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Abstract: Methane hydrate concentrated zones (MHCZs) have become targets for energy exploration
along continental margins worldwide. In 2013, exploratory drilling in the eastern Nankai Trough
at Daini Atsumi Knoll confirmed that MHCZs tens of meters thick occur directly above bottom
simulating reflections imaged in seismic data. This study uses 3-dimensional (3D) seismic and
borehole data collected from the Kumano Basin offshore Japan to identify analogous MHCZs.
Our survey region is located ~100 km southwest of the Daini Atsumi Knoll, site of the first offshore
gas hydrate production trial. Here we provide a detailed analysis of the gas hydrate system within
our survey area of the Kumano forearc including: (1) the 3D spatial distribution of bottom simulating
reflections; (2) a thickness map of potential MHCZs; and (3) a volumetric gas-in-place estimate
for these MHCZs using constraints from our seismic interpretations as well as previously collected
borehole data. There is evidence for two distinct zones of concentrated gas hydrate 10–90 m thick, and
we estimate that the amount of gas-in-place potentially locked up in these MHCZs is 1.9–46.3 trillion
cubic feet with a preferred estimate of 15.8 trillion cubic feet.

Keywords: gas hydrates; Kumano Basin; bottom simulating reflections; methane hydrate exploration;
3D seismic interpretation; Nankai Trough

1. Introduction

Natural gas hydrates (GH) are crystalline inclusion compounds that form within the pore space
of marine sediments along continental margins worldwide. These hydrate deposits are stable at
specific pressure-temperature relationships, host highly compressed gas molecules (most commonly
methane), and are proposed to be the largest dynamic reservoir of organic carbon on this planet [1–3].
GHs have enticed global interest for several reasons including climate change and potential slope
stability hazards, but primarily because these deposits could prove to be an unconventional energy
resource [3,4]. At the exploration stage, it is important to develop systematic GH exploration methods
that consider gas source, migration mechanisms into the hydrate stability field, zones of free gas,
indicators of gas hydrate accumulation, and at least a first order volumetric gas-in-place estimate for
apparent zones of concentrated hydrates [5,6].

Seismic imaging is an important tool for identifying GH because both GH and free gas alter the
physical properties of marine sediments, which will in turn affect the travel path and attenuation of
the seismic wavelet [7–9]. Concentrated hydrate deposits tend to form at and just above the base of
gas hydrate stability (BGHS). This results in a sharp contrast in mechanical properties at the phase
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boundary between GH saturated layers overlying a zone where free gas, water, and potentially
non-cementing hydrate occupy the pore space [10]. This contrast in physical properties is expressed in
seismic data as bottom simulating reflections (BSRs), and BSRs remain our strongest remotely sensed
indicator to infer the presence of GH [11]. Constraints from wells, and ideally pressure cores, are an
essential second step for confirming hydrate occurrence and for estimating the amount of gas present
in a given hydrate reservoir [12].

This study uses high-resolution, 3-dimensional (3D) seismic reflection data combined with
Integrated Ocean Drilling Program (IODP) borehole data collected through the Kumano Basin, off Kii
Penisula, Japan, at Sites C0009 and C0002 to: (1) identify and map potential zones of concentrated
gas hydrate in our survey region; and (2) calculate a volumetric gas-in-place estimate for these newly
mapped MHCZs using constraints from borehole data. Our study site is an exceptional location to
assess a gas hydrate system because there is a wealth of scientific drilling data available to constrain
our seismic interpretations.

