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Abstract: Based on the porous flow theory, an extension of the pseudo-functions approach for
the solution of non-linear partial differential equations considering adsorption-desorption effects
was used to investigate the transient flow behavior of fractured wells in shale gas reservoirs.
The pseudo-time factor was employed to effectively linearize the partial differential equations of
the unsteady flow response. The production performance of vertically fractured wells in shale gas
reservoirs under either constant flow rate or constant bottom-hole pressure conditions was analyzed
using the composite flow model. The calculation results indicate that the non-linearities that develop
in the gas diffusivity equation have significant effects on the unsteady response, leading to a larger
pressure depletion and rate decline in the late-time period. In addition, gas desorption from the shale
acts as a recharge source, which relieves the gas production rate of decline. Greater values for the
Langmuir volumes or Langmuir pressures provide additional pressure support, leading to a lower
rate decline while the flowing well bottom-hole pressure is maintained. The reservoir size mainly
affects the duration of the pressure depletion and rate decline. In the case of ignoring the non-linearity
and adsorption-desorption effect in the differential equation, a greater rate decline under constant
bottom-hole pressure production can be obtained during the boundary-dominated depletion. This
work provides a better understanding of gas desorption in shale gas reservoirs and new insight into
investigating the production performances of fractured gas well.

Keywords: non-linear differential equation; shale gas; vertically fractured well; composite flow
model; adsorption-desorption effect

1. Introduction

In recent years, shale gas reservoirs have gradually become the major sources of natural gas
production around the world. In nature, shale can serve as both source and reservoir rock [1–3], and
natural gases are stored in both the free gas and absorbed gas forms. Martin et al., stated that the
amount of shale gas in place is controlled by the total organic contents (TOC), clays, and adsorption
ability of methane on the internal surface of a solid [4]. In shale reservoirs, gas desorption can produce
a considerable amount of gas. Tinni et al., presented a novel approach that can be used to evaluate the
influence of adsorption on the gas production in shale gas reservoirs [5].The production performances
can be altered by the influence of gas adsorption in unconventional reservoirs [6]. Mengal and
Wattenbarger concluded that it is generally not possible to investigate the accurate production forecasts
if the effects of desorption is neglected [7].Thompson et al. [8] proposed that gas desorption can
have a great influence on the analysis of conventional Arps decline curves [9]. Recently, much of the
research has focused on the adsorption-desorption effect in unconventional reservoirs [10–15]. Since
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a portion of the gas in shale reservoirs is stored in the adsorbed form, a detailed investigation on
the contribution of gas adsorption can provide critical insights into the analysis of the transient flow
behavior in gas reservoirs.

During the last few decades, increasing attention has been paid to the economical development of
shale gas reservoirs using hydraulic fracturing [16–24]. In some cases, the adoption of the composite
flow model can replace the application of a two-dimensional or three-dimensional flow model when
analyzing the transient performance of a fractured well. In terms of the analysis on a composite
flow model, Wattenbarger et al., claimed that the flow near production wells in tight gas reservoirs
is dominated by a one-dimensional flow after hydraulic fracturing treatment, and they reported a
rate decline analysis of gas wells using a one-dimensional flow model [25]. Cinco et al., performed an
appropriate analysis of fractured wells according to the bilinear flow theory for the early-time pressure
behavior [26]. Later, Cinco and Satnaniego proposed a new approach to analyze the pressure transient
response of a vertical fractured well [27]. Brown et al., established an analytical trilinear flow model
to investigate the production performance of a fractured well in an unconventional reservoir [28]. In
recent years, the composite flow models have been applied to analyze the production performance of
fractured wells [29–33]. Stalgorova et al., established an analytical model, as an extension of the trilinear
flow solution, for unconventional reservoirs with multiply-fractured horizontal wells [34,35]. Yao et al.,
established a semi-analytical composite model for heterogeneous reservoirs [36]. Guo et al., presented
an analytical model for the production decline analysis of a multi-stage fractured shale reservoir [37].
However, the significant influences of fluid properties changes on the fracture performance were not
fully investigated in these studies.

