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Abstract: This paper proposes the application of time and spatial partition heating to a solar water
heating system. The heating effect and system performance were analyzed under the continuous
and whole space heating and time and spatial partition heating using TRNSYS. The results were
validated by comparing with the test results of the demonstration building. Compared to continuous
and whole space heating, the use of time and spatial partition heating increases the solar fraction by
16.5%, reduces the auxiliary heating by 7390 MJ, and reduces the annual operation cost by 2010 RMB.
Under time and spatial partition heating, optimization analyses were conducted for the two system
capacity parameters of the solar collector area and tank volume and the one operation parameter
of auxiliary heater setting outlet temperature. The results showed that a reasonable choice of the
solar collector area can reduce the dynamic annual cost, the increased tank volume is advantageous
to heat storage, and the auxiliary heater setting outlet temperature have greater influence on the
indoor heating effect. The advanced opening of solar water heating system and the normal opening
of passive air vents are recommended. Based on the comparison of the two modes, the time and
spatial partition heating technology is a better choice for rural dwellings.

Keywords: optimization; solar water heating system; time and spatial partition heating; continuous
and whole space heating; passive solar houses; TRNSYS

1. Introduction

With the increasing rate of urbanization in China, the requirements for indoor thermal
environment have improved with the gradual improvement in resident living standards [1,2].
As a result, the energy consumed in rural buildings accounts for more than half of the total building
energy consumption in recent years [3], in which the heating energy consumption accounted for
a majority proportion. Most areas in Northwest China have abundant solar energy and possess solar
heating conditions. Therefore, solar heating should be the priority development direction of building
heating and energy saving.

In the present, many researchers have studied the solar water heating system (SWHS) and focused
mainly on aspects such as system optimization, operation control analysis, and system evaluation [4–6].
The research of system optimization mainly includes the unit design parameters of different types of
collectors [7–9], water tanks [10–12], heat exchangers [13,14], and system operating parameters [15–17].
The operation control can be divided into solar collecting and heating systems according to the control
objectives. System evaluation is mainly divided into solar fraction [18] and economic analysis [19].
Marcos et al. [20] analyzed the thermal performances of SWHS of plate solar collector by experiment,
and the results showed that the solar facility was able to meet 55% of the space heating demand.
Zeghib and Chaker [21] established the theoretical model of solar heating to analyze the system
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performances. These research methods provided references for the optimization and performance
analysis of SWHS. Presently, the solar heating technology has matured, and correspondingly the
demonstration buildings were built in many areas [22,23]. Furthermore, the corresponding technical
specifications and evaluation standards [24,25] were formed to provide the basis of engineering
applications and constructions.

The SWHSs are ordinarily conventional heating mode [26], namely continuous and whole space
heating (CWSH), in which the heat demand is huge in order to meet the heat requirements of all
rooms. As a result, the system scale tended to be great, resulting in high initial investment [27–29].
On the contrary, if smaller SWHS was adopted, thus, the solar fraction would tend to be low with high
auxiliary energy and running cost [30]. Martinopoulos and Tsaliki [31] showed that solar space heating
systems have rather low levels of market penetration and public acceptance despite being a mature
technology. Obviously, the higher investment cost of SWHS is a hindrance its popularization and
application. In addition, the problems of poor indoor thermal environment and low solar fraction [32]
still exist due to lack of scientific operation management. It is the key to propose a rational heating
mode for improving the application of SWHS.

Badran et al. [33] illustrated that the intermittent heating could effectively reduce the fuel.
Shen [34] compared the local heating simulation of different rooms and found that the intermittent
heating could effectively reduce the heating load. It is an effective way to reduce the energy supply of
solar system while the intermittent or local heating mode was adopted in solar buildings.

In Northwest China, the indoor activities of rural residents during different periods are relatively
concentrated to some fixed rooms [35]. In addition, relative researches showed that persons tend
to have different thermal requirements under active and sleeping conditions [36,37]. Therefore, the
heating mode can adopt not only the intermittent heating, but also local heating with differences
of design temperature. Thus, it is feasible to propose a new heating system that provides heat via
different time, space, and design temperature alternatives in rural areas of Northwest China.

While the intermittent or local heating was adopted, the hourly energy demand varies greatly,
which would influence the operation of system and heat storage. As a result, the SWHS was affected
and varied. However, the study of intermittent and local heating in the solar system is rare, especially
when the two heating systems exist simultaneously.

