a uniform division standard is lacking for PD severity in GIS equipment. Instead,
most research divides the PD severity states artificially according to the actual condition of the
equipment [16,17]. The study borrows ideas from evaluation theory of the transformer state [17] and,
at the same time, combines the actual running state of GIS equipment and the characteristics shown in
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the PD development. Then, PD severity is classified into four levels of H1: normal state, H2: notice
state, H3: abnormal state, and H4: danger state, which are shown in Table 4. The description in Table 4
on the ϕ-u-n distribution in different voltage classes under N defects in Figure 3a shows that the change
and development trend of four PD states corresponding to the statistical features rise with the voltage
grade. Each PD level shows a certain difference, which proves the phase division reasonableness of
PD [24].

Table 4. Definition of the PD severity levels.

State Definition Description

Normal State H1 Initial Stage of Discharge Discharge times and amplitude are small, and the
positive half-cycle is almost no PD discharge in this state.

Attention State H2 A Slight Discharge
Discharge times, amplitude, Qacc, and En has changed on
certain degree, and a small quantity of weak discharge
pulses appears in positive half-cycles.

Serious State H3 Serious Stage of Discharge Discharge times, amplitude, Qacc, and En have obvious
changes in this state.

Dangerous State H4 Pre-breakdown
PD discharge in positive half-cycles is no weaker than
that in negative half-cycles, and the discharge pulse
amplitude is saturated.

4. Feature Selection Based on the mRMR Method

Although the 16D feature set extracted by the traditional PRPD pattern can fully characterize the
contour information from the original spectrum, this 16D feature set continues to indicate characteristic
information redundancy in PD severity recognition. In addition, features extracted from the theoretical
analysis in Table 3 can relatively reflect the development trend of PD severity, but the feature set
must be further expanded given that PD severity theory is imperfect. Therefore, this study introduces
the mRMR algorithm to unearth the feature set data under PRPD mode in all kinds of defects and
eliminate redundant information. Consequently, the optimal evaluation feature set can be obtained to
realize the efficient evaluation of PD severity.

4.1. mRMR Principle

Mutual information is the theoretical definition in the correlation and redundancy calculation
in mRMR algorithm. Given two random variables, x and y, and their probability density and joint
probability density are defined as p(x), p(y), p(x, y), then the mutual information formula between
the two variables can be defined as [13,25]:

I(x, y) =
x

p(x, y)
p(x, y)

p(x)p(y)
dxdy (1)

Maximum relevance criterion requires that the selected feature set has the greatest dependency
on the target category, and it is expressed as follows:

maxD(S, c), D =
1
|S| ∑

fi∈S
I( fi, c) (2)

where S denotes the feature set, |S| is the size of feature set, fi is the ith feature, and c is the target value
(e.g., the PD severity levels).
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Minimal redundancy criterion requires that the correlation between all the features be minimized
to ensure the least redundancy information. The corresponding metric is defined by minimizing
mutual information between the features:

minR(S), R =
1

|S|2 ∑
fi , f j∈S

I
(

fi, f j
)

(3)

where fi and f j respectively stand for the ith and jth features.
The mRMR algorithm combines the maximum correlation and minimum redundancy criteria,

and then defines the two operators, Φ1 and Φ2, as shown in Equation (4). These operators are named
as mutual information difference (MID) and mutual information quotient (MIQ), respectively, to guide
the selection of the optimal feature set theoretical analysis [14]:{

maxΦ1(S, c), Φ1 = D− R
maxΦ2(S, c), Φ2 = D

R
(4)

In this study, the proposed algorithm attempts to realize the optimal feature set Sm selection
according to the maximum correlation and minimum redundancy principle. The assumption is that
optimal feature set Sm−1 composed of the m−1 feature has been obtained and the mth feature can be
searched by Equation (5):

max∇MID,∇MID = max

{
I( fi, c)− 1

m−1 ∑
fi∈Sm−1

I
(

fi, f j
)}

max∇MIQ,∇MIQ = max

{
I( fi, c)/ 1

m−1 ∑
fi∈Sm−1

I
(

fi, f j
)} (5)

where f j is one feature in the primitive feature set that does not belong to Sm−1.

