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Abstract: Although Hybrid Electric Vehicles (HEVs) represent one of the key technologies to reduce
CO2 emissions, their effective potential in real world driving conditions strongly depends on the
performance of their Energy Management System (EMS) and on its capability to maximize the
efficiency of the powertrain in real life as well as during Type Approval (TA) tests. Attempting to
close the gap between TA and real world CO2 emissions, the European Commission has decided
to introduce from September 2017 the Worldwide Harmonized Light duty Test Procedure (WLTP),
replacing the previous procedure based on the New European Driving Cycle (NEDC). The aim of
this work is the analysis of the impact of different driving cycles and operating conditions on CO2

emissions and on energy management strategies of a Euro-6 HEV through the limited number of
information available from the chassis dyno tests. The vehicle was tested considering different initial
battery State of Charge (SOC), ranging from 40% to 65%, and engine coolant temperatures, from
−7 ◦C to 70 ◦C. The change of test conditions from NEDC to WLTP was shown to lead to a significant
reduction of the electric drive and to about a 30% increase of CO2 emissions. However, since the
specific energy demand of WLTP is about 50% higher than that of NEDC, these results demonstrate
that the EMS strategies of the tested vehicle can achieve, in test conditions closer to real life,
even higher efficiency levels than those that are currently evaluated on the NEDC, and prove the
effectiveness of HEV technology to reduce CO2 emissions.

Keywords: Hybrid Electric Vehicles; CO2 emissions; WLTP; NEDC

1. Introduction

Increasing environmental awareness has been a key driver during the past two decades for the
introduction of stricter regulations for the control of pollutant and CO2 emissions from passenger cars.
In particular the European Union (EU) has committed to reducing greenhouse gas emissions from road
transport by 60% by 2050 compared to 1990 levels [1]. To meet these challenging CO2 targets, vehicle
manufacturers, while relentlessly continuing the research for more efficient powertrains based on
Internal Combustion Engines (ICEs), have been developing new technologies such as Electric Vehicles
(EVs) and Fuel Cells Vehicles (FCEVs), which can both provide the benefits of zero tail pipe emissions
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and can rely on the production of electricity and hydrogen from renewable energy sources [2–6].
However, the market penetration of these new technologies is still quite limited, struggling with often
inadequate range capabilities, high costs and lack of infrastructures [7–11].

In this framework Hybrid Electric Vehicles (HEVs) represent an extremely promising solution
for the automotive industry to bridge the gap between the desirable features of electric powertrains,
the range capability and the more affordable costs of conventional vehicles, because they can ensure
higher fuel efficiency and lower pollutant emissions compared to conventional powertrains due to the
flexibility provided by the integration of the ICE with the electric powertrain, while still maintaining
comparable range capabilities and costs [12,13]. However, the effective potential of HEVs in terms of
CO2 emissions reduction in real world driving conditions strongly depends on the performance of
their Energy Management System (EMS) [14–16] and on its capability to maximize the efficiency of the
powertrain in real life as well as in the chassis dyno tests, which are prescribed for Type Approval (TA).

Moreover, since the procedure used to date in Europe for TA [17,18], based on the New European
Driving Cycle (NEDC), has been widely criticized and it has been proved to be not representative of real
world driving conditions [19,20], the European Commission has decided to introduce from September
2017 the Worldwide Harmonized Light duty Test Procedure (WLTP) [21], replacing the previous
procedure in an attempt to close the gap between TA and real world CO2 emissions. The introduction
of the WLTP will bring several testing and procedural changes compared to the NEDC, but how this
will affect the evaluation of the CO2 reduction potential of HEVs has not yet been fully explored.
Very limited number of studies provide experimental evidence of the impact of the introduction of the
WLTP on CO2 emissions from HEVs [22–24].

Within this context, the aim of this work is the analysis of the impact of different driving cycles and
operating conditions on CO2 emissions and EMS strategies of a Euro-6 HEV. The vehicle measurements
were carried out over both the NEDC and the Worldwide Harmonized Light duty Test Cycle (WLTC),
which is the reference cycle of the WLTP procedure described in [21]. The characterization of the vehicle
EMS was carried out through the limited amount of information available from the TA test, without
any detailed characterization of the high voltage battery, the electric machines and the ICE [22,24–26].