A demonstration building of solar heating in Northwest China was considered as the research
object, the main objectives of this paper include the following four parts: (1) A time and spatial
partition heating (TSPH) mode was proposed for the SWHS based on the indoor activity trajectory and
differences of heat demand in winter in rural areas of Northwest China. (2) The TRNSYS simulation
models of TSPH and CWSH were established and the accuracy of the simulation models was validated
through an indoor thermal-environment test and system performance analysis. The application
feasibility of TSPH was analyzed by comparing the indoor heating effect and system performance.
(3) Considering that TSPH and CWSH differ in system thermal performance, the influences of design
parameters and operating parameters on the indoor heating effect and system performance were
analyzed. (4) The influence of active and passive system operation strategies on the indoor heating
effect and system performance is discussed; this could provide the basis for the application of TSPH of
a solar system in a rural building.

2. Demonstration Project and Analysis Approach

2.1. Demonstration Project

The solar heating demonstration project is located in Gangcha County, Qinghai Province
(100◦08′ E, 37◦20′ N), with total areas of 9360 m2. Combined active and passive (attached sunspace
and Trombe wall) solar heating technologies were adopted. We take one building as the investigated
objective, with an area of 72 m2. Figure 1 shows the layout.
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Figure 1. Building. (a) Photo of the exterior feature of the demonstration building; (b) plane layout 

and size of the demonstration building (unit: mm). 

2.1.1. Passive Solar Building 

In reality, only three rooms need space heating: the second bedroom (SB), master bedroom (MB), 

and living room (LR). Thus, the heating area is only 50.04 m2. Table 1 lists the thermo-physical 

property parameters of the building envelope surfaces of the passive house according to the detailed 

building structures. All the windows adopt a plastic steel material with 4-mm glass. Table 2 lists the 

components of the passive solar houses. 

Table 1. Thermo-physical property parameters of the building envelope surfaces of the passive house. 
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0.56 (S)  
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XPS (S External) 50 0.042 30 1.38 

XPS (N E W External) 80 0.042 30 1.38 

Roof 

Cement mortar 20 1.34 1800 1.05 

0.38 Reinforced concrete 160 1.74 2500 9.20 

XPS 100 0.042 30 1.38 

Floor 

Cement mortar 40 1.34 1800 1.05 

0.51 
Reinforced concrete 150 1.74 2500 0.92 

XPS 60 0.042 30 1.38 

Sandy soil 150 0.59 1420 1.51 

Window 

Plate glass 4 0.76 2500 0.84 

1.30 Air layer 16 0.0267 1.165 1.00 

Plate glass 4 0.76 2500 0.84 

Table 2. The components of the passive solar houses. 

Types Component Descriptions 

Trombe Wall 

Air vent 
The total number of air vents of size 200 mm × 200 mm is 5:3 and 2 

located at the top and bottom, respectively. 

Glazing 
The transparent glazing with a 4-mm-thick simple glass covers all 

the S external envelopes of SB and MB except the windows. 

Coating The thickness of the red corrugated sheet iron is 10 mm. 

Air layers The thickness of the air layer is 100 mm. 

Attached Sunspace 

Sunspace 
The size of attached sunspace is shown in Figure 2. It has a 

window of size 1800 mm × 2100 mm in the partition wall. 

Glazing 
The transparent glazing with a 5-mm-thick wired glass covers all 

the external envelopes. 

Trombe Wall
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Figure 1. Building. (a) Photo of the exterior feature of the demonstration building; (b) plane layout
and size of the demonstration building (unit: mm).

2.1.1. Passive Solar Building

In reality, only three rooms need space heating: the second bedroom (SB), master bedroom (MB),
and living room (LR). Thus, the heating area is only 50.04 m2. Table 1 lists the thermo-physical property
parameters of the building envelope surfaces of the passive house according to the detailed building
structures. All the windows adopt a plastic steel material with 4-mm glass. Table 2 lists the components
of the passive solar houses.

Table 1. Thermo-physical property parameters of the building envelope surfaces of the passive house.

Component Material Thickness
(mm)

Thermal
Conductivity

(W/m·K)

Density
(kg/m3)

Specific Heat
Capacity (kJ/kg·K)

U Value
(W/m2·K)

Wall

Cement mortar 40 1.34 1800 1.05
0.56 (S) 0.40

(N E W)
Brick 240 0.58 1400 1.05

XPS (S External) 50 0.042 30 1.38
XPS (N E W External) 80 0.042 30 1.38

Roof
Cement mortar 20 1.34 1800 1.05

0.38Reinforced concrete 160 1.74 2500 9.20
XPS 100 0.042 30 1.38

Floor

Cement mortar 40 1.34 1800 1.05

0.51
Reinforced concrete 150 1.74 2500 0.92

XPS 60 0.042 30 1.38
Sandy soil 150 0.59 1420 1.51

Window
Plate glass 4 0.76 2500 0.84

1.30Air layer 16 0.0267 1.165 1.00
Plate glass 4 0.76 2500 0.84

Table 2. The components of the passive solar houses.