Since the recent boom in gas production caused by the development of hydraulic fracturing
technologies, many articles analyzing the transient performance of gas flow in unconventional
reservoirs have been published [38–41]. A historical challenge in gas reservoir analysis is how to solve
the highly non-linear gas partial differential equation, which fully considers the significant changes in
gas properties during depletion. Overall, many researchers [42–49] have focused on the application
of pseudo-functions to achieve the linearization and subsequent analytical treatment of the gas flow
equations, replacing the pressure and time variables with pseudo-pressure and pseudo-time functions.
With this method, the change in gas properties during production is also taken into consideration.
On this basis, the main objective of this article is to explore the applicability of the pseudo-functions
approach, which investigates the variable gas properties and significant desorption effect in shale gas
reservoirs. Firstly, the extended pseudo-function is applied into a composite flow model to obtain the
analytical solution. Then, type curves are constructed to analyze the effects of the fluid properties,
gas desorption and reservoir size on the transient behaviors. The pseudo-time factor is employed to
effectively linearize the partial differential equations of unsteady gas flow in shale gas reservoirs.

2. Pseudo-Functions Approach

2.1. Derivation of the Pseudo-Functions

The presence of absorbed phases significantly affects the production performance and reserve
evaluation of a shale gas reservoir. Consequently, the pressure depletion rapidly increases with the
process of gas production in the late-time period, and it is necessary to take the adsorption-desorption
effect into consideration. The equilibrium between absorbed phase and the solid phase at a given
pressure is characterized by an adsorption isotherm. Sing et al., presented the detailed description of
the six models of physical sorption isotherms [50]. There are also other types of adsorption isotherm
models that have been applied to analyze the sorption data in the experimental process, such as the
Freundilich-type isotherm [51] and Dubinin’s family of isotherms [52].However, these isotherm models
have not been clearly accepted in analyzing the transient responses of unconventional gas reservoirs.
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By far, the adsorption isotherm that has been widespread applied to model the adsorption-desorption
effect is the Langmuir isotherm [53] as given in Equation (1):

Vg(p) =
VL p

pL + p
(1)

where Vg(p) is the gas volume of the adsorption at pressure p; VL is the Langmuir volume, referred to as
the maximum gas volume of adsorption at an infinite pressure; and pL is the Langmuir pressure, which
is the pressure corresponding to one-half of the Langmuir volume. Based on the equation describing
the mass balance of gas flow in shale gas reservoirs proposed by Patzek et al., and Yu et al. [54,55],
the one-dimensional continuity equation with the adsorption-desorption effect is given below:

−
∂(ρgvg

)
∂x

=
1
αt

∂
[
ρgSgφ + (1− φ)ρa

]
∂t

(2)

where ρg is the free gas density; vg is the Darcy velocity of gas; Sg is the initial gas saturation; φ is the
reservoir porosity, ρa is the adsorbed gas density; and αt = 3.6 × 24 × 10−3 is the conversion factor.
When neglecting the elasticity of the porous media under isothermal conditions, a nonlinear governing
equation for a one-dimensional transient flow with the gas desorption effect in a shale gas reservoir
can be presented as:

∂

∂x

[
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µg(p)
· p

Z(p)
∂p
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]
=

1
αt
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∂ρa
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]
∂
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(
p

Z(p)

)
(3)

where kg is the reservoir permeability, µg is the gas viscosity, and Z is the gas compressibility factor.
As given in Equation (3), the viscosity µg(p) and compressibility factor Z(p) are pressure-dependent

parameters of natural gas, and Equation(3) is apparently nonlinear. In order to solve this nonlinear
equation, the pseudo-pressure function [56] is defined as follows:

pP(p) =
µgiZi

pi

pi∫
p

p
µg(p)Z(p)

dp (4)

where pP is the pseudopressure, µgi is the initial gas viscosity, Zi is the initial gas compressibility factor,
and pi is the initial pressure. Substituting the pseudo-pressure function and Langmuir adsorption
model into the diffusivity equation, the flow of a real gas through a shale formation can be expressed
as follows:

∂2 pp(p)
∂x2 =

φµgicgiSg

αtkg

[
µg(p)cg(p)

µgicgi
+

µg(p)ρb

µgicgiφSg

pscZ(p)T
pZ(psc)Tsc

VL pL

(pL + p)2

]
∂pp(p)

∂t
(5)

where cgi is the initial gas compressibility, cg is the gas compressibility, ρb is the bulk density of shale,
and Zsc(psc) is the gas compressibility factor under the standard condition. Due to the residual presence
of the µg(p)cg(p) pressure-dependent term on the right hand side of this diffusivity formulation,
it is necessary to implement further handling of the nonlinearity in Equation (5). The traditional
method is to approximate it as a constant, which will produce a large error in an analysis of the
production performance.