2. Geologic Setting

2.1. Tectonic Environment

Our study region in the Kumano Basin (Figure 1) is a part of the Nankai subduction zone system,
which has been site to intensive GH exploration and characterization efforts [4,13–15]. GH is widely
distributed across forearc basins like Kumano because subduction zone compressional tectonics
produce fracture and fault networks that can act as fluid migration pathways enabling the delivery
of gas-charged fluids from depth into the hydrate stability zone [16–19]. These fluids are often rich
in chemical compounds including methane and potentially other higher C2+ hydrocarbons such as
ethane and propane [17,20]. Not surprisingly then, the Nankai Trough, a region with a long history of
enormous, megathrust earthquakes (M > 8.0), concomitant fluid expulsion potential from compressive
stress induced compaction (increases pore pressure), and mineral dehydration, is connected to the
largest known methane hydrate bearing zones offshore Japan [20–23].
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Figure 1. (A) The Nankai Trough is formed by the oblique subduction of the Philippine Sea Plate 
beneath the Eurasian Plate at a rate of about 4.0–6.5 cm/year [24]. Sediments are delivered to the basin 
by submarine channels (red arrows) and are being incorporated into the underlying thickening 
accretionary prism [25,26]. Our study site perimeter is bounded by the red box and drill sites C0002, 
C0009 are indicated by red dots. The blue dot marks the location of the Atsumi Knoll drill site; (B) 
Kumano Basin bathymetry. The survey perimeter is indicated by the dashed black line; (C) Arbitrary 
seismic line through Sites C0002 and C0009 for sediment and drilling depth reference. 
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Kumano Basin’s evolutionary history is complex, but it is generally accepted that the initial 
accommodation space was formed when uplift along the megasplay fault created a barrier to 
sediment delivery to the trench at around ~1.95 Ma [26–29]. Biostratigraphic age constraints obtained 
at Sites C0002 and C0009 mark the basin sediments as Quaternary to modern in age [26,29]. At 
present, the basin is filled with ~2 km of pelagic and hemipelagic muds intercalated with clastic 
turbidites and thin ash layers [26]. Basin strata are severed by a series of deep-cutting normal faults 
with offsets of 5–30 m [30], and small scale faults in the accretionary wedge which are some of the 
youngest deformational structures [31]. The seafloor is relatively flat at ~2000 m water depth with a 
bottom water temperature of 2 °C, and it has been well imaged by side-scan sonar, swath bathymetry, 
and seismic surveys [25,32,33]. The surface morphology shows large normal faults that offset the 
seafloor, several large-scale landslide scars (Figure 1B), while the seismic data reveals that buried 
mass transport deposits are common throughout the basin [34]. 

The basin fill is characterized by a submarine fan turbiditic depositional system delivering 
sediments from Kii Peninsula via large submarine canyons (Figure 1A). There have been significant 
fluctuations of sediment provenance and shifts in delivery pathways and rerouting since the basin’s 
initiation [35–38]. A margin-wide assessment has shown that the submarine fans have transformed 
over time from a braided channel-dominated system to a small fan dominated system with shrinking, 
separated, small basins; to a trough fill turbidite system; to a channel-levee system [39–41]. These 
changes in depositional processes over time affect the spatio-temporal delivery of organic matter 
necessary for methane production as well as the distribution of potential reservoirs given that 
turbidites, ash layers, and channel fill sediments are most likely to host high concentrations of GH 
and free gas [42]. In the absence of sufficient total organic carbon for in situ methane production, 
migration of gas from depth through either focused or diffuse fluid flow, or hydrate recycling 
instigated by rapid changes in sedimentation or tectonic uplift/subsidence, is required to support a 
concentrated gas hydrate system [43–45]. 

Each of the geologic elements necessary to support a robust GH system, including deep water 
(high pressure), cold bottom waters (2 °C), sand rich turbidite deposits sandwiched by fine-grained 
muds, gas hydrate recycling provocations via tectonic perturbations (uplift, rapid sediment 
transport), and potential fluid expulsion events with gas migration routes from depth (deep cutting 
normal faults) are present in our study region. 
  

Figure 1. (A) The Nankai Trough is formed by the oblique subduction of the Philippine Sea Plate
beneath the Eurasian Plate at a rate of about 4.0–6.5 cm/year [24]. Sediments are delivered to the
basin by submarine channels (red arrows) and are being incorporated into the underlying thickening
accretionary prism [25,26]. Our study site perimeter is bounded by the red box and drill sites C0002,
C0009 are indicated by red dots. The blue dot marks the location of the Atsumi Knoll drill site;
(B) Kumano Basin bathymetry. The survey perimeter is indicated by the dashed black line; (C) Arbitrary
seismic line through Sites C0002 and C0009 for sediment and drilling depth reference.

2.2. Kumano Basin Evolution

Kumano Basin’s evolutionary history is complex, but it is generally accepted that the initial
accommodation space was formed when uplift along the megasplay fault created a barrier to sediment
delivery to the trench at around ~1.95 Ma [26–29]. Biostratigraphic age constraints obtained at Sites
C0002 and C0009 mark the basin sediments as Quaternary to modern in age [26,29]. At present, the
basin is filled with ~2 km of pelagic and hemipelagic muds intercalated with clastic turbidites and
thin ash layers [26]. Basin strata are severed by a series of deep-cutting normal faults with offsets
of 5–30 m [30], and small scale faults in the accretionary wedge which are some of the youngest
deformational structures [31]. The seafloor is relatively flat at ~2000 m water depth with a bottom
water temperature of 2 ◦C, and it has been well imaged by side-scan sonar, swath bathymetry, and
seismic surveys [25,32,33]. The surface morphology shows large normal faults that offset the seafloor,
several large-scale landslide scars (Figure 1B), while the seismic data reveals that buried mass transport
deposits are common throughout the basin [34].