After presenting the testing methods and procedures in Section 2 (Methodology), the effects of
the new test procedure on CO2 emissions and on the performance of the EMS at different SOC
levels, ranging from 40 to 65%, and engine thermal states, from −7 ◦C to 70 ◦C, are reported
in Section 3 (Results). Finally, the main findings of the work are summarized in Section 4 (Conclusions),
highlighting how the change of test conditions from NEDC to WLTP led to an important increase of
the specific energy demand of about 50%, and to a corresponding increase of CO2 emissions of about
30%, thus demonstrating that the EMS strategies of the tested vehicle can achieve, in test conditions
closer to real life, even higher efficiency levels than those which are currently evaluated on the NEDC.

2. Methodology

2.1. Tested Vehicle

The B-Segment HEV features a complex hybrid powertrain, in which an Electric Continuous
Variable Transmission (eCVT) is coupled with a Spark Ignition (SI) engine. The main vehicle
characteristics are listed in Table 1. In the eCVT system the rotational shaft of the planetary gear
carrier is directly linked to engine and it transmits the motive power to the outer ring gear and the
inner sun gear via pinion gears. The ICE is a four-cylinder in-line 1.5 L naturally aspirated gasoline
with a maximum power of 55 kW at 4800 rpm. The rotational shaft of the ring gear is directly linked to
the 45 kW Motor Generator 2 (MG2) and it transmits the drive force to the wheels, while the rotational
shaft of the sun gear is directly linked to the electric generator (MG1) [27]. The high voltage battery is
a nickel metal hydride unit (NiMH) containing 120 cells connected in series.



Energies 2017, 10, 1590 3 of 18

Table 1. Vehicle and powertrain main characteristics [27].

Technical Data

Curb Mass 1120 kg
Gross Mass 1565 kg

ICE

Spark Ignition Naturally Aspirated
Displacement: 1.5 L

Rated power: 55 kW @ 4800 rpm
Rated torque: 111 Nm @ 3600–4800 rpm

MG1-MG2
Permanent Magnet Synchronous motor

Maximum output power: 45 kW
Maximum output torque: 169 Nm

Battery

Type: NiMH
Capacity: 6.5 Ah

Nominal voltage: 144 V
Energy: 1 kWh

The vehicle can operate in two different modes, depending on the vehicle speed, power demand
and battery SOC [27]:

1. Electric Vehicle (EV): whenever the ICE would operate in an inefficient range, such as at very low
load levels, the ICE is turned off and the traction power is demanded to the MG2, as illustrated
in Figure 1;
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Figure 1. EV mode.

2. Parallel Hybrid (PH): at higher load levels the ICE is enabled and it supports the vehicle driving,
allowing the powertrain to operate in two different ways depending on battery SOC and on the
accelerator pedal position:

• Smart Charge (SC): the ICE operating points are shifted at higher load levels than those
required for the vehicle propulsion, closer to the optimal efficiency area, and the power
exceeding the vehicle propulsion needs is used to recharge the battery through the generator
MG1, as depicted in Figure 2 by the path “A”;

Energies 2017, 10, 1590  3 of 18 

 

Table 1. Vehicle and powertrain main characteristics [27]. 

Technical Data 

Curb Mass 1120 kg 

Gross Mass 1565 kg 

ICE 

Spark Ignition Naturally Aspirated 

Displacement: 1.5 L 

Rated power: 55 kW @ 4800 rpm 

Rated torque: 111 Nm @ 3600–4800 rpm 

MG1-MG2 

Permanent Magnet Synchronous motor 

Maximum output power: 45 kW 

Maximum output torque: 169 Nm 

Battery 

Type: NiMH 

Capacity: 6.5 Ah 

Nominal voltage: 144 V 

Energy: 1 kWh 

The vehicle can operate in two different modes, depending on the vehicle speed, power demand 

and battery SOC [27]: 

1. Electric Vehicle (EV): whenever the ICE would operate in an inefficient range, such as at very low 

load levels, the ICE is turned off and the traction power is demanded to the MG2, as illustrated 

in Figure 1; 

 
Figure 1. EV mode. 