4.2. PD Severity Assessment Feature Selection Model Designs

Based on the principle of mRMR algorithm, in this paper, the detailed process of the optimal
evaluation feature selection for PD severity assessment is as follows:

1. Original PD database construction. Based on the analysis of the 3D PD-pattern and the
characteristics of the four types of defects in Table 1, the PD severity state of the four typical
defects are summarized in Table 5. From the information, we can extract the corresponding
dataset of the four defined states for the four defined defects.

To remove the physical unit interference of the extracted features, based on quantitative analysis,
the data of all the features are normalized to [0, 1]. The following normalized preprocessing
method is adopted:

x∗i =
xi − xmin

xmax − xmin
(i = 1, 2, . . . . . .) (6)

where, xi and x∗i are the original signal and the normalized signal, respectively, and xmax and
xmin represent the minimum and maximum values of the input signal, respectively.

2. Disposal of feature data discretization. The extraction features in this paper are continuous
variables and, thus, require discrete processing. The normalized feature data are divided into
different intervals to achieve the discretization of the continuous quantity [25].

3. PRPD features set construction. The process of the collected original PD data is based on statistical
formulas in PRPD [23] mode and building of the PRPD feature set.

4. Optimal feature set selection: The size of optimal feature set is defined, and MID and MIQ search
rules are used to obtain the optimal feature set and feature sort number of each defect, respectively.
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5. Evaluation effect test: The classifier and the ratio of sample training set and test set, which are
suitable for the research, need to be chosen before the test. Then, the optimal feature set is defined
as the input of the chosen classifier for recognizing the PD severity state.

Table 5. Definition of the severity degrees of PD.

Defect Types
Corresponding PD States of the Applied Voltage (kV)

H1 H2 H3 H4

N Class Defect 7.3/8.6/9.4 11.6/13.5 14.6/16.4 19.4
P Class Defect 11/13.6 15/16.1 17.1/18.0 19.0/20.0
M Class Defect 8.7 10.0/11.5 13.0/14.5 16.0/17.5
G Class Defect 10/13.5/15 16.5/18/19.5 21.0/23.0 25.0/27.0

In addition, the feature set constructed by the theoretical analysis in Table 3 is used as a comparison
in the test. Validity of the feature selection method can then be verified.

Artificial neural network [20,21] and SVM [26] are the most mature algorithms in pattern
recognition. The SVM basic principle is to find a hyper plane in the feature space of data composition
so that different types of training samples are located on both sides of the hyper plane. A large
number of PD pattern recognition applications of the SVM algorithm prove the superior performance
of the algorithm. In this study [26,27], SVM is directly selected as the classification method for PD
severity assessment.

5. PD Severity Assessment Test

5.1. PD Severity Assessment Feature Selection Model Designs

The PRPD statistical feature extraction was performed according to the original PD database
construction process proposed in Section 4.2. The 800 original feature set samples, that is, an 800 × 16
data matrix, are constructed for each type of defect. Then, the label vector matrix corresponding to the
PD severity state of the 800 × 16 sample data is formed.

To evaluate the merits of the feature set in different views, the size of optimal feature set m is
defined as 8–16, respectively, and optimal results are obtained by MID and MIQ search rules. Table 6
presents the optimal evaluation feature set in descending order mode corresponding to the N defect,
where feature sorting is determined in the order shown in Table 6.

Table 6. Assessment feature subsets in descending order under N class defect.

Features Number
Feature Search Rules

MID MIQ

8 16, 1, 13, 6, 15, 7, 4, 14 16, 1, 13, 6, 14, 15, 7, 4
9 16, 1, 13, 6, 15, 7, 4, 14, 11 16, 1, 13, 6, 14, 15, 7, 4, 11,
10 16, 1, 13, 6, 15, 7, 4, 14, 11, 3 16, 1, 13, 6, 14, 15, 7, 4, 11, 3
11 16, 1, 13, 6, 15, 7, 4, 14, 11, 3, 12 16, 1, 13, 6, 14, 15, 7, 4, 11, 3, 2
12 16, 1, 13, 6, 15, 7, 4, 14, 11, 3, 12, 8 16, 1, 13, 6, 14, 15, 7, 4, 11, 3, 2, 12
13 16, 1, 13, 6, 15, 7, 4, 14, 11, 3, 12, 8, 10 16, 1, 13, 6, 14, 15, 7, 4, 11, 3, 2, 12, 8
14 16, 1, 13, 6, 15, 7, 4, 14, 11, 3, 12, 8, 10, 2, 16, 1, 13, 6, 14, 15, 7, 4, 11, 3, 2, 12, 8, 10
15 16, 1, 13, 6, 15, 7, 4, 14, 11, 3, 12, 8, 10, 2, 5 16, 1, 13, 6, 14, 15, 7, 4, 11, 3, 2, 12, 8, 10, 5
16 16, 1, 13, 6, 15, 7, 4, 14, 11, 3, 12, 8, 10, 2, 5, 9 16, 1, 13, 6, 14, 15, 7, 4, 11, 3, 2, 12, 8, 10, 5, 9