The basin fill is characterized by a submarine fan turbiditic depositional system delivering
sediments from Kii Peninsula via large submarine canyons (Figure 1A). There have been significant
fluctuations of sediment provenance and shifts in delivery pathways and rerouting since the basin’s
initiation [35–38]. A margin-wide assessment has shown that the submarine fans have transformed
over time from a braided channel-dominated system to a small fan dominated system with shrinking,
separated, small basins; to a trough fill turbidite system; to a channel-levee system [39–41]. These
changes in depositional processes over time affect the spatio-temporal delivery of organic matter
necessary for methane production as well as the distribution of potential reservoirs given that turbidites,
ash layers, and channel fill sediments are most likely to host high concentrations of GH and free gas [42].
In the absence of sufficient total organic carbon for in situ methane production, migration of gas from
depth through either focused or diffuse fluid flow, or hydrate recycling instigated by rapid changes
in sedimentation or tectonic uplift/subsidence, is required to support a concentrated gas hydrate
system [43–45].

Each of the geologic elements necessary to support a robust GH system, including deep water
(high pressure), cold bottom waters (2 ◦C), sand rich turbidite deposits sandwiched by fine-grained
muds, gas hydrate recycling provocations via tectonic perturbations (uplift, rapid sediment transport),
and potential fluid expulsion events with gas migration routes from depth (deep cutting normal faults)
are present in our study region.
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3. Materials and Methods

3.1. Borehole Data

Empirical evidence for gas source, migration routes, and gas hydrate occurrences are compiled
from numerous IODP expedition reports and post expedition publications. These data are presented
in Table S1 and are used to constrain our seismic interpretations and volumetric gas-in-place
estimate. Borehole data collected by the drillship D/V Chikyu includes geochemical, geophysical,
and sedimentological information. For shipboard methods see reference [26]. Site C0009 was logged,
but sediment cores were not collected from the basin [40]; thus, we rely heavily on data from C0002
(Figure 2).
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Figure 2. Core-log-seismic integration at Site C0002 showing composite medium button static resistivity,
composite core lithology, logging units and composite logging-while-drilling (LWD) data. The BSR
occurs at ~400 mbsf. High resistivity spikes are present above the BSR. Subunit A was noted to have
high gas hydrate occurrences and Subunit B was a gas saturated zone. Figure modified from [26].

3.2. Seismic Data

3.2.1. Seismic Acquisition

The 3D seismic reflection survey was carried out by Petroleum GeoServices (PGS, Singapore)
in 2006 [46]. The resulting volume covers a geographical area of 12 × 56 km with 12.5 m between
inlines (oriented NW-SE) and 18.75 m between crosslines (SW-NE) with excellent shallow resolution of
5–7 m [46]. Two arrays of 28 Sodera G-guns fired alternatively at 37.5 m intervals, and four 4500 m
long hydrophone cables with 360 receivers grouped at 12.5 m spacing received the seismic source. This
setup of 4 streamers per 2-sources produced 8 common midpoint (CMP) profiles per sail line with a
spacing of 37.5 m and 30-fold data. Frequency range was 40–50 Hz for the BSR depths. The entire
survey area is oriented at 330.1◦.

3.2.2. Seismic Processing

The data were processed by CGG geophysical services and were corrected for noise and gain.
Normal moveout was applied and binned traces were stacked following velocity analysis. The data
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underwent 3D pre-stack depth migration (PSDM). The PSDM volume has a 12.5 m interval between
crosslines and an 18.75 m between inlines [46].

3.2.3. Data Interpretation

The 3D reflection seismic data are used in this study to map bottom simulating reflections, and
to evaluate gas hydrate and free gas occurrence via visual interpretation. We adopt the GH seismic
interpretation model of Boswell et al. [47]. Localized high amplitude reflections (HARs) serve as
direct hydrocarbon indicators for free gas when below the gas hydrate stability zone (GHSZ), and
likely indicators of gas hydrate when occurring within the GHSZ [48–50]. The primary seismic BSR is
assumed to be in equilibrium marking the phase boundary of the structure-I (methane) gas hydrate
stability. Seismic interference from the presence of a complex fault network in the center of the
survey made automatic tracking of the BSR impossible. Therefore we manually picked BSRs in the
inlines and confirmed correct picks by cross-checking picks in the crosslines. BSR horizons were
mapped on every inline in the PSDM 3D seismic amplitude volume (IL2150-IL2720) across an area of
~27 × 12 km. In zones where BSRs were difficult to visually identify in the amplitude volume because
of fault interference, picking was guided by use of the signal envelope attribute [51]. All seismic
interpretations were made using Paradigm 3D Canvas Seismic Software, and the maps were created
using Generic Mapping Tools software (GMT) [52].