In the initial stage, viscosity-compressibility changes do not dominate the unsteady state responses
of the system, and µg(p)cg(p) is shown to represent a weak non-linearity. This is the same with
as the phenomenon in liquid systems. However, the significant changes in µg(p)cg(p) during the
boundary-dominated depletion cannot be ignored in gas reservoirs. In order to investigate the
effect of pressure-dependent fluid properties on transient responses, pseudo-variables are needed to
be implemented in unsteady state analysis. Recently, Ye and Ayala [57] proposed a density-based
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approach to analyze the unsteady state responses for natural gas reservoirs. This approach emphasized
the significance of viscosity-compressibility changes from the pressure depletion based on the following
depletion-driven dimensionless variables:

β∗(t) =
1
t

t∫
0

µgicgi

µg(pavg)cg(pavg)
dt (6)

where pavg is the average pressure in the reservoir. To effectively linearize the partial differential
Equation (5) for the cases under study, pseudo-functions should be applied to re-express the
pseudo-variables on the right hand side of the differential equation in a friendlier way. On this basis,
according to the results of Fraim [58], the pseudo-time factor considering the adsorption-desorption
effect in this work is defined as follows:

β(t) =
1
t

t∫
0

1[
µg(pavg)cg(pavg)

µgicgi
+

µg(pavg)ρb
µgicgiφSg

pscZ(pavg)T
pavgZ(psc)Tsc

VL pL

(pL+pavg)
2

]dt (7)

The integrand function λ(t) is defined as follows:

λ(t) =
1[

µg(pavg)cg(pavg)
µgicgi

+
µg(pavg)ρb
µgicgiφSg

pscZ(pavg)T
pavgZ(psc)Tsc

VL pL

(pL+pavg)
2

] (8)

Apparently, λ(t) and β(t) are dimensionless and the relationship between them can be presented
as follows:

β(t) =
1
t

t∫
0

λ(t)dt (9)

Substituting the pseudo-function variable into the diffusivity Equation (5), the simplified version
of the governing equation is shown below:

∂2 pP(p)
∂x2 =

φ(1− Swi)µgicgi

αtKg

∂pP(p)
∂(βt)

(10)

where β(t) is a depletion-driven time rescaling factor capturing the behavior of the gas desorption and
viscosity-compressibility changes during pressure depletion. It should be noted that Equation (10) is an
approximate version of Equation (3). The proposed approximation demonstrates that the introduction
of the pseudo-time factor can successfully linearize the partial differential equation of the gas flow in
porous media, making the analysis methods for the “liquid flow model” applicable to the gas flow in a
shale reservoir.

2.2. Behaviors of the Pseudo-Time Factor

On the basis of the proposed approach, this section demonstrates the effects of the pseudo-time
factor during reservoir depletion. Apparently, the behaviors of the pseudo-time factor over time
depend on the correlated fluid properties and depletion patterns in the system. A full discussion of the
production performances for these cases under study is presented using the production decline model
of one-dimensional flow [25].Consider a vertical well intercepted by a uniform flux vertical fracture in
the center of a homogeneous rectangular reservoir, as shown in Figure 1.The height, length, and width
are h, xe, and ye, respectively. The half-length of the fracture is yf, and the length of the fracture is equal
to the width of the reservoir.
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Figure 1. Diagram of one-dimensional fluid flow.

If the fracture produces at a pressure of pwf, this leads to isothermal transient flows in the reservoir.
The dimensionless quantities are defined as follows:

pD =
pP(p)

pP(pw f )
,qD =

qg(t)µgiBgi

αpkghpp(pw f )
, tD f =

αtkgt
φ(1− Swi)µgicgiy2

f
, xD =

x
y f

where qg is the gas flow rate, Bgi is the gas formation volume factor under the standard condition, h is
the reservoir thickness, pwf is the wellbore pressure, yf is the fracture half-length, and αp = 2π × 3.6 ×
24 × 10−7 is the conversion factor. In these equations, pD is the dimensionless pseudo pressure, qD is
the dimensionless flow rate, tDf is the dimensionless time, and xD is the dimensionless coordinate in
the x direction. The production behavior under a constant bottom-hole pressure is given below:

qD(βtD f ) =
4

πxeD

∞

∑
n=0

exp[−π2

4
(2n + 1)2 (βtD f )

x2
eD

] (11)

where xeD is the dimensionless reservoir length. In this formulation, the calculation of depletion-driven
factor β(t) should be explicitly stated.