The results in Table 6 in the case of N-type defects show that when the optimal feature set size m
is 16 (the size of original feature sets), the rankings of all the features are calculated by MIQ and MID
search strategies, and the rankings of the best features selected by the MIQ and MID algorithms are
roughly the same. When the feature size m is 8–15, the result of the calculation of the optimal features
is the first m feature in the 16D optimal feature ordering.
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In the calculation of the other three defects, the results indicate the ordering rule in different
optimal feature set size of the M, G, and P defects is the same as that of the N defect. Therefore, Table 7
only shows the ranking of the optimal feature set when the feature size is 16 in the M, G, and P defects.

Table 7. Assessment feature subsets in descending order under M, P, and G class defects.

Defect Type
Feature Search Rule

MID MIQ

N Class Defect 16, 1, 13, 6, 15, 7, 4, 14, 11, 3, 12, 8, 10, 2, 5, 9 16, 1, 13, 6, 14, 15, 7, 4, 11, 3, 2, 12, 8, 10, 5, 9
G Class Defect 13, 15, 3, 11, 16, 14, 1, 12, 2, 9, 10, 7, 8, 6, 5, 4 13, 9, 15, 1, 14, 11, 16, 3, 12, 2, 10, 7, 6, 8, 5, 4
M Class Defect 14, 16, 5, 15, 13, 1, 4, 7, 9, 12, 6, 8, 10, 3, 11, 2 14, 5, 16, 13, 15, 1, 4, 7, 9, 12, 8, 6, 10, 11, 3, 2
P Class Defect 16, 5, 3, 15, 14, 11, 6, 9, 8, 4, 12, 7, 13, 10, 2, 1 16, 5, 6, 15, 14, 11, 3, 9, 8, 13, , 4, 12, 7, 10, 2, 1

According to the results in Table 7, prioritization for the same feature in each defect is significantly
different. For example, the optimal features of the N-type defect are numbers 1 and 16, indicating
the dramatic change of the discharge times and amplitude in positive and negative discharge cycles.
This result is confirmed by the obvious change of the 3D PD-pattern of the N defect in the positive
half-cycle discharge, as PD severity deepened in Section 2.2. The first two features, that is, numbers
13 and 9 of the G defect, indicate that the steepness and the skewness of the discharge amplitude
and times of the whole positive and negative half-cycles are the most important. This result confirms
that the number of discharge times and amplitude of the G defect are larger during the entire PD
deterioration in Section 2.2.

The most previous features of numbers 14, 5, and 16 of the M defect type show that the features
that can reflect the difference between the positive and negative discharge half-cycle can highlight
PD deterioration. The optimal features of numbers 16, 5, and 3 of the P defect type show that the
changes of discharge times and amplitude can better distinguish PD degradation under the P-type
defect than other defects. In addition, the results of the optimal feature ordering in M and P defects
indicate that the rules hidden in the PD data, which cannot be found with simple statistical analysis,
are captured by the data analysis-based mRMR method, which is helpful to further understand the
law of PD deterioration.

The above results show that the mRMR algorithm extracts the important feature information
corresponding to all kinds of defects from the data level. The mRMR method can analyze the ϕ-u-n
distribution objectively and reasonably. The above analysis is conducive to the scientific assessment of
PD severity.

5.2. PD Severity Evaluation Effect Test Based on mRMR Method

In this study, the optimal feature set of four types of defects selected by mRMR algorithm was
deemed as the input vector of the SVM classifier. For each type of defect, the test selected 600 groups
of training samples and 200 groups of test samples to analyze the evaluation effect of each feature set
for PD severity. Hereinto, the accuracy rate of the PD severity assessment is defined as the ratio of the
samples evaluated accurately to the total test samples.