3.3. Gas-in-Place (GIP) Estimate

For consistency, we adopt the volumetric gas-in-place estimation method used by the MH21
Research Consortium to evaluate the eastern Nankai Trough hydrate concentration zones [53]:

GIP = GRV × N/G × φ × MHSh × VR × CO (1)

whereby GIP represents the gas-in-place, GRV is the total rock volume extracted from our isopach
maps of inferred zones of concentrated GH, N/G is the net to gross ratio, φ is the porosity, MHSh is
the methane hydrate saturation taken from shipboard Cl- data (the volumetric fraction of hydrates
pore space occupancy), VR is the void ratio at standard temperature and pressure, and CO is the
hydrate cage occupancy which is defined as the ratio of hydrate cages occupied by a natural gas
molecules/the total number of cages [54]. The top of the hydrate concentration zone is defined by
our upper-BSR interpretation, while the bottom of the hydrate concentration zone is defined by our
main-BSR interpretation.

The controls on GH occurrence and stability are affected by the geothermal gradient, sediment
thermal conductivity, pore pressure, porosity, permeability, pore water salinity, the amount of total
organic carbon (TOC), flux of natural gas from depth, in situ gas production, gas solubility with depth,
ambient pore water gas saturation, pore water availability, host sediment grain size and mineralogy,
effective stress, and potentially even the morphology of the hydrate itself [55,56]. Thus, it is important
to keep in mind that large estimation errors are possible. A key source of error for each gas hydrate
proxy assessment (e.g., saturation estimates from pore-water and well-logs; hydrate presence from
seismic) is related to baseline assumptions which may be elusive in the absence of pressure cores.

4. Results and Discussion

4.1. Drilling Data Summary

The amount of methane that can be generated in situ in the upper sediment column is limited by
the amount of bioavailable organic carbon that escapes oxidation via rapid burial. Thermal cracking
demands temperatures of >80 ◦C which would be equivalent to ~2 kmbsf at Site C0002 or ~3.5 kmbsf
at Site C0009 given their respective geothermal gradients (Table S1). The total organic content (TOC)
at Site C0002 is generally low (between 0.4–0.8 with an average of 0.5 wt %) with a small peak
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corresponding to the lower basin sediments. This package of lower basin sediments is very thin at
C0002, but is significantly thicker in other regions more landward in the basin (refer to Table S1). Very
high TOC content was found in the same sequence at C0009 (5.0 wt %) [57]. HARs are imaged across
the organic rich sediment package, and are geophysical evidence for gas charge fluid delivery from
the accretionary prism and deep basin sediments. Data from Expeditions 338 and 348 collected at
C0002 clearly show that there is a component of thermogenic and microbial gas mixing. Thermal
cracking to produce higher order hydrocarbons could be taking place on the incoming plate where
the heat flow is higher [58]. Prior to subduction, these thermogenic gases may be transported up
into basin sediments with deeply sourced fluids from the heavily fractured underlying accretionary
prism. Hydrate saturations in the upper basin sediments were calculated by several groups using
proxy measurements including Cl- freshening [59] and well-logs [57,59–61]. Discrepancies in their
assessments are related to their baseline assumptions.

4.2. Seismic Mapping and Interpretation

4.2.1. Bottom Simulating Reflections (BSRs)

We observed that multiple BSRs are abundant throughout the survey region. The primary BSR
(Figure 3B) is interpreted to be the current base of gas hydrate stability (BGHS). This was confirmed
by drilling at C0002 by the presence of a thick GH layer in sediment cores correlating with a peak in
resistivity at the depth of our BSR boundary (~400 mbsf) with free gas detected below (Figure 2) [26].
This BSR appears as a continuous, crosscutting reflection that closely mirrors the seafloor and is
opposite polarity to the seafloor (red horizon). It reaches a minimum depth of ~320 mbsf and a
maximum depth of ~520 mbsf, with an average depth at 400 mbsf (Figure 3B). A similar range in
BSR depths were reported offshore Chile [62]. The primary BSR predominantly exhibits a strong,
high amplitude character, suggesting a continuous free gas zone is present beneath (Figure 4). The
continuous and generally high amplitude nature of the BSR is characteristic of a diffusive system
supported by gas hydrate recycling processes [63,64]. Selective increases in BSR amplitudes indicate
the important role of sand layers as a conduit for upward migration of gas-bearing fluids [65–67]
(Figure 4). The large normal faults (Figure 3B) do not offset the BSR-meaning that there has been
sufficient time since fault activity for BSR equilibration.
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Figure 3. (A) Bathymetric map of the study zone for reference; (B) BSR depth map in meters below
sea-level. Red triangles represent drill Sites C0009 and C0002. The BSR generally mirrors the seafloor
behavior and is continuous across the large normal faults. Blank zones in the BSR map within the
survey regions are areas where BSRs were not imaged in the seismic data.
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Figure 4. (A) Seismic Inline 2577 displaying an example of BSR amplitude strengths across sandy units
(strong) and clay rich units (weaker). HARs below BSR indicate presence of gas saturated sands. Many
dipping beds change polarity across the BSR and the BSR is continuous across the large normal faults.
(B) Bathymetric map of the study zone with the extent of IL 2577 shown for reference.