Types Component Descriptions

Trombe Wall

Air vent The total number of air vents of size 200 mm × 200 mm is
5:3 and 2 located at the top and bottom, respectively.

Glazing
The transparent glazing with a 4-mm-thick simple glass
covers all the S external envelopes of SB and MB except
the windows.

Coating The thickness of the red corrugated sheet iron is 10 mm.

Air layers The thickness of the air layer is 100 mm.

Attached Sunspace
Sunspace The size of attached sunspace is shown in Figure 2. It has

a window of size 1800 mm × 2100 mm in the partition wall.

Glazing The transparent glazing with a 5-mm-thick wired glass
covers all the external envelopes.
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Figure 2. Plane layout and size of the demonstration building.

2.1.2. Solar Water Heating System

Figure 2 shows the schematic of the SWHS, which was designed for the heating of the
demonstration building. The solar system has 7 flat-plate collectors with a total area of 14 m2, and the
slope of each collector surface is 45◦. A vertical cylindrical heat storage tank (0.9 m height × 0.54 m
diameter) was adopted, located in the toilet with one inner heat exchanger (the overall heat transfer
coefficient UA = 37.1 W/m·K). The auxiliary heater with a rated power of 3 kW is in series with
the water-supplied side of the heating system. The diameter of the transportation pipeline is DN25,
and the pipeline is wrapped in a 20-mm-thick thermal insulation material made of high-expansion
polyethylene. The SWHS includes a circulating pump for the solar collector system, circulating pump
for the heating system, water segregator, water collector, controller, and floor heating system. A floor
heating system was used with a DN15 pipe and 300 mm pipe spacing.

2.2. Time and Spatial Partition Heating Mode

According to the activity trajectories and differences of heat demand of residents in winter in
rural areas of Northwest China [35], a new heating mode was proposed in this paper, namely time and
spatial partition heating (TSPH), to reduce the system scale, initial investment and running cost. Thus,
the improvement of solar fraction was achieved.

TSPH was defined as a heating mode that had different time, space, and design temperature
alternatives according to the activity trajectories and differences of heat demand of residents in winter
in rural areas of Northwest China. It contained following two parts: (a) there is similar indoor activity
trajectories in winter [35], thus, only the space occupied with persons was heated to realize the differences
of heating in time and space, namely, the living room was heated in the daytime while the bedroom was
heated in the night-time; (b) humans had different heat demand in various conditions, so the design
temperature was dependent on the heat requirement, that is, the comfort temperature is 18 ◦C [38] in
active conditions, while 12 ◦C [39] should be the comfort temperature in sleeping conditions.

As for the demonstration building, there were three function rooms which adopted CWSH.
According to the features of TSPH, the design temperature was re-set. The heating periods and design
temperatures in the three rooms for both the modes were listed in Table 3.

Control strategy and control parameters of TSPH are shown in Figure 3a. There are different
heating time and design temperature according to the different functions. In the control process, the
heating time is the first element to be judged. Then, the design temperature of each function room
was determined. The master bedroom was heated the whole day, but the design temperature was
different in the daytime and nighttime; the living room was heated in the daytime to a temperature of
18 ◦C; the second bedroom was heated in the night to a temperature of 12 ◦C. Whether the three indoor
temperatures met the requirements determined whether the auxiliary heater was open or closed. The
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control system and control parameters of CWSH are shown in Figure 3b. The rooms were continuously
heated and the temperature was set to 18 ◦C in 24 h for a day [40].
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Figure 3. Logical diagram of the system running control. (a) TSPH system; (b) CWSH system. Figure 3. Logical diagram of the system running control. (a) TSPH system; (b) CWSH system.

Table 3. Heating period and design temperature in the three rooms for the two modes.