2. Parallel Hybrid (PH): at higher load levels the ICE is enabled and it supports the vehicle driving, 

allowing the powertrain to operate in two different ways depending on battery SOC and on the 

accelerator pedal position: 

 Smart Charge (SC): the ICE operating points are shifted at higher load levels than those 

required for the vehicle propulsion, closer to the optimal efficiency area, and the power 

exceeding the vehicle propulsion needs is used to recharge the battery through the generator 

MG1, as depicted in Figure 2 by the path “A”; 

 
Figure 2. SC mode. 

ICE MG1

MG2

Planetary 

Gear

High Voltage Battery

Inverter

ICE MG1

MG2

Planetary 

Gear

High Voltage Battery

Inverter
A

Figure 2. SC mode.



Energies 2017, 10, 1590 4 of 18

• Electric Boost (E-Boost): in order to support the engine during sudden load demands, the
high voltage battery provides an extra power contribution to the MG2, represented by the
path “B”, as illustrated in Figure 3.
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2.2. Test Conditions

The experimental testing campaign was carried out at the Vehicle Emission LAboratory (VELA)
of the Joint Research Centre (JRC). The test rig is equipped with a four wheel-drive (4WD) chassis
dynamometer, made of two roller benches with a diameter of 48 inches (1.219 m). The chassis dyno,
located in a climatic chamber, allows a maximum traction torque of 3300 Nm and the vehicle mass
range permitted varies from 454 to 2720 kg. During the tests CO2 and pollutants emissions, as well as
measurements on the engine and on the battery were recorded. Engine operating parameters, such as
the revolution speed and the coolant temperature, were acquired using an On Board Diagnostic (OBD)
scan tool. Instead, the battery current and voltage were acquired using a Yokogawa WT1800 precision
power analyzer, thanks to the direct access to the battery terminals [27].

The WLTC and NEDC driving cycles were used for the chassis testing [17,21]. As far as the WLTC
is concerned, the Class-3 was adopted, since the vehicle characteristics correspond to the highest power
to mass ratio. Road Loads (RLs) and test mass definitions prescribed in [17,21] were applied to the
NEDC tests. As for the WLTC tests, requirements of RLs and test mass follow the WLTP regulation [21].
Coast down coefficients adopted for the two driving cycles are listed in Table 2.

Table 2. Vehicle test conditions [27].

Unit NEDC WLTP

Test Mass - kg 1130 1325
Coast
Down

Coefficients

F0 N 61 120.5
F1 N/(km/h) 0.19 0.33
F2 N/(km/h)2 0.0269 0.0302

An important difference between the WLTP and NEDC procedures is the substantial increase
of the energy demand, as shown in Figure 4, which illustrates both the traction specific energy (i.e.,
the integral of the positive traction power requested along the entire cycle referred to the travelled
distance) and the brake specific energy (i.e., the integral of the negative power requested during the
entire cycle referred to the travelled distance).
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Figure 4. Traction energy demand and brake energy demand along the WLTC (a) and NEDC (b): for
each driving cycle the values of the different phases (Low, Medium, High and Extra-High for WLTC
and ECE and EUDC for NEDC) and for the whole cycle are shown.

An increase of about 50% in the traction specific energy demand when moving from the NEDC to
the WLTP can be clearly noticed, while the brake energy only increases by than 15%, showing reduced
opportunities for the exploitation of regenerative braking.

2.3. Test Protocol

The vehicle was tested under different initial battery State of Charge (SOC) conditions over
both driving cycles. This aspect is of crucial importance for a HEV, because the battery works
as an energy buffer, since the electric energy, which is used during the discharge phase, has then
to be supplied backwards through the SC or through regenerative braking. Therefore, the same
cycle was tested considering two opposite initial SOC conditions: battery fully charged (or “High
SOC”) and fully discharged (“Low SOC”). It is worth to point out that the terms “High SOC” and
“Low SOC” are referred to the usual range of exploitation of NiMH batteries, which ranges from
a maximum of 70% to a minimum of 30% [28–30]. The battery conditioning was performed by driving
at constant speed on the chassis dynamometer until the complete charge or discharge of the battery
was achieved. The evolution of the battery energy level was monitored through the battery indicator
on the cockpit [27].