A second set of BSRs, which we refer to as Upper BSRs, are observed to occur above the main
BSR. Based on their seismic character, we infer that these horizons image the top of methane hydrate
concentration zones (Figures 5–8). They appear in our data as crosscutting reflections and are generally
the same polarity as the seafloor (black horizon) signifying an increase in impedance contrast, as
opposed to the reverse polarity nature of the main BSR (Figures 6 and 7). These Upper BSRs cluster
in two regions of the basin (Figures 5–7) and are located between 10–100 m above the primary BSR,
but are on average ~40 m above the BSR.

Upper BSR Zone-1 is in the central region of the seismic survey. It is associated with an underlying
basement high and abundant deep cutting normal faults (Figure 6). The Upper BSR horizons in this
zone are patchy and generally sub-parallel to the seafloor. Many of these boundaries terminate
against the normal faults which segments the hydrate reservoir lateral continuity with maximum
continuity running parallel to the trench. GH deposits were similarly found to be closely related to
large scale structural features in the Ulleung Basin [68], the Gulf of Mexico (GoM) [69,70] and the
Krishna Godavari Basin offshore India [71]. Upper BSRs in Zone-2 are more narrowly constrained
and are limited to the seaward edge of the basin where uplift has occurred along the outerarc ridge
(Figures 5 and 7). They are nearly parallel to the seafloor, and appear to primarily crosscut sandy units
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(Figure 7). They have a steeper slope than the Upper BSRs in Zone-1 occurring up to 90 m above the
primary BSR.

The thicknesses between the Upper BSRs and the primary BSRs are shown in our isopach map
(Figure 5A). This represents the thickness of the MHCZs from which we derive a gross-rock volume
(GRV). Note that neither C0009 or C0002 drilled through an Upper BSR.
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Given the shallow depths of the Upper BSRs in relation to the geothermal gradient in the basin
(see Table S1), we can rule out the option of an opal-A to opalCT transition at the depths of the Upper
BSR boundaries. There is also no evidence in C0002 cores or C0009 logs to suggest the presence of a
thick authigenic carbonate layer. Gas hydrates are associated with stimulated microbial activity which
results in the production of magnetic iron sulfides from sulfate reduction [72,73], and the preservation
of greigite and pyrrhotites is favored in regions with disseminated gas hydrates and will transform
to pyrite once gas hydrates decompose [74]. While a concentrated layer of pyrite could represent a
“fossilized” or “paleo” BSR [74], it is unlikely that a concentrated pyrite layer would be thick enough
for seismic detection at the scale of the observed Upper BSRs.

Zones of high amplitude reflections occurring above the BSR akin to the Upper BSRs we observe
in our seismic data were also found in the Nankai prism [75], in the GoM [6,76], and in the eastern
Nankai Trough [67,77]. Core analyses at those sites determined those reflections marked the top of
highly concentrated gas hydrate zones [47,67]. Similar thin, positive amplitude reflections above the
BSR have also been interpreted to represent the top of a concentrated gas hydrate zones along the
Chilean margin [78]. For these reasons, we argue that the Upper BSRs in our seismic data mark the top
of MHCZs. These proposed MHCZs appear in their seismic character to be analogous to the confirmed
MHCZs in the eastern Nankai Trough at Daini Atsumi Knoll [8].

4.2.2. Seismic Evidence for Gas Source and Migration Pathways into the MHCZs

The 3D PSDM seismic volume reveals a complicated geologic environment including complex
faulting, tilting of beds from tectonic uplift of the basin’s seaward margin, deformation structures in
the underlying accretionary prisms, and dozens of large mass wasting. High amplitude reflections
(HARs) correlating with gas charged sands are common beneath the BSR (Figures 8–10). HARs above
the BSR are nearly always updip of zones with HARs below the BSR and are likely GH (Figures 9–11).