The SVM classification effects of the optimal input features set selected by MID and MIQ search
strategies and the features set in the original sequence number in Table 2 (hereinafter referred to as
OS), namely the features 1–16, are shown in Figure 4.

During the test, the reduction of input samples dimension decreased the workload of the classifier
and removed redundant information for the classifier. This feature enhanced the working efficiency of
the classifier significantly. For example, when the number of evaluation features is 9, the training and
test time of SVM classifier is 72% of the total collection state.



Energies 2017, 10, 1516 11 of 14

Energies 2017, 10, 1516 10 of 13 

 

Table 7. Assessment feature subsets in descending order under M, P, and G class defects. 

Defect Type 
Feature Search Rule

MID MIQ 
N Class Defect 16, 1, 13, 6, 15, 7, 4, 14, 11, 3, 12, 8, 10, 2, 5, 9 16, 1, 13, 6, 14, 15, 7, 4, 11, 3, 2, 12, 8, 10, 5, 9 
G Class Defect 13, 15, 3, 11, 16, 14, 1, 12, 2, 9, 10, 7, 8, 6, 5, 4 13, 9, 15, 1, 14, 11, 16, 3, 12, 2, 10, 7, 6, 8, 5, 4 
M Class Defect 14, 16, 5, 15, 13, 1, 4, 7, 9, 12, 6, 8, 10, 3, 11, 2 14, 5, 16, 13, 15, 1, 4, 7, 9, 12, 8, 6, 10, 11, 3, 2 
P Class Defect 16, 5, 3, 15, 14, 11, 6, 9, 8, 4, 12, 7, 13, 10, 2, 1 16, 5, 6, 15, 14, 11, 3, 9, 8, 13, , 4, 12, 7, 10, 2, 1 

According to the results in Table 7, prioritization for the same feature in each defect is 
significantly different. For example, the optimal features of the N-type defect are numbers 1 and 16, 
indicating the dramatic change of the discharge times and amplitude in positive and negative 
discharge cycles. This result is confirmed by the obvious change of the 3D PD-pattern of the N 
defect in the positive half-cycle discharge, as PD severity deepened in Section 2.2. The first two 
features, that is, numbers 13 and 9 of the G defect, indicate that the steepness and the skewness of 
the discharge amplitude and times of the whole positive and negative half-cycles are the most 
important. This result confirms that the number of discharge times and amplitude of the G defect 
are larger during the entire PD deterioration in Section 2.2. 

The most previous features of numbers 14, 5, and 16 of the M defect type show that the 
features that can reflect the difference between the positive and negative discharge half-cycle can 
highlight PD deterioration. The optimal features of numbers 16, 5, and 3 of the P defect type show 
that the changes of discharge times and amplitude can better distinguish PD degradation under the 
P-type defect than other defects. In addition, the results of the optimal feature ordering in M and P 
defects indicate that the rules hidden in the PD data, which cannot be found with simple statistical 
analysis, are captured by the data analysis-based mRMR method, which is helpful to further 
understand the law of PD deterioration. 

The above results show that the mRMR algorithm extracts the important feature information 
corresponding to all kinds of defects from the data level. The mRMR method can analyze the φ-u-n 
distribution objectively and reasonably. The above analysis is conducive to the scientific assessment 
of PD severity. 

5.2. PD Severity Evaluation Effect Test Based on mRMR Method 

In this study, the optimal feature set of four types of defects selected by mRMR algorithm was 
deemed as the input vector of the SVM classifier. For each type of defect, the test selected 600 
groups of training samples and 200 groups of test samples to analyze the evaluation effect of each 
feature set for PD severity. Hereinto, the accuracy rate of the PD severity assessment is defined as 
the ratio of the samples evaluated accurately to the total test samples.  

The SVM classification effects of the optimal input features set selected by MID and MIQ 
search strategies and the features set in the original sequence number in Table 2 (hereinafter 
referred to as OS), namely the features 1–16, are shown in Figure 4. 