Moreover, the vehicle was tested considering different thermal states of the ICE to appreciate the
effect of coolant temperature on the EMS logic, combined with different SOC levels at the beginning of
the cycle, as summarized in Table 3. Along the NEDC and WLTC cycles, the vehicle tests were carried
out considering the initial coolant temperature at 25 ◦C, referred as “Cold”, and at 70 ◦C, referred as
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“Hot”. Finally, to further extend the characterization of the EMS logic, a coolant temperature of −7 ◦C
was considered for the WLTC only.

Table 3. Test matrix.

NEDC WLTC

SOC High Low High Low

−7 ◦C - - x x
COLD x x x x
HOT x x x x

3. Results

The first part of this section focuses on the impact of WLTP procedure on CO2 emissions for
different battery SOC levels and engine thermal states, providing a preliminary analysis of the EMS
behavior under different operating conditions. Thereafter, the EMS logic was investigated with a higher
detail level, detecting the engine enabling logic and the actuation of the SC/E-boost, depending on the
battery SOC, vehicle speed and acceleration. Then, the effects of the Cold start event on the control
logic were investigated through the comparison with vehicle tests performed with the engine coolant
temperature around 70 ◦C.

3.1. CO2 Emissions

The WLTP procedure, as already shown in previous Section 2.2, is more energy demanding
compared to the current NEDC based TA procedure. Therefore, it is expected to lead to an increase of
the overall CO2 emissions, as already reported in literature for vehicles equipped with conventional
powertrains [31,32] This section provides an additional contribution, analyzing the impact of the new
TA procedure on a test case vehicle representative of current state of the art of the hybrid technology.

The CO2 emissions measured after a Cold start, as required by the TA procedures, are shown
in Figure 5 for the two different SOC levels: the WLTP procedure leads to an average increase of
CO2 emissions of 26 g/km corresponding to about a 30% increase, almost independently from the
starting SOC level. Instead, the different initial battery level causes a variation of about 6 g/km of CO2

emissions for the same driving cycle [27].
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Figure 5. Cold start—CO2 emissions according the WLTP and NEDC procedures for the Low SOC,
High SOC and TA cases.

However, as it will be shown in more details in the following section, both under Low SOC and
High SOC conditions, the EMS promotes a quite aggressive battery recharging for both driving cycles,
leading to SOC values at the end of the driving cycles significantly higher than the values recorded at
cycle start. Therefore, the computation of the CO2 emissions should take into account that a fraction of
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the fuel energy consumed was used to increase the energy content of the battery, and not for vehicle
traction. A correction factor, named “K factor”, should be applied to the measured CO2 emissions,
as prescribed by the regulations [18,21], in order to obtain the TA CO2 values shown in Figure 5.
These two values correspond to the CO2 emissions that would be measured in case of a neutral battery
energy balance (in other words with SOC level at cycle end equal to SOC level at cycle start). As far as
TA CO2 emissions are concerned, passing from NEDC to WLTP an increase of 18 g/km, corresponding
to about 23%, was observed, which is noticeably lower than the increases measured for both the Low
SOC and High SOC conditions.

The effects of the ICE thermal status at the start of the driving cycle are reported in Figure 6,
considering only the High SOC as reference case. As already pointed out in literature [33] for
conventional powertrains, the effect of Cold start on CO2 emissions is reduced passing from NEDC to
WLTP also for the hybrid powertrain. The CO2 penalty is limited thanks to the higher power demand
of the WLTP, permitting a more rapid ICE warm up compared with the NEDC, and thanks to the longer
duration of the WLTC driving cycle, since the relative weight of the higher fuel consumption during
the warm-up phase is significantly reduced. As a result, CO2 emissions increase by only 4 g/km,
corresponding to a percentage growth slightly lower than 4%, when passing from Cold to Hot start
conditions for the WLTP, while for the NEDC an increase of about 10 g/km, corresponding to about
12%, from Cold to Hot was registered.
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Figure 6. Effect of the Cold start on CO2 emissions along the NEDC and WLTP cycles for the High
SOC case.