The presence of gas appears in seismic data as reductions in acoustic impedance, which
strengthens the reflectivity coefficient and results in either HARs, a polarity change, or as anomalous
low velocity, low coherency zone [79–81]. Other seismic indicators of gas-charged fluids include flat
spots, bright spots, and dim spots, which are each known as “direct hydrocarbon indicators”, and
are thus important features to look for when searching for hydrocarbons in marine sediments [50,82].
Gas can also produce “seismic turbidity” which appears as a visual distortion of seismic horizons [83].
We assume that oil is not present in the Kumano Basin given that the organic matter found during
drilling is predominantly woody material, and therefore any hydrocarbon indicator is likely a gas-water,
hydrate-gas, or hydrate-water contact. Blanking is observed in a thick sequence above the BSR in the
center of the survey (Figure 9) is interpreted to signify low GH saturation. Incidences of blanking
below the BSR could be from either gas saturated muds, or acoustic attenuation of the seismic wave
as it passes through a thick GH zone. Drilling in the GoM demonstrated that blanking above the
BSR reflects minor hydrate saturations and is not considered a prospective resource zone [47]. Thus,
we do not include zones of blanking in our gas-in-place estimate. HARs appear frequently at and
well beneath (100 s of meters) the BSR throughout the seismic data suggesting gas is sourced from
depth. Cluster of HARs are observed along anticlinal hinges with updip strata leading to HCZ Zone-1
(Figures 5 and 10), and within tilted strata and erosional feature at the seaward edge of the basin
downdip of HCZ Zone-2 (Figures 5 and 11). The acoustic turbidity and spatial distribution of these
gas signatures suggests a broad, diffuse gas zone is present beneath the BGHS correlating with both
MHCZs. We interpret this to mean there is an efficient hydrate seal above. Any gas released from
hydrate dissociation following the upward shift of the BGHS will mix with this pool of underlying gas
contributing to gas hydrate recycling at the BGHS.
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(B) Bathymetric map of the study zone with the extent of IL 2374 shown for reference.
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low gas hydrate saturations. The BSR interpretation is presented (blue line). Arrows pointing to the 
upper BSRs likely marking the top of concentrated gas hydrates above the BSR. Acoustic turbidity 
and numerous bright spots below the BSR are signs of gas saturated sediments. (B) Bathymetric map 
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Figure 10. (A) Inline 2407. Gas traps along anticlinal hinges above an underlying topographic high in 
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Figure 9. (A) Inline 2312 Acoustic blanking above the BSR in the center of the survey is attributed to
low gas hydrate saturations. The BSR interpretation is presented (blue line). Arrows pointing to the
upper BSRs likely marking the top of concentrated gas hydrates above the BSR. Acoustic turbidity and
numerous bright spots below the BSR are signs of gas saturated sediments. (B) Bathymetric map of the
study zone with the extent of IL 2312 shown for reference.
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Figure 10. (A) Inline 2407. Gas traps along anticlinal hinges above an underlying topographic high
in the accretionary prism. Similar HARS along anticlinal hinges have also been observed in the gas
hydrate-bearing regions of the Hikurangi [84] and the Makran [85] margins. (B) Bathymetric map of
the study zone with the extent of IL 2407 shown for reference.
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Gas migration in marine sediments can proceed as a short-range and/or long range process [60].
Short-range migration is the mechanism by which in situ methane produced as a byproduct of microbial
metabolism diffuses from one sediment layer to the next. Usually, this means from a fine-grained
interval where it is difficult to form hydrates because of the Gibbs-Thomson effect on methane solubility
in fine-grain sediments, to an adjacent coarse grain layer with larger pore spaces which act to lower
gas solubility, creating a favorable chemical potential scenario that facilitates hydrate nucleation [86].
GH recycling is a second example of a short-range migration mechanism. In this case, gas released
from GH dissociation, following a shift in the BGHS, diffuses into the newly established GHSZ and
is potentially reincorporated into a new hydrate structure (in addition to any new gas produced in
situ) [87]. Long-range migration involves the transfer of free-gas and gas-charged fluids into the
GHSZ from depth, usually along pressure gradients via diffuse porous flow through permeable layers,
or as focused advection along highly permeability outlets including faults, fractures and fluid escape
structures such as mud volcanoes [88].
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beneath the BSR. HARs are abundant directly above the BSR and are likely GH formed by GH recycling.
(B) Bathymetric map of the study zone with the extent of IL 2178 shown for reference.

In the Kumano Basin data, we observe geophysical evidence for both short and long range
migration as opposed to the long-range only model [86] and the short range only migration
reaction-transport model [60] previously proposed for the basin. Malinverno and Goldberg’s study [60]
found that in situ biogenic methane production could support a GH system at C0002, however, this
process alone could not account for the large thickness of methane hydrate-bearing sands recovered
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from just above the BGHS. When considering the borehole data collected at C0002 and C0009 in
relation to the gas proxies we have identified in the 3D seismic data, it is likely that gas migrates into
the GHSZ by means of three mechanisms: (1) diffuse flow along permeable dipping strata sandwiched
between less permeable clays evidenced by high amplitude reflections in sand beds where beds have
been tilted ~5–8 degrees (Figures 7 and 8); (2) episodically as focused fluid flow through deep cutting
faults and mud volcanism at times of tectonic activity (Figure 12); and (3) by diffusion following BGHS
shifts and concomitant hydrate decomposition/recycling stimulated by the interplay of sedimentation
and tectonic uplift during accretion which would allow for the formation of thick GH deposits to form
above the BGHS (Figure 11).