Heating Mode Function Rooms Heating Period Heating Design Temperature (◦C)

CWSH All three rooms 0:00–24:00 18 [38]

TSPH

Second Bedroom 0:00–8:00; 22:00–24:00 12 [39]

Master Bedroom
8:00–22:00 18

0:00–8:00; 22:00–24:00 12

Living Room 8:00–22:00 18
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2.3. System Thermal Performance and Economic Analysis

For the short-term heat storage in a SWHS, its heat-storage capacity and tank volume are
determined according to the heat consumption of a building and the useful energy gain of a solar
collector system. The heat consumption of a building with WCSH and TSPH are calculated using
Equations (1) and (2), respectively:

Qload =
n

∑
j

∫
all

Qload,τdt (1)

Qload =
x

∑
j

∫
all

Qload,τdt +
y

∑
j

∫
day

Qload,τdt +
z

∑
j

∫
night

Qload,τdt, (2)

where Qload is the heat consumption of the building, j is the serial number of functional rooms, and
n = x + y + z is total number of functional rooms; x, y, and z are the number of functional rooms with
heating for an entire day, in the daytime, and at night, respectively.

Qsolar =
∫

day
cpm(T2 − T1)dt, (3)

where Qsolar is the useful energy gain of the solar collector system, cp represents the specific heat of
water, and m is the mass flow of the solar collector system.

The useful energy gain of the solar collector system is calculated by

Qsolar =
∫

day
Ac ILaηdt, (4)

where Ac is the solar collector area, ILa is the total tilted surface solar radiation, and η is the
collector efficiency.

Qaux = Pauxtaux, (5)

where Qaux, Paux, and taux represent the auxiliary heating, rated power, and operation hours of the
auxiliary electric heater, respectively.

The solar fraction f of the SWHS is calculated by

f =
Qsolar

Qsolar + Qaux
× 100%. (6)

Therefore, the heat storage changes inevitably with heating-mode switching; this puts forward
a new requirement for the tank volume. This in turn influences the heat-storage medium parameters
and the useful energy gain of the solar collector system. In addition, the auxiliary heating and solar
fraction will be affected directly.

To compare the economic system of the two heating modes, dynamic analysis is used according
to the dynamic annual cost method. The economic model formula is as follows [41]:

COSTy =
i(1 + i)n

(1 + i)n − 1
COSTini + COSTop, (7)

where COSTy, COSTini, and COSTop are the dynamic annual cost, initial investment cost, and annual
operation cost, respectively. Furthermore, i is the bank loan interest rate assumed to be 4.9% [42], n is
the service life of SWHS and is assumed to be 15 years [43].

The power consumption of an auxiliary electric heater is calculated as follows:

ELEaux =
Qaux

3600ηele
, (8)
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where ELEaux is the power consumption of the auxiliary electric heater and ηele indicates the rated
power of the auxiliary electric heater. Thus, the annual operation cost is calculated as follows:

COSTop = pele · (ELEaux + ELEpump) + Cm, (9)

where pele is the electricity price assumed to be 0.93 RMB/kWh [44], ELEpump is the pumps’ power
consumption, which can be ignored compared to the power consumption of the auxiliary electric
heater, and Cm is the annual maintenance cost.

3. TRNSYS Modeling and Validation

3.1. Thermal Performance Simulation Model

In this study, the SWHS simulation model with CWSH and TSPH developed using TRNSYS17.1 [45]
was established, as shown in Figure 4a,b. Differences exist between the control of the TSPH and CWSH
systems; the logical diagram is shown in Figure 3a,b. As the demonstration buildings are of the same
size, one was selected as a physical model and built using Google SketchUp based on Section 2.1.1, and
then imported into TRNBuild for parameter settings as an external file for Type 56. It is assumed that the
partitions of the two dwellings were insulated. Active layers in the floor were only set in the MB, SB,
and LR. Table 4 lists the main components and parameters of TRNSYS modeling.

Table 4. Main components and parameters of TRNSYS modeling.

Name Component Main Parameters Descriptions

Weather Date Type 15-2 Number of surfaces: 2; slope of
surface-1: 45◦.

The TMY-2 weather date of Gangcha.
Used for the optimization analysis.

Testing Weather Date Type 99
The measured meteorological
conditions during the test
were inputted.

Used for the model validation.

Building Type 56 Room air exchange rate: 0.5 h−1; active
layer of the three rooms were added.

The building model was built in
Google Sketch Up, and imported to
TRN Build for setting the parameters.
Thermo-physical properties see Table 1.

Tank Type 534 Tank volume: 0.2 m3, tank height: 0.9
m, number of tank nodes: 2.

The fluid used for the storage tank
is water.
There has a heat exchanger in the tank.

Controller Type 73

Collector area: 14 m2, slope of collector:
45◦; collector fin efficiency factor: 0.7;
absorber plate emittance: 0.7;
absorbance of absorber plate: 0.8.

The fluid used for solar collector is
glycol solution.
Thermal performance parameters
obtained from the manufacture.