(a) (b)

8 9 10 11 12 13 14 15 16
0.65

0.70

0.75

0.80

0.85

0.90

0.95

PD
 se

ve
ri

ty
 a

ss
es

se
m

en
t a

cc
ur

ac
y

feature number

 MID
 MIQ
 OS

8 9 10 11 12 13 14 15 16
0.75

0.80

0.85

0.90

0.95

1.00

PD
 se

ve
ri

ty
 a

ss
es

se
m

en
t a

cc
ur

ac
y

feature number

 MID
 MIQ
 OS

Energies 2017, 10, 1516 11 of 13 

 

(c) (d)

Figure 4. The PD severity assessment accuracy of four defects in the three types of feature sorting. (a) 
N-class defect; (b) P-class defect; (c) G-class defect; and (d) M-class defect. 

During the test, the reduction of input samples dimension decreased the workload of the 
classifier and removed redundant information for the classifier. This feature enhanced the working 
efficiency of the classifier significantly. For example, when the number of evaluation features is 9, 
the training and test time of SVM classifier is 72% of the total collection state. 

According to the result of Figure 4, when the number of selected feature set under MID and 
MIQ rules of the four defined types of defects is 10 or 11, the evaluation accuracy rate of each type 
of defect reaches the evaluation accuracy rate of the original 16-dimension feature set. The feature 
set selection by the MIQ and MID behaved better in PD severity recognition than the feature set in 
the original sequence number (OS). The findings indicate the necessity and effectiveness of the 
feature selection algorithm. For P and G defects, the addition of feature numbers 15 and 16 at the 
end of the optimal ordering decreased the accuracy rate of PD severity assessment. Therefore, 
interference information that affected classification existed in the primitive feature set. 

5.3. PD Severity Evaluation Effect Comparison with Features from the mRMR Method and Theoretical Analysis 

Based on the analysis presented in Sections 5.1 and 5.2, mRMR algorithm is selected to obtain a 
10-dimensional optimal feature set  corresponding to each type of defect, and feature set  = 
[ , , , , ∆ , ∆ , ∆ , , ] acquired in Section 3.2 for contrastive analysis of the 
PD severity evaluation effect. Based on the two feature extraction methods, 800 groups of feature 
samples are constructed against the same primitive PD information. After SVM classification, we 
determined the evaluation accuracy rate of four types of defects as N, P, M, and G at each PD 
severity grade (H1, H2, H3, and H4), and the average evaluation accuracy rate, as shown in Table 8. 
Generally, the evaluation effect based on the  and feature sets are excellent, and the PD 
severity assessment accuracy of the SVM classifier and the BPNN classifier based on the  feature 
set are similar. However, in P and M, defects with relatively poor evaluation effect based on the  
feature set and the optimal selected feature set  retain high evaluation accuracy rates. The 
feature selection method adopted in this study is reliable in practical engineering application. 

Table 8. Assessment feature subsets in descending order under M, P, and G class defects. 

State 
PD Severity Assessment Accuracy (%)

-SVM -SVM -BPNN 
N P M G N P M G N P M G 

H1 0.92 0.95 0.90 0.92 0.89 0.81 0.76 0.81 0.91 0.90 0.88 0.90 
H2 0.90 0.92 0.88 0.98 0.72 0.80 0.70 0.95 0.89 0.89 0.86 0.95 
H3 0.88 0.88 0.85 0.88 0.79 0.80 0.72 0.80 0.86 0.88 0.85 0.87 
H4 0.82 0.91 0.82 0.92 0.80 0.83 0.80 0.83 0.83 0.92 0.80 0.90 

ALL 0.88 0.92 0.85 0.93 0.77 0.81 0.80 0.83 0.87 0.90 0.84 0.91 

8 9 10 11 12 13 14 15 16
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

PD
 se

ve
ri

ty
 a

ss
es

se
m

en
t a

cc
ur

ac
y

feature number

 MID
 MIQ
 OS

8 9 10 11 12 13 14 15 16
0.60

0.65

0.70

0.75

0.80

0.85

0.90

 MID
 MIQ
 OS

PD
 se

ve
ri

ty
 a

ss
es

sm
en

t a
cc

ur
ac

y

feature number

Figure 4. The PD severity assessment accuracy of four defects in the three types of feature sorting.
(a) N-class defect; (b) P-class defect; (c) G-class defect; and (d) M-class defect.