It is known that fluid flow alternates between diffuse and focused flow over time depending
on changes in the stress field [18,89,90]. Hammerschmidt et al.’s [91] analysis of drilling mud gas
samples at C0002 for 222RN, helium (He) concentration, and He isotope ratios supports episodic fluid
flow occurs in the basin. Their research found a strong contribution of primordial helium in the
upper part of the accretionary prism, but currently, fluid flow velocities are too low to support the
elevated gas concentrations. The dewatering of the subducting wedge is also a transient process, and
the expulsion of fluids from an over-pressured accretionary prism or fluid expulsion during seismic
events could carry gas generated at depth into the GHSZ [17]. As was found at Woosley Mound in the
GoM [70,92], it is likely that GHs in Kumano Basin are formed rapidly just following periods of active
fluid advection [93]. The association of basement topographic highs with fault-controlled fluid flow
potentially delivering basement sourced fluids, as observed by HARs in these seismic data, is a pattern
also observed in the hydrate bearing region of the Makran accretionary margin [85], and in association
with salt tectonics in the GoM [94]. Such transient fluid pulses could also explain the freshening pulse
measured in the Cl- baseline at C0002.

Other supporting evidence that focused fluid flow in the seaward part of the basin is likely
episodic includes: (1) a lack of seafloor pockmarks in the existing bathymetry data [95]; (2) generally,
the BSR is not offset across the majority of the large normal faults that break the seafloor meaning that
the BSR has had sufficient time to equilibrate to the current base of gas hydrate stability and (3) there is
very little seismic evidence for active fluid escape structures (pipes), except for a single mud volcano at
the seaward edge that breaks through the seafloor with a conical shaped dome (Figure 12). This mud
volcano is deeply rooted and expresses hummocky reflections inferred to be the centralized vent. Here
fluid expulsion is likely active because the BSR shoals upward, and is truncated as it approaches the
vent feature. Fluids from twelve analogous mud volcanoes within the Kumano basin further landward
were sampled and analyzed for hydrocarbon origins [95]. Gas hydrates were recovered from MVs
2, 4, 5, and 10 and of these, MVs 2, 4, and 10 showed molecular C1/C2 ratios >250 and stable carbon
isotopic composition δ13C of methane >−40hV-PDB which together are diagnostic of hydrate-bound
thermogenic methane originating from between 2300 and 4300 mbsf corresponding to Cretaceous
to Tertiary Shimanto belt below the Pliocene/Pleistocene to recent basin sediments [95]. There are
numerous examples where concentrated GHs have been found in association with submarine mud
volcanoes [95–100]. It has been proposed that compensation troughs (synclines) surrounding mud
volcanoes are proximal weak zones where gas from the upward expulsion can migrate laterally into
the hydrate stability zone, and thus the maximum concentration of hydrates in association with MVs
is found in compensation troughs [100]. Considering the seismic character of our imaged BSR across
the mud volcano (not imaged) and the HARs in the compensation troughs, we propose that this seep
is active or recently active and that the clustering of strong HARs extruding latterly from the vent are
likely the product of gas hydrates hosting laterally extruded gas molecules.
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seafloor and lacks a BSR suggesting it is likely active or recently active. (B) Bathymetric map of the 
study zone with the extent of IL 2219 shown for reference. 
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Figure 12. (A) Seismic IL 2219 HARs above the BSR (circled) are associated with underlying gas
migration routes, strong main BSR, and zones of blanking beneath the BSR. We interpret the circled
regions to host highly concentrated gas hydrates. The main-BSR is not offset across the deep cutting
normal faults and there are no pockmarks in the seafloor bathymetry. The mud volcano breaches the
seafloor and lacks a BSR suggesting it is likely active or recently active. (B) Bathymetric map of the
study zone with the extent of IL 2219 shown for reference.

4.2.3. Seismic Evidence for Gas and GH Traps

The structural and stratigraphic controls on the sub-surface distribution of free gas and GH is
evidenced by the distribution of BSRs, variable BSR amplitude strengths and the presence of localized
HARs which we pointed out both above and below the GHSZ. Gas-charged fluids are at least partially
confined in stratigraphic traps under the cap of the anticlinal-shaped accreted sediments (Figure 10)
and within the intercalated synclinal-shaped sediments which corresponds to the ponded slope basins
in the early stages of prism growth (Figures 4, 6 and 7) [41].

Seismic blanking within the GHSZ is characteristic of the reduction of pore space due to low to
modest gas hydrate saturation, while modest to high gas hydrate saturation will lead to strong positive
amplitudes [101–103]. Both types of seismic responses are observed within the GHSZ in our seismic
data. The logging data, pore water data, and soupy structures in sediment cores collected at Sites C0002
and C0009 have shown that both pore-filling GH in sand layers and disseminated GH in muds are
present in the basin. From the drilling data at C0002, we know that hydrate-bearing sediments (traps)
are turbidite sands which includes a > 3 m thick sand layer hosting the highest concentration of gas
hydrates directly above the BSR at about 386 mbsf [26,78]. Previous studies analyzing ring resistivity,
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bit resistivity, and P-wave velocity data from Site C0002 estimated high gas hydrate saturations (>60%)
in sandy layers with the presence of free gas identified at several depths [59]. These thick sand beds
within the GHSZ are potential GH reservoirs.