Auxiliary Heater Type 6 Maximum heating rate: 10,800 kJ/h,
efficiency of auxiliary heater: 0.95. Used for supplying the auxiliary heater

Trombe Wall Type 36b
Wall height: 2.9 m, wall width: 1.5 m,
wall thickness: 0.33 m, vent outlet area:
0.2 m2.

Used for calculating the energy of
Trombe wall flow to MB and SB.

Forcing Functions Type 14h Time parameters and corresponding
temperature of 3 rooms were set. Used for logical signal of time control.

Vale Type 3d Maximum heating rates of three loops
were set.

Pipe valves were replaced by pumps,
and the influence of water temperature
by pump was ignored.

Equation Equations (2)–(4)
Air temperature of the three rooms was
inputted, and logical relation of the
three control loops was set.

Used for controlling the on-off signal of
pump (vale). The control logic was
shown in Figure 3a.
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Figure 4. TRNSYS modeling of the SWHS with the two modes: (a) CWSH; (b) TSPH.

3.2. Tests and Model Validation

3.2.1. Dynamic Thermal Performance Tests

In the demonstration project, one dwelling with a SWHS was taken as the research object.
The outdoor meteorological conditions, heating effect, and system performance of the SWHS were
measured in the testing of the demonstration building by using CWSH during 23–28 April in 2016. The
main parameters of the test include the global solar irradiance on the inclined collector and horizontal
surfaces, ambient temperature, indoor air temperature of the three functional rooms, inlet and outlet
temperatures of each component, and mass flow of each system. The opening and closing time of
each valve, start and stop time of the auxiliary heating equipment, and power consumption were also
recorded. The time interval for data acquisition was 10 min.
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3.2.2. Model Validation

In order to guarantee the accuracies of model validations, the meteorological data tested during
experiments were used as the input file in type 99 instead of the TMY data in TRNSYS. The initial
temperature and charge status of the tank and heat storage have an important influence on the
simulation results [46]. The initial temperature of tank was assumed to be 10 ◦C according to the tap
water temperature in Qinghai. To eliminate the influences of initial temperature of heat storage tank
and initial thermal inertia of the building on the simulation results, meteorological conditions for
a month (every day was the same as 23 April) were added to the input data before the beginning of
field test [40]. The simulated time step was 10 min, which was the same as that of the test data. The
simulation data during the test was outputted for comparison with the test data. Figure 5 shows the
simulated and test data for the indoor air temperature of the three rooms. It can be seen that the whole
trend is close in both cases, although local deviations exist between them. The test and simulation
results showed that the average relative error of indoor air temperature in the three rooms is 6.9%. The
initial and final stages during the test period were observed to be the most different; this might be due
to the following reasons: the on/off operation time of the air vents of the Trombe wall was not set, the
actual amount of cold air penetration in the room was considerable because of the movement of the
residents and testers in and out of the room, or other reasons.
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Table 5 lists the comparison of the simulation results and the field test data of the system’s thermal
performance. This comparison includes the calculation of the following three parameters during the
test: useful energy gain, auxiliary heating, and solar fraction. It was determined that the relative errors
of the accumulated heat energy collected by the solar system and the solar fraction are within 6%.
In addition, the relative error of the accumulated heat energy provided by the electric heater is −12.7%.
The auxiliary heating during the test is higher than in the simulation results; this may be because
the recording of the electricity during the test also includes domestic lighting and the operation of
the recording instrument. The simulation results show that the calculation error can be accepted,
suggesting that the simulated model is reasonable for the following analysis.
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Table 5. Comparison of the simulation results and field test data of the system thermal performance.