Finally, the effect of extremely low temperatures on CO2 emissions along the WLTC cycle was
investigated for different SOC levels, as reported in Figure 7.

The emissions increase passing from Cold case to −7 ◦C case is of about 16.5% for the Low SOC
case, and of about 21% for the High SOC case. It is worth pointing out that the initial battery SOC level
has a very limited effect on CO2 emissions at −7 ◦C, since the increase from the High to the Low SOC
case is lower than 2 g/km, which is significantly less than the 6 g/km increment measured for the Cold
start case (see again results shown in Figure 5). This result suggests a limited influence of the initial
SOC level on the exploitation of the electric drive at −7 ◦C, which could be explained by the need to
keep the ICE switched on to obtain a fast warm-up, regardless of the need to charge the battery.
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Figure 7. Impact on CO2 emissions of −7◦C test for the Low SOC and High SOC cases along the WLTC.

3.2. Analysis of the EMS Logic

This section presents a detailed analysis of the EMS logics for the two different SOC levels, using
the limited amount of information available from the chassis dyno tests. The investigation procedure
correlated the vehicle operating conditions such as the vehicle speed, acceleration and motive power
to identify the engine enabling strategy and the use of peculiar operating modes of hybrid powertrains,
such as the SC and the E-Boost [27]. Figures 8 and 9 illustrate the ICE On/Off logic, represented as
Boolean variable (0 = Off, 1 = On), on a time basis, along with the battery SOC for the two different
initial levels along the WLTC and NEDC cycles.
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From Figure 8, which refers to the High SOC case, it is evident that the EMS permits all-electric
driving only at low/medium vehicle speeds and for low accelerations, which happens when the power
demand is quite limited. Therefore, the usage of the ICE is more frequent over the WLTC than over
the NEDC, due to the higher power demand. Moreover, in the High SOC case it can be observed that
the battery charge increases by about 15% on WLTC and by about 10% on NEDC, highlighting the
frequent exploitation of the SC to increase the load of the ICE and consequently its efficiency, well
beyond the need to keep the battery energy at a constant level.

In the Low SOC case, depicted in Figure 9, the ICE is more frequently enabled in the first portion
of the driving cycles (particularly on the NEDC), enabling a fast battery recharge until the reaching of
“normal” operating conditions (about 55% of SOC), after which the EMS tends to operate in a similar
way to the High SOC case.

Moreover, even though the power demand is quite low during the initial phases of both cycles,
Figures 8 and 9 show that the engine is On for approximatively 100 s, probably to warm-up the
after-treatment system.

However, for better understanding the EMS logic a deeper investigation of the correlation between
the driving conditions and the hybrid powertrain operating modes is necessary. Therefore, the battery
and the engine measurements were correlated with vehicle kinematic and dynamic measurements,
such as vehicle speed, vehicle acceleration and traction power [27].

Figure 10 reports the ICE status (On/Off) for all the operating points recorded over the WLTC as
a function of battery SOC and traction power. The cross and diamond markers represent respectively
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the ICE Off and On conditions, while the “Start” arrow identifies the battery initial SOC on the x-axis.
It can be clearly seen that in both cases the EMS enables the electric driving (corresponding to the
“ICE Off” conditions) up to 10 kW. Moreover, for both cases the ICE cut-off during vehicle deceleration
and the stop-start functionalities are both disabled at the beginning of the cycle to accelerate the engine
and after-treatment system warm-up, as it can be inferred from the presence of ICE On points in the
negative power region.
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Figure 10. WLTC Cold start: ICE On/Off vs. battery SOC for High SOC (a) and Low SOC (b) cases.

Finally, it can be noticed that in the Low SOC case the EMS limits the electric drive at power levels
below 2.5 kW, until SOC values of about 50% are reached.

The same analysis carried out on the NEDC, which is not reported here for sake of brevity,
highlighted a similar EMS behavior.