It should be noted that high accuracy can be obtained from Equation (7) by employing the material
balance equation with the adsorption-desorption effect. A generalized material balance equation that
investigates the equilibrium between the free and adsorbed gas phases was developed by King [59],
who applied graphical and iterative algorithms for the solution of the generalized results. Since
then, based on the volume conservation principle, Moghadam et al., presented a new format for the
material balance equation accounting for the shale gas storage mechanisms [60]. In this paper, the
material balance equation with the adsorption-desorption in a shale gas reservoir has been derived by
integrating the continuity equation with definite conditions.

The definite conditions for Equation (2) are presented as follows:

(
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)
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)
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where qgsc is the standard gas flow rate, and ρsc is the gas density under the standard condition. Then,
the one-dimensional continuity equation with the adsorption-desorption effect in integral form is
given by the following:
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Substituting the Langmuir isotherm model into the continuity Equation (12), the material balance
equation considering the gas desorption in a shale gas reservoir is given below:

Gp(t)
Gsc

pi
Zi

=

(
pi
Zi
−

pavg

Zavg

)
+

pscTi
ZscTsc

ρbVL
φSgi

[
pi

pL + pi
−

pavg

pL + pavg
] (13)

where Gp is the cumulative production, and Gsc is the geological reserves.
The time-dependence of β(t) is correlated with the associated average reservoir pressure pavg

predicted by the material balance equation at every depletion step for every value of Gp(t). For a
reservoir with a constant flow rate, the cumulative production is Gp = qsc × t. If the well has variable
rate production, the trapezoidal numerical integral can be incorporated to obtain the accumulative
production for a given time.

At every step in the isothermal depletion process, reservoir fluid properties such as the gas
compressibility, viscosity, and gas volume of adsorption can be readily tracked as functions of the
pressure and time. According to the definition of the pseudo-time factor in this work, which decouples
the viscosity-compressibility changes and gas desorption from the pressure depletion in a shale
gas reservoir, the transient response of a shale gas reservoir can be further analyzed. Based on the
above derivation, the behaviors of pseudo-time factors β(t) and β*(t) can be calculated according to
the isothermal depletion of a stated reservoir, as shown in Figure 2. On this basis, the production
performances of liquid and gas solutions can be investigated by calculating Equation (11) with the use
of Stehfest numerical inversion algorithm [61] (Figure 3).

Figure 2 depicts the curves of β(t) and β*(t) versus time with different reservoir sizes under a
constant bottom-hole pressure. As shown in this figure, in the initial stage, the extent of reservoir
depletion is not significant, that is β*(t) ≈ 1.0. The viscosity-compressibility changes have a weak
effect on the unsteady state responses of the system. At a later production stage, the average reservoir
pressure pavg decreases sharply, and the seepage behavior in the gas reservoirs would gradually
deviate from that of its corresponding liquid system (β*(t) < 1.0).As the production time increases, the
desorption effect on the reservoir pressure depletion is significant, which indicates that a recharge
source has been built in a shale gas reservoir. The deviation between the seepage behavior in a
shale gas reservoir and that of its corresponding liquid system, at a later production period, becomes
more significant.
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Figure 3. Influences of depletion-driven fluid properties and gas desorption on gas production with
one-dimensional flow model.

The impact of the gas desorption on production rate under a constant bottom-hole pressure is
presented in Figure 3. As shown in this figure, at an early stage, the production rates simulated using
the liquid model, and the gas model with and without desorption model, are very similar. This is
because the reservoir depletion is small and cannot significantly affect the viscosity-compressibility
values of natural gas. However, during the later production period, the gas responses gradually
deviate from their corresponding liquid analytical model results. Thus, the production rate of
a shale gas reservoir is higher than that of a slightly-compressible liquid reservoir. It should be
noted that the flow rate decreases as the production time increases, while the bottom-hole pressure
is maintained and production behaviors are significantly affected by the depletion-driven fluid
properties and gas desorption in a shale gas reservoir. For the flow in the liquid analytical model,
the adsorption-desorption effect and significant changes in the gas properties during depletion are
neglected, and the rate declines faster than under the other two conditions. This is explained by the
significant changes in the fluid properties during the reservoir depletion. In addition, the desorption
effect of shale gas is equivalent to an energy supply in the reservoir. Consequently, if the gas desorption
is not considered, the conventional gas model would underestimate the later stage production rate
under a bottom-hole pressure condition.