Parameters Test Results Simulation Results Relative Error

Accumulated Heat Energy Collected
by Solar System (MJ) 123.66 125.42 1.42%

Accumulated Heat Energy Provided
by the Electric Heater (MJ) 86.58 75.60 −12.70%

Solar Fraction f (—) 58.82% 62.39% 6.07%

4. Results and Discussion

4.1. System Comparison with Two Heating Modes

4.1.1. Heating Effect

The indoor air temperature of three rooms in the two modes during the heating season was
simulated using TRNSYS, and compared with the heating design temperature in Table 3. The room
temperature is guaranteed when it is higher than the heating design temperature. The heating
guaranteed hours of the three functional rooms under different heating modes and human thermal
requirements are shown in Figure 6. It can be seen that the LR indoor air temperature was difficult to
guarantee. The guaranteed hours of CWSH were higher than TSPH only in the MB, mostly because the
LR temperature was difficult to guarantee even when the auxiliary heating equipment was running
at rated power and the heating requirements of the TSPH system was relatively small. The heating
design temperature of CWSH could not be met under the conditions of CWSH, but can comfortably
meet the temperature requirements. Although the heating guaranteed hours of TSPH were lower
than under CWSH, they met the heating design temperature to a large extent. Furthermore, when the
indoor air temperature under the TSPH conditions could not meet the heating design temperature of
TSPH, the average temperature of the three rooms was only −0.5 ◦C, −1.4 ◦C, and −2.2 ◦C lower than
that in CWSH, respectively. Therefore, the heating effect of TSPH is mostly acceptable.
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4.1.2. System Performance Evaluation

Auxiliary heating, solar fraction, and dynamic annual cost obtained by simulation were selected
as the system performance evaluation analysis indicators. The monthly average solar fraction of the
two models during the heating season is shown in Figure 7.Energies 2017, 10, 1561 11 of 18 
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Figure 7. Comparison of monthly average solar fraction of the two modes. 
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In addition to 23–30 September, the solar fraction improved in TSPH, especially during months
from November to March. The effective energy gain of the solar collector system can meet the heating
design temperature of CWSH owing to higher solar radiation intensity and higher outdoor temperature
in September. In TSPH, the preheat load was large while the instantaneous heat supply was insufficient,
resulting in decreased fraction. The solar fraction can increase by 16.5% in TSPH compared with CWSH.
This is because of the fewer heating time and the lower heating design temperature.

Auxiliary heating in the two heating modes is presented in Table 6. It shows that TSPH can
effectively reduce auxiliary heating, especially in low outdoor air temperature. Compared with CWSH,
auxiliary heating in TSPH can be reduced by 7390 MJ in the entire heating season. Taking only the
difference in the heating mode in the same SWHS into account, the initial investment cost was the
same for the two heating modes. Therefore, the operating cost of the TSPH system can be reduced
by 2010 RMB combined with the CWSH. The guaranteed hours of heating slightly reduced and the
operating costs significantly reduced in TSPH compared with the CWSH. Therefore, it is feasible to
use SWHS with TSPH for rural buildings with different heating demands.

Table 6. Comparison of auxiliary heating of two modes.

Heating
Mode

Monthly Auxiliary Heating (MJ)

9 10 11 12 1 2 3 4 5 Total

CWSH 0 858.48 2849.65 5032.81 5011.89 3725.63 2071.64 388.20 182.08 20,120.38
TSPH 14.14 570.83 1617.63 3326.66 3265.45 2288.97 1195.53 306.96 144.05 12,730.23
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4.2. System Optimization of TSPH

The above analysis shows that TSPH is suitable to meet indoor temperature requirements and
increase solar fraction. However, there are still some periods in which it could not meet the heating
design temperature. SWHS was designed in CWSH, and not in TSPH. Therefore, the optimization
of the solar collector area, tank capacity, and one operating parameter of the auxiliary heater setting
outlet temperature of the two systems were accomplished under TSPH condition on the basis of the
current system.

4.2.1. Solar Heating Area

Figure 8 shows the optimized analysis of different solar collector areas. The heating guaranteed
hours showed an increasing trend when the solar collector area increased. The increase in the heating
guaranteed hours in the LR was the most obvious, while the SB remained unchanged. The increase
in the solar collector area resulted in an increase in the water supply temperature in the water tank
and instantaneous heating capacity. With the increase in the solar collector area, auxiliary heating was
reduced and solar fraction increased, while the change rate was gradually reduced. It can be observed
that blindly increasing the solar collector area was not a reasonable choice. When the solar collector
area was 10–14 m2, the most cost effective option was achieved and the heating guaranteed hours can
also be met to a certain extent. Appropriate reduction in the solar collector area favored the operation
of TSPH compared with SWHS with CWSH.
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4.2.2. Tank Volume

As shown in Figure 9, the heating effect and system performance were analyzed for varying tank
volumes. The change in the tank volume had minor influence on the heating effect owing to minor
influence on the heat source. The heating guaranteed hours of SB and MB first decreased and then
increased, while that of LR slowly increased. The increase in the tank volume directly resulted in
the decrease in the heat storage temperature, and increase in the heat storage capacity. For the SB
and MB, the increase in the heat storage capacity had less influence on the guaranteed hours, which
reached a high degree with continuous heating. Owing to a decrease in the heat storage temperature
capacity, instantaneous heating supply will lead to a reduction in the guaranteed hours at the initial
heating stage.