Another important parameter, which plays a key role in the EMS logic, is the product of vehicle
speed and acceleration. The analysis of the data recorded on the WLTC, shown in Figure 11, highlights
that the electric drive both for the High SOC and Low SOC cases is confined in a well-defined region
from −3.5 to 4.5 m2/s3. More specifically, the EMS limits the electric drive to the conditions when:
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• Vehicle speeds are in the medium range (below 60 km/h) and the accelerations are very low
(below 0.5 m/s2);

• Accelerations are moderate (below 1 m/s2) and speeds are low (below 20 km/h) [27].
Energies 2017, 10, 1590  11 of 18 

 

 
(a) 

 
(b) 

Figure 11. WLTC Cold start: ICE On/Off status vs. the product between vehicle speed and acceleration 

for High SOC (a) and Low SOC (b) cases. 

Finally, further analyses were carried out to characterize in more detail the ICE operation modes 

during the PH operation. In particular, the SC or the E-Boost can be identified by comparing the 

battery current signal with the ICE On/Off condition: current flowing from the battery when the ICE 

is On corresponds to E-Boost, while current flowing into the battery when the ICE is On corresponds 

to SC. A further operating condition when the engine is On without providing any traction power to 

the vehicle (such as during vehicle decelerations) can identified as a “Catalyst Heating” condition, 

since the main scope of this operation mode is to warm-up the after-treatment system. The same 

operating points recorded over the WLTC, which were previously shown in Figures 10 and 11, have 

been plotted in Figures 12 and 13, as a function of SOC and of the product between vehicle speed and 

acceleration respectively. The square markers represent SC condition, the diamond markers stand for 

the E-Boost, and the X markers indicate the Cat-Heating. 

The engine most frequent operating condition is the SC throughout all operating domain, 

especially when the battery SOC is below 55%, as it is evident from Figure 12, but also the exploitation 

of the E-Boost for both SOC levels is not negligible for power demands ranging from 10 to 50 kW 

when the battery SOC is above 60% [27]. 

The same data, plotted in Figure 13 as a function of the product between vehicle speed and 

acceleration, confirm the predominance of SC along the WLTC. 

Figure 11. WLTC Cold start: ICE On/Off status vs. the product between vehicle speed and acceleration
for High SOC (a) and Low SOC (b) cases.

Finally, further analyses were carried out to characterize in more detail the ICE operation modes
during the PH operation. In particular, the SC or the E-Boost can be identified by comparing the
battery current signal with the ICE On/Off condition: current flowing from the battery when the ICE is
On corresponds to E-Boost, while current flowing into the battery when the ICE is On corresponds to
SC. A further operating condition when the engine is On without providing any traction power to the
vehicle (such as during vehicle decelerations) can identified as a “Catalyst Heating” condition, since
the main scope of this operation mode is to warm-up the after-treatment system. The same operating
points recorded over the WLTC, which were previously shown in Figures 10 and 11, have been plotted
in Figures 12 and 13, as a function of SOC and of the product between vehicle speed and acceleration
respectively. The square markers represent SC condition, the diamond markers stand for the E-Boost,
and the X markers indicate the Cat-Heating.
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Figure 12. WLTC Cold start: ICE operating conditions for High SOC (a) and Low SOC (b) as a function
of battery SOC.

The engine most frequent operating condition is the SC throughout all operating domain,
especially when the battery SOC is below 55%, as it is evident from Figure 12, but also the exploitation
of the E-Boost for both SOC levels is not negligible for power demands ranging from 10 to 50 kW when
the battery SOC is above 60% [27].

The same data, plotted in Figure 13 as a function of the product between vehicle speed and
acceleration, confirm the predominance of SC along the WLTC.

Finally, the time share of the different operating modes along the WLTC and the NEDC is reported
in Figures 14 and 15, where the term “Other” refers to non-specific operating conditions such as engine
cranking, or to the impossibility to associate a measurement to a particular mode due to problems of
signal phasing. It is evident that passing from the NEDC to the WLTC the reduction of the electric
drive is significant, from 35% to 20%, for the High SOC and from 30% to 17% for the Low SOC.
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Figure 13. WLTC Cold start—ICE operating conditions for High SOC (a) and Low SOC (b) as a function
the product between vehicle speed and acceleration.
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Figure 14. WLTC Cold start—Vehicle operating mode share for High SOC (a) and Low SOC (b) [27].
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Figure 15. NEDC Cold start - Vehicle operating mode share for High SOC (a) and Low SOC (b) [27].