3. Mathematical Model

In this article, an analytical solution is presented to characterize the production performance of a
fractured well in a shale gas reservoir. The composite flow model is simple, but flexible enough to
embody the basic properties of an unconventional reservoir. For a gas reservoir, especially one with a
relatively narrow drainage area, a composite flow model is an appropriate method to avoid the need
to solve integral equations and analyze the transient flow in a finite-conductivity fracture coupled with
the reservoir flow. One of the best advantages of the composite model is that it is convenient to derive
the approximate solutions. Based on the above results, the production performance of a vertically
fractured well in a shale gas reservoir under either constant flow rate or constant bottom-hole pressure
conditions can be obtained by using the trilinear flow model.



Energies 2017, 10, 1602 8 of 24

3.1. Model Assumption

Assuming that a finite-conductivity fractured well with a bi-wing shape is completed in a
homogeneous rectangular gas reservoir; its length, width, and height are xe, ye, and h respectively.
The case of a slab transverse vertical fracture in the center of the reservoir is examined, where the
height of the fracture is equal to the thickness of the reservoir. The shale gas flows into the wellbore
from the reservoir through the fracture. It is assumed that the well produces at a constant flow rate,
and an isothermal seeping process appears in the reservoir. Take the lower left corner of the gas
reservoir as the origin of the coordinates (0, 0), as shown in Figure 4.Energies 2017, 10, 1602 8 of 23 
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The dimensionless quantities are defined as follows:

pID =
pD(pI)

pP(pw f )
pI ID =

pP(pI I)

pP(pw f )
p f D =

pP(p f )

pP(pw f )
,

yD =
y
y f

yeD =
ye

y f
y f D =

y f

y f
w f D =

w f

y f
c f D =

k f w f

ky f

where yD is the dimensionless coordinate in the y direction, yeD is the dimensionless reservoir width,
ye is the reservoir width, wfD is the dimensionless fracture width, wf is the fracture width, cfD is the
dimensionless fracture conductivity, kf is the fracture permeability, and wf is the fracture width.

3.2. Solution for the Model

Referring to the definition of pseudo-time factor β(t) that has been presented in this paper, the
dimensionless governing equation for the gas flow in the formation is as follows. Detailed derivation
of the mathematical model is presented in Appendix A:

∂2 pD

∂x2
D

+
∂2 pD

∂y2
D

=
∂pD

∂(βtD)
(14)

(1) In Region I, the linear flow is parallel to the surface of the fracture (y-direction), and
Equation (14) is simplified as follows:

∂2 pID

∂y2
D

=
∂pID

∂(βtD f )
(15)
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(2) The flow in the reservoir is mainly the linear flow vertical to the surface of the fracture in
Region II (dominated by that in the x-direction).

∂2 pI ID

∂x2
D

+
1

y f D

∂pID(xD, 1
2 yeD + y f D, βtD f )

∂yD
=

∂pI ID
∂(βtD f )

(16)

(3) The governing equation can be calculated by the integral average along the x direction (the
pressure function is still denoted as pfD), and the corresponding dimensionless governing equation is
as follows:

d2 p f D

dy2
D

+
2

c f D

∂pI ID(
1
2 xeD + 1

2 w f D, yD, βtD f )

∂xD
= 0 (17)

The pressure distribution function of a vertical fracture under a constant flow rate in the Laplace
domain is obtained as follows:

sp̃ f D(yD, s) =
π

c f D

1√
D(s)

cosh(yD − 1
2 yeD − y f D)

√
D(s)

sinhy f D
√

D(s)
(18)

where s is the time variable in Laplace domain. The relationship between the pressure solution at
a constant rate and the flow rate solution under a constant bottom-hole pressure can be derived
according to the superposition principle [62]:

p̃D(s) · q̃D(s) =
1
s2 (19)

where p̃D is dimensionless pseudo pressure pD of finite-conductivity fracture in Laplace domain, q̃D
is dimensionless flow rate qD of finite-conductivity fracture in Laplace domain. Then, they can be
inverted to the real domain numerous times by the use of an algorithm (such as that of the Stehfest
numerical inversion) during the integration over the time and spatial domains.