According to the result of Figure 4, when the number of selected feature set under MID and MIQ
rules of the four defined types of defects is 10 or 11, the evaluation accuracy rate of each type of defect
reaches the evaluation accuracy rate of the original 16-dimension feature set. The feature set selection
by the MIQ and MID behaved better in PD severity recognition than the feature set in the original
sequence number (OS). The findings indicate the necessity and effectiveness of the feature selection
algorithm. For P and G defects, the addition of feature numbers 15 and 16 at the end of the optimal
ordering decreased the accuracy rate of PD severity assessment. Therefore, interference information
that affected classification existed in the primitive feature set.

5.3. PD Severity Evaluation Effect Comparison with Features from the mRMR Method and
Theoretical Analysis

Based on the analysis presented in Sections 5.1 and 5.2, mRMR algorithm is selected to obtain
a 10-dimensional optimal feature set Fm corresponding to each type of defect, and feature set
Fs = [u+

max, u−max, N+, N−, ∆T+, ∆T−, ∆Tmax, Qacc, En] acquired in Section 3.2 for contrastive
analysis of the PD severity evaluation effect. Based on the two feature extraction methods, 800 groups
of feature samples are constructed against the same primitive PD information. After SVM classification,
we determined the evaluation accuracy rate of four types of defects as N, P, M, and G at each PD
severity grade (H1, H2, H3, and H4), and the average evaluation accuracy rate, as shown in Table 8.
Generally, the evaluation effect based on the Fm and Fs feature sets are excellent, and the PD severity
assessment accuracy of the SVM classifier and the BPNN classifier based on the Fm feature set are
similar. However, in P and M, defects with relatively poor evaluation effect based on the Fs feature set
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and the optimal selected feature set Fm retain high evaluation accuracy rates. The feature selection
method adopted in this study is reliable in practical engineering application.

Table 8. Assessment feature subsets in descending order under M, P, and G class defects.

State

PD Severity Assessment Accuracy (%)

Fm-SVM Fm-SVM Fm-BPNN

N P M G N P M G N P M G

H1 0.92 0.95 0.90 0.92 0.89 0.81 0.76 0.81 0.91 0.90 0.88 0.90
H2 0.90 0.92 0.88 0.98 0.72 0.80 0.70 0.95 0.89 0.89 0.86 0.95
H3 0.88 0.88 0.85 0.88 0.79 0.80 0.72 0.80 0.86 0.88 0.85 0.87
H4 0.82 0.91 0.82 0.92 0.80 0.83 0.80 0.83 0.83 0.92 0.80 0.90

ALL 0.88 0.92 0.85 0.93 0.77 0.81 0.80 0.83 0.87 0.90 0.84 0.91

6. Conclusions

PD severity assessment in GIS is a concern in the power industry. The 3D PD-patterns from UHF
data, along with PD development in four typical defects, are analyzed in this study. For PD severity
assessment feature extraction, PRPD feature extraction mode, mRMR method-based feature selection,
and feature extraction method-based PD theoretical analysis are employed. Compared with the PD
severity evaluation effect of the two proposed features sets, we draw the following conclusions:

• The theory analysis of the 3D PD-pattern under four defects in different discharge states in
Section 3.1 shows that with regard to the representation of PD severity, the sequence of the
influence degree of the statistical features, such as discharge time, amplitude, and position,
in evaluating the severity of different defects is inconsistent. The ordering result of the optimal
feature subset under PRPD mode acquired through MID and MIQ searching rules in Section 5.1
provides excellent verification for the 3D PD-pattern analysis from the data level.

• The PD severity evaluation accuracy comparison results of the MID feature set, MIQ feature set,
and the OS feature set with a SVM classifier indicates the original PRPD feature set includes
feature items that exert minimal representation effect on PD severity under the four defined
defects and are even involved in redundant feature items under the P and G defects. The first
10 or 11 features in the MID feature set, or the MIQ feature set, can obtain the same PD severity
evaluation effect from the original 16D feature set.

• The PD severity evaluation effect comparison between the features set Fm selected by mRMR
algorithm and statistical features set Fs extracted based on theoretical analysis indicates that PD
severity assessment accuracy with the optimal feature set Fm has a higher stability of precision
than the traditional feature set, in engineering applications under all defined defects. The similar
PD severity assessment accuracy of the SVM classifier and the BPNN classifier based on Fm feature
show that the PD selection process for deep PD information mining plays a more important role
than the classifier selection.

In practical application, the findings have implications for personalized GIS insulation condition
assessment, and highlight the role of historical data to build a personalized intelligent evaluation
scheme in the future.
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