Solar fraction slowly increased and auxiliary heating and annual calculation cost gradually
decreased owing to an increase in the tank volume. During the early heating season, the required heat
supply of the building and the consumption of useful energy gain were low, which resulted in the
use of a larger tank for heat storage. It can be seen that the tank temperature at the initial and final
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stage of the heating season was significantly higher than that at the middle stage. Therefore, compared
with the CWSH, the tank heat storage temperature decreased, the system effective heat collection
improved [47], and the heat storage in the initial heating season increased owing to an increase in the
tank volume, which favored the operation of SWHS with TSPH.
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4.2.3. Auxiliary Heater Setting Outlet Temperature

The influence of the auxiliary heater setting outlet temperature on the heating effect and system
performance is shown in Figure 10. The auxiliary heater setting outlet temperature had a great
influence on the heating effect and system performance, while the influence gradually decreased when
the temperature was higher than 50 ◦C. The increase in the auxiliary heater setting outlet temperature
will cause a significant increase in working time, especially when the tank temperature was insufficient
in the middle of the heating season. This will increase the tank temperature, reduce the useful energy
gain, and solar fraction significantly. Higher auxiliary heater outlet setting temperature can increase
system instantaneous heat capacity and heating guaranteed hours, but will also increase auxiliary
heating capacity and system operating costs. Therefore, by choosing the stage in which the increase
in the heating guaranteed hours slowed down, the lowest dynamic annual cost corresponding to the
most reasonable auxiliary heater setting outlet temperature can be achieved.
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In summary, the smaller the solar collector area, the larger the tank volume, and the higher the
auxiliary setting outlet temperature favorable for the operation of SHWS with TSPH compared with
the CWSH. In addition, in the function rooms, such as the LR with obvious intermittent period and
higher indoor heating design temperature during the heating season, the heating guaranteed hours
were always at low levels under TSPH conditions. In future studies, we will consider how to enhance
the heating effect of this type of function rooms.

4.3. Discussion of Optimal Operation of Active and Passive System

Based on the analysis above, a reasonable selection of system design capacity and operating
parameters setting favor the operation of SWHS with TSPH. In addition, since the instantaneous
heating of TSPH is not synchronized with the required heat supply, we can also optimize the on/off
operation time of the active and passive systems.

4.3.1. On/Off Operation Time of SWHS

The heating effect and system performance of the on/off operation time of SWHS is presented in
Table 7. Except for the SB, advanced opening of SWHS significantly increased the heating guaranteed
hours of the MB and LR. The existence of the Trombe wall enabled the SB indoor air temperature to
meet the requirements of 12 ◦C at 22:00 in most stages of the heating season. The system heat storage
capacity will transfer to another two rooms while the SWHS opening time advanced, resulting in
insufficient tank storage energy and shortened heating guaranteed hours.

Table 7. Heating effect and system performance evaluation of on–off operation time of SWHS.

Serial
Number

Description
Heating Guaranteed Hours (h)

Qaux (MJ) Solar
Fraction (%)SB MB LR

Base case The starting and closing time of loop equals
the heating demand time 5360 4565 3675 1275.11 40.30

1 The starting and closing time of loop
advanced 1 h to the heating demand time 5337 4623 3748 1294.88 39.57

2 The starting and closing time of loop
advanced 2 h to the heating demand time 5308 4686 3816 1324.29 38.36

3 The starting time of loop advanced 1 h to the
heating demand time, closing advanced 1 h 5330 4671 3801 1348.69 37.87

4
The staring time of loop advanced 2 h to the
heating demand time, closing equals to
heating demand time

5294 4772 3919 1423.83 35.30

The increase in the heating time can significantly improve the MB and LR heating guaranteed
hours, but will increase auxiliary heating and reduce solar fraction. By comparing the amplification of
both auxiliary heating and heating guaranteed hours in the simulated cases and the base case, it can be
seen that an increase in the heating time was not favorable to the operation of SWHS. Furthermore,
there is an optimal time for opening the active system.

4.3.2. On/Off Operation Time of Trombe Wall

It is necessary to discuss the on/off operation time of the Trombe wall because the opening and
closing of air vents have a great impact on the passive heat gain for the room [48]. The simulation
results are presented in Table 8. It can be seen that the closing of air vents was not favorable to the
operation of TSPH, and will reduce passive heat gain during the daytime, which contradicts the high
heat consumption of the building. Opening the air vents was not only favorable to enhance the heating
guaranteed hours, but also to reduce auxiliary heating. The temperature differential control of the
Trombe wall not only increased the heating guaranteed hours, but also reduced auxiliary heating
and increased solar fraction to a great extent. However, this temperature differential control of the
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Trombe wall in the operation was cumbersome, which is not suitable for engineering applications.
Therefore, the normal opening of the passive air vents is recommended when the Trombe wall is not
properly managed.