3.3. Model Validation

As shown in Figure 5, the solution proposed in this paper was validated using HIS Fekete
Harmony [63], which can provide solutions to support customers in various gas well production
analysis and simulation services [64,65]. The composite method was applied to model the gas flow
in a shale gas reservoir. The reservoir was assumed to be homogeneous. The reservoir had a finite
length of 1200 m and width of 800 m. The value of the bottom-hole pressure was held at 10 MPa for
the simulation. The fracture height was supposed to be equal to the formation thickness (47.2 m).
The fracture half-length was fixed at 70 m. The adsorption effect was characterized by the Langmuir
isotherm. The comparison suggested that there was a good agreement between the solutions derived
in this article and the results from commercial software. Thus, the results validated the accuracy of
our model.
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4. Parametric Study on Type Curves

The dynamic characteristics under constant flow rate or constant bottom-hole pressure condition
can be derived by illustrating the influence of the depletion-driven fluid properties and gas desorption
in a shale gas reservoir. The comparison of the liquid and gas analytical solutions can be derived
correspondingly. The fractured well, fluid, and formation properties associated with the generation of
the type curves are listed in Table 1.

Table 1. Data used in discussion.

Parameter Value Unit

kg 0.0008 10−3 µm2

φ 14 %
Swi 10 %
h 25 m

γg 0.6 Value
yf 50 m
pi 34.5 MPa
Ti 327.6 K
ρb 2.63 × 103 kg/m3

cfD 1.5 Value

4.1. Effects of Depletion-Driven Fluid Propertiesand Gas Desorption

The effects of the depletion-driven fluid properties and gas desorption on the pressure depletion
for a vertically fractured well under a constant flow rate are presented in Figure 6. As shown in this
figure, in the initial stage, the curves agree well with each other. At a later production period, the
curves bend upward, and the effects of the depletion-driven fluid properties and gas desorption on
the curves become more significant. When neglecting the adsorption-desorption effect and significant
changes in the gas properties during depletion, a greater pressure drop would be required to maintain
the expected flow rate. As a result, the pressure depletion is closer to reality when considering the
effects of the gas property changes and gas desorption during reservoir depletion, and provides extra
information on shale gas production. The impact of the reservoir size on the pressure response under
a constant flow rate is also shown in Figure 6. As expected, a larger pressure difference is required
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to maintain a constant flow rate in a smaller size reservoir; it also illustrates that a closer boundary
distance is associated with a quicker appearance of an upward trend.
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pressure behavior.

Figure 7 illustrates the impact of the depletion-driven fluid properties, gas desorption and
reservoir size on the production behaviors under a constant bottom-hole pressure condition. As
presented in this figure, in the early stage, the curves agree with each other. The flow rate decreases
as the production time increases, while the flowing well bottom-hole pressure is maintained, and
production behaviors can be significantly affected by the fluid property changes and gas desorption.
For the flow in a liquid analytical model, the significant changes of in the gas properties during
depletion are neglected, leading to a larger rate decline and smaller cumulative production. These
results are compared in this figure against the analytical trilinear flow solution of Brown and Ozkan [28],
which did not incorporate fluid properties corrections. In another case, a larger rate decline and smaller
cumulative production can be obtained when neglecting the desorption effect. These results are
compared in the same figure against the unmodified density-based solution of Ye and Ayala [57],
which did not incorporate desorption corrections, yielding a poor prediction. For example, for a
reservoir with a length of 150 m and width of 110 m, the rigorous solution predicts a rate decline
from 8700 to 1000 m3 in 6.46 years. If the non-linearity is neglected in the differential equation, this
decline in the flow rate is predicted to occur in 5.68 years; if the solution is derived without considering
gas desorption, this decline in flow rate is predicted to occur in 5.9 years. At 15 years of production,
the cumulative production values for the above two cases are calculated with errors of 6.7% and
4.2%, respectively. It is worth noting that changes in the fluid properties and gas desorption have a
significant influence on gas production in the late-time period. Figure 7 also presents the rate decline
curves with different reservoir sizes under a constant bottom-hole pressure condition. It can be seen
that the reservoir size has a dominant effect in the later production period, and a larger reservoir
would lead to a later downward trend.
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Figure 7. Effects of depletion-driven fluid properties, gas desorption, and outer boundary on
production behavior.