Moreover, both graphs confirm that the exploitation of the SC mode is wider than the E-Boost,
which is almost negligible (below 1%) on the NEDC, since, due to the low power demand of this
driving cycle, the EMS constantly tries to increase the load on the ICE to increase its efficiency through
the SC. On the WLTC instead, due to the higher power demand of the driving cycle, the exploitation
of the E-Boost is not negligible (about 7% of the total time), although still two-three times less frequent
than the SC.

Finally, passing from the NEDC to the WLTC will lead to a significant reduction of both the
stop-start (from about 19% to 10%) and of the Cat-Heating (from about 5% to about 3%) [27].

3.3. Analysis of the Impact of the Cold Start on the EMS Logics

The effect of Cold start on the EMS logic was then analyzed along the WLTC and NEDC cycles,
focusing only on the High SOC case, since similar observations could be done also for the Low SOC
test. For a meaningful comparison similar battery SOC values at the beginning of the cycle were
considered (between 60 and 70%), as shown in Figure 16. However, it is worth pointing out that, due
to the impossibility to recharge externally the battery, it would be almost impossible to guarantee the
same initial battery SOC for the different cycles.
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Figure 16. Battery SOC for HOT (Red) and COLD (Blue) start, during WLTC (a) and NEDC (b) for the
High SOC case.
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As evident from Figure 16, the SOC trends are quite similar for the two different test conditions
(i.e., Cold and Hot) over both driving cycles, and the main difference is represented by the engine
management at the beginning of the cycles, as highlighted in Figure 17, which compares the engine
speed profiles for the two thermal conditions. The fuel cut-off and the engine stop-start are disabled in
the first portion of the cycles to fasten the warm-up of the engine and of the after-treatment system.
Once the warm-up has been achieved, both for the WLTC and for the NEDC cycles, the engine speed
profiles corresponding to Hot and Cold starts are almost perfectly overlapped for both driving cycles.Energies 2017, 10, 1590  15 of 18 
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the art hybrid powertrain technology, according to both the current EU TA procedure, based on the 

NEDC, and the future WLTP procedure, highlighted that, switching from the current NEDC based 

procedure to the future WLTP procedure: 

 The specific energy demand increases of about 50%; 

 The electric drive reduces of about 13%, leading to a 30% increase of CO2 emissions; 

Figure 17. Engine speed for HOT (Red) and COLD (Blue) start, during WLTC (a) and NEDC (b) for the
High SOC case.

The pie charts of Figure 18 illustrate the share of the different operating modes along the WLTC
and NEDC for the Hot start case. Comparing these results with those reported in Figures 14 and 15
at comparable SOC level, it is possible to observe an extremely limited increase of the electric drive
over the WLTC cycle (from 20% to 21% passing from Cold to Hot start conditions), while on the NEDC
the effect is more significant (from 35% to 37%). This different behavior can be ascribed to the higher
power demand of the WLTP, which requires a more frequent use of the ICE at medium/high loads,
leading to a reduction of the warm-up time, to a limited impact of the thermal status of the engine
on the electric drive exploitation and on the vehicle CO2 emissions, as it was already pointed out in
Figure 6.
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4. Conclusions

Experimental tests carried out on a chassis dyno on a Euro 6 HEV, representative of the state of
the art hybrid powertrain technology, according to both the current EU TA procedure, based on the
NEDC, and the future WLTP procedure, highlighted that, switching from the current NEDC based
procedure to the future WLTP procedure:

• The specific energy demand increases of about 50%;
• The electric drive reduces of about 13%, leading to a 30% increase of CO2 emissions;
• The effect of the Cold start on CO2 emissions is reduced for WLTP to a percentage growth slightly

lower than 4%, from about 12% for the NEDC.

These results demonstrate that the EMS strategies of the tested vehicle can achieve, in test
conditions closer to real life such as those corresponding to the WLTP, even higher efficiency levels
than those that are currently evaluated on the NEDC, and prove the effectiveness of HEV technology
to reduce CO2 emissions.
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