Table 8. Heating effect and system performance evaluation of on/off operation time of the Trombe wall.

Serial
Number

Description
Heating Guaranteed Hours (h)

Qaux (MJ) Solar
Fraction (%)SB MB LR

Base case Air vents always closed 5360 4565 3675 1275.11 40.30
1 Air vents always open 5489 4869 3715 1188.65 40.26

2 Air vents always open if Tair,L ≥ Tair,
or else keep closed. 5489 4873 3752 1111.20 42.60

5. Conclusions

This paper proposes the application of a TSPH to a SWHS. The heating effect and system
optimization under TSPH were investigated using experiments and numerical simulations. The
conclusions drawn from the results are stated as follows:

(1) The indoor heating effect and system performance evaluation were analyzed with CWSH and
TSPH by means of TRNSYS dynamic simulation software. The results were validated by
comparison with the test results of a demonstration building using CWSH in the period of
23–28 April. It was found that the average relative error in the temperature of the three rooms
was 6.9%, and the relative errors of the accumulated heat energy collected by the solar system
and solar fraction were within 6%.

(2) The indoor air temperature of TSPH was already satisfied to a great extent, although the heating
guaranteed hours with TSPH was lower than with CWSH. Compared with CWSH, solar fraction
can be increased by 16.5%, auxiliary heating during the heating season can be reduced by 7390 MJ,
and the annual operation cost can be reduced by 2010 RMB, with TSPH. Therefore, time and
spatial partition solar heating technology was a better option for rural residence.

(3) The indoor heating effect and solar fraction can improve if the solar collector area increased.
When the solar collector area was 10–14 m2, the dynamic annual cost could be reduced to lower
than 5200 RMB. Increased tank volume is advantageous for heat storage. The auxiliary heater
setting outlet temperature had greater impact on the indoor heating effect, and this influence
weakened when the auxiliary heater setting outlet temperature was higher than 50 ◦C.

(4) Advanced opening and closing with 2 h of SWHS and increased heating time could improve
the guaranteed hours of MB and LR. Increasing the heating time was unfavorable to system
performance, and there were a suitable number of hours for advanced opening of SWHS. Closing
of air vents hindered heat gain of the Trombe wall.
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Nomenclature

Ac solar collector area (m2)
cp specific heat of the water (kJ/kg·◦C)
Cm annual maintenance cost (RMB)
COSTini initial investment cost (RMB)
COSTop annual operation cost (RMB)
COSTy dynamic annual cost (RMB/Year)
ELEaux power consumption of auxiliary electric heater (kW h)
ELEpump power consumption of pump (kW h)
f solar fraction (%)
i bank loan interest rate (%)
ILa total tilted surface solar radiation (kJ/Hr·m2)
m mass flow of solar collector system (kg/Hr)
n service life of SWHS (Year)
pele electricity price (RMB/kW h)
Paux rated power of auxiliary electric heater (W)
Qaux auxiliary heating energy (kJ)
Qsolar useful energy gain of solar collector system (kJ)
Qload heat consumption of the building (kJ)
taux operation hours of auxiliary electric heater (h)
Ta outdoor air temperature (◦C)
Tair indoor air temperature (◦C)
Tair,L temperature of air layer (◦C)
T1 outlet temperature of solar collector system (◦C)
T2 inlet temperature of solar collector system (◦C)
T3 temperature to heat source of tank(◦C)
T4 temperature of tank (◦C)
T5 temperature to load of tank (◦C)
T6 outlet temperature of auxiliary electric heater (◦C)
T7 indoor air temperature of second bedroom (◦C)
T8 indoor air temperature of master bedroom (◦C)
T9 indoor air temperature of living room (◦C)
Greek Letters:
η collector efficiency (%)
ηele thermal efficiency of auxiliary electric heater (%)
Subscripts:
all heating in the whole day
day heating in the daytime
j number of functional room
n total number of functional rooms
night heating in the nighttime
x total number of functional rooms with heating in the daytime
y total number of functional rooms with heating in the whole day
z total number of function rooms with heating in the nighttime
Abbreviations:
CWSH continuous and whole space heating
LR living room
MB master bedroom
SB second bedroom
SWHS solar water heating system
TRNSYS transient systems simulation program
TSPH time and spatial partition heating
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