4.2. Effect of Langmuir Volume

Figure 8 shows the effect of the Langmuir volume on the production behavior under a constant
bottom-hole pressure condition. For the reservoir with a certain amount of gas content, under the
same pressure condition, a larger Langmuir volume value leads to a greater adsorption capacity in
a shale gas reservoir. Due to the presence of adsorbed gas, the gas reservoir can receive support
from the additional gas source, which leads to larger gas production in shale gas reservoirs. As
shown in this figure, the effect of desorption is minimal at early times. As the depletion progresses,
greater Langmuir volumes lead to additional pressure support, and thus less rate decline and larger
cumulative production while the flowing well bottom-hole pressure is maintained. When ignoring
the adsorption-desorption effect of shale gas, a greater rate decline will appear under a constant
bottom-hole pressure.
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Figure 8. Effects of Langmuir volume value on production behavior.

Figures 9 and 10 show the effects of the Langmuir volume on pseudo-time variables β(t) and
λ(t) under a constant bottom-hole pressure condition. Due to the presence of adsorbed gas, the gas
reservoir can receive support from the additional gas source. As a result, the changes in the Langmuir
volume can significantly affect the behaviors of β(t) and λ(t). Greater Langmuir volumes provide
additional pressure support leading to lower β(t) and λ(t) values.
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4.3. Effect of Langmuir Pressure

Figure 11 shows the effect of the Langmuir pressure on the production behavior under a constant
bottom-hole pressure condition. In a shale gas reservoir, the Langmuir pressure is used to characterize
the adsorption capacity of the reservoir, which is related to the nature and temperature of the reservoir
and gas. As shown, the effect of desorption is minimal at early times. As the depletion progresses,
greater Langmuir pressures will lead to a smaller rate decline and larger cumulative production while
the flowing well bottom-hole pressure is maintained. If the adsorption-desorption effect is neglected, a
greater rate decline will appear under the constant bottom-hole pressure condition.
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Figure 11. Effects of Langmuir pressure value on production behavior.

Figures 12 and 13 show the curves of β(t) and λ(t) versus time with Langmuir pressure values
under a constant bottom-hole pressure, respectively. The desorption effect of shale gas can provide
an additional source of support for the reservoir. As a result, changes in the Langmuir pressure can
significantly affect the behaviors of β(t) and λ(t). Greater Langmuir pressures will lead to lower β(t)
and λ(t) values. It should be noted that production behavior can be affected by gas desorption in shale
gas reservoirs.
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4.4. Example Calculation

In this paper, we attempt to apply the analytical solutions to the transient performance of a
hydraulic fractured shale gas well in a Sichuan field. The daily rates from the early years have been
used for plots. The available reservoir and fracture parameters are listed in Table 2. The gas flow rate is
characterized by a decreasing trend for a long time. This indicates that the shale gas is produced with
a constant bottom-hole pressure. Figure 14 depicts a log-log decline curve for the transient responses
of this example well. The production data has been further applied in type-curve matching that can
provide a quick estimation for reservoir and fracture properties, such as the formation permeability,
fracture conductivity, and fracture half-length. The best match of the data with the type curve can be
obtained by determining the key parameters from those match points in Figure 14. The formation
permeability interpreted by our model is 0.0023 mD, and the value of fracture conductivity is 450.6 in
the interpretation of matching results. Besides, the fracture half-length calculated by the solutions in
this work (48.25 m) can have a good agreement with the designed half-length (45 m), which can further
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indicate the accuracy of our model. For this well, we require a further analysis and confirmation
because the decline curve can be affected by the potential variation of the pressures and flow rates. In
spite of this, the decline curve is considered to be a practical and convenient method to analyze our
example well.

Table 2. Reservoir and fracture data.

Parameter Value Unit

Initial pressure pi 16.3 MPa
Initial temperature Ti 338.15 K
Formation thickness h 39.7 m

Porosity φ 5 %
Water saturation Swi 34.75 %

Bottom-hole pressure Pwf 4.82 MPa
Langmuir volume VL 3 m3/t
Langmuir pressure pL 2.8 MPa

Initial gas compressibility cgi 0.0592 MPa−1

Designed fracture half-length yf 45 m
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5. Conclusions

In this article, we established a mathematical model for a fractured well in a shale reservoir that
accounted for the non-linearities and desorption effects in partial differential equations. The detailed
conclusions based on our work are summarized as follows:

(1) In this work, the application of the pseudo-functions approach has been extended to solve the
nonlinear flow problems of shale gas. This is accomplished by the definition of the pseudo-time
factor accounting for both the viscosity-compressibility changes and desorption effect during
reservoir depletion. The best advantage of this approach is that some partial differential
equations can be effectively linearized, which contributes to the comprehensive investigation of
the production performance of a fractured well in a shale gas reservoir.