4.3. Volumetric Gas in Place Estimate

For our gas-in-place estimate, we define the bottom of the MHCZs as the main BSR imaged in
the 3D seismic volume. The upper boundary is defined by our Upper BSRs. This resource estimate
provides a first-order gas-in-place estimate for the HCZ above the BSR only. Potential GH bearing
zones outside of the BSR and Upper BSR envelope are not considered.

The GRV from our isopach map was determined to be 955,940 MMcf. The N/G is the assumed
sand to clay ratio and values are based on core data collected from C0002. The φ and MHSh are
based on shipboard moisture and density (MAD) measurements for a sand rich interval at the depth
of the BSR (400 mbsf) at Site C0002 during Expedition 338 and post expedition reports respectively.
The preferred φ value used here is 50% (appropriate for the depths of the BSR) but shipboard data
shows that it could range from 45–60%. Post cruise hydrate saturation in the sand bed above the BSR
were determined to be 71% (maximum) based on log results and with MHSh in sand beds above the
BSR at ~35% using a pore filling model based on porewater results [61]. We prefer a MHSh value of
35%. The VR (164) also assumes a pore-filling hydrate model. CO is set at a mode of 0.96 based on
observations from recovered natural gas hydrates collected in cores around the world but could range
from 0.90–0.99. There could be large errors with extrapolating the MHSh from C0002 to the center
of the basin. Given these parameters (Table 1) we conservatively estimate ~15.8 trillion cubic feet of
methane is locked up in the MHCZs imaged in our seismic data. However, this value could range from
~1.9–46.3 trillion cubic feet. For comparison, the amount of methane locked up in hydrate reservoirs at
the Japanese production trial in the south-eastern Nankai Trough was estimated at 40 trillion cubic
feet [15,53].

Table 1. Minimum, preferred, and maximum GIP estimates. The gross rock volume is obtained from
our seismic interpretation of the thicknesses of the MHCZs. The net-to-gross ratio, porosity, and
methane hydrate saturation values are obtained from C0002 borehole constraints. The void ratio
assumes a pore filling GH structure, and the cage occupancy possibilities is from field observations
around the world with 0.96 being most common.

Parameters GRV
(MMcf)

N/G
(%)

Φ

(%)
MHSh
(%) VR CO

(%)
GIP

(Trillion ft3)

Minimum 955,940 0.30 0.45 0.10 164 0.90 ~1.9
Preferred 955,940 0.60 0.50 0.35 164 0.96 ~15.8
Maximum 955,940 0.70 0.60 0.71 164 0.99 ~46.3

5. Conclusions

This is the first study to map potential methane hydrate concentration zones, in three-dimensions,
for our survey region of the Kumano Basin in order to extract a gross rock volume, and to provide a
gas-in-place estimate for these MHCZs using borehole constraints. We identified gas proxies beneath
the main BSR which allowed us to infer the gas migration mechanisms in the basin. Gas charged fluids
migrate into basin sediments from anticlinal features in the underlying accretionary prism, migrate
through the sediments as diffuse fluid flow updip permeable sands sandwiched by less permeable clays;
episodically through faults and fractures; and through gas hydrate recycling following perturbation to
the BGHS from uplift and rapid sedimentation. Generally, active fluid advection is not evidenced by
the current BSR character. Given the previously published geochemical data, and our observed seismic
indicators (HARs) in lower basin sediments, it is likely that deep fluids are episodically charging the
two zones of concentrated gas hydrate deposits identified above the primary BSR. Hydrate recycling
at the BSR is also evidenced by closely stacked BSRs in the center of the basin. A thick GH layer acting
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as a seal for gas below provides a trap for gas to accumulate and then later be incorporated into new
GHs following perturbations to the base of hydrate stability conditions.

MHCZs likely occur updip of gas-charged, tilted sediments and above zones with high acoustic
turbidity (indicator of gas). The principal MHCZ-1 corresponds to a thick sand unit above the BSR in
the center of the basin associated with an intricate fault network, HARs in sediment down dip, and an
underlying topographic high in the accretionary prism. MHCZ-2 occurs in permeable dipping strata
above the BSR toward the seaward edge of the basin near the outer arc ridge.

The gross rock volume for these two MHCZs was determined to be 955,940 MMcf. Our preferred
gas-in-place estimate is 15.8 trillion cubic feet based on the most likely constraints from Site C0002.
However, this value could range from 1.9–46.3 trillion cubic feet.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1073/10/10/1552/s1,
Table S1: Summary Table of Data from Site C0009 and C0002 ([104,105]).
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