(2) The material balance equation with gas desorption is derived by the integration of the continuity
equation with definite conditions, which can be used to obtain the analytical results of material
balance equation in the application of well testing.
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(3) The modified formulation is validated and verified with the commercial software, and the
successful analytical match demonstrates that the proposed model can effectively capture the
production performance of gas reservoirs with significant desorption effect.

(4) At a later production period, the production behaviors are significantly affected by the
depletion-driven fluid properties and gas desorption in a shale gas reservoir. The shale gas
reservoir can receive support from desorption effect in this period. A larger Langmuir volume or
larger Langmuir pressure leads to a greater energy supply and less rate decline under a constant
bottom-hole pressure condition.
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Nomenclature

DimensionlessVariables

vtDf dimensionless time
pD dimensionless pseudo pressure
qD dimensionless flow rate
cfD dimensionless fracture conductivity
xD dimensionless coordinate in the x direction
yD dimensionless coordinate in the y direction
xeD dimensionless reservoir length
yeD dimensionless reservoir width
wfD dimensionless fracture width
s time variable in Laplace domain, dimensionless
p̃D dimensionless pseudo pressure pD of finite-conductivity fracture in Laplace domain
q̃D dimensionless flow rate qD of finite-conductivity fracture in Laplace domain

Field Variables

x, y plane coordinates
wf fracture width, m
yf fracture half-length, m
xe lateral boundary of reservoir, m
ye vertical boundary of reservoir, m
p pressure, MPa
pi initial pressure, MPa
pwf bottom-hole producing pressure, MPa
pf fracture pressure, MPa
pL Langmuir pressure, MPa
pP pseudo pressure, MPa
pavg average pressure in reservoir, MPa
Ti temperature in reservoir, K
qg gas flow rate, 104 m3/d
qgsc standard gas flow rate, 104 m3/d
kg gas reservoir permeability, 10−3 µm2

kf fracture permeability, 10−3 µm2

cfD fracture conductivity, dimensionless
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h reservoir thickness, m
µg gas viscosity, mPa·s
Bg Formation volume factor, m3/m3

ϕ reservoir porosity, fraction
t duration, day
cg isothermal gas compressibility factor, 1/MPa
Swi irreducible water saturation, %
γg specific gravity, fraction
ρg free gas density, kg/m3

ρa adsorbed gas density, kg/m3

ρb bulk density of shale, kg/m3

vg Darcy velocity of gas, m/s
Vg gas volume of adsorption, m3/kg
VL Langmuir volume, m3/kg
Z gas compressibility factor, fraction
GP cumulative gas production, 104 m3

Gsc original gas in place, 104 m3

β pseudo-time factor, dimensionless
αt coefficient, 3.6 × 24 × 10−3

αp coefficient, 2π × 3.6 × 24 × 10−7

Special Subscripts:

D dimensionless
g gas property
i initial condition
f fracture property
sc standard condition

Appendix A. Derivation of the Model

The analytical solution to the gas flow in a shale gas reservoir can be derived according to the governing
equation in porous media:

∂

∂x

[
kg

µg(p)
· p

Z(p)
∂p
∂x

]
+

∂

∂y

[
kg

µg(p)
· p

Z(p)
∂p
∂y

]
=

1
αt

[
φSg + (1− φ)

∂ρa

∂ρg

]
∂

∂t

(
p

Z(p)

)
(A1)

Substituting the pseudo-pressure function into the Equation (A1), the equation that governs the flow in a
shale formation is:

∂2 pp(p)
∂x2 =

φµgicgiSg

αtkg

[
µg(p)cg(p)

µgicgi
+

µg(p)ρb

µgicgiφSg

pscZ(p)T
pZ(psc)Tsc

VL pL

(pL + p)2

]
∂pp(p)

∂t
(A2)

Substituting the definition of pseudo-time factor β(t) into the Equation (A2), the dimensionless governing
equation can be simplified as follows:

∂2 pD

∂x2
D

+
∂2 pD

∂y2
D

=
∂pD

∂(βtD)
(A3)

Definite conditions are:
pD(xD, yD, 0) = 0 (A4)

∂pD(xeD, yD, βtD)

∂xD
= 0,

∂pD(0, yD, βtD)

∂xD
= 0 (A5)

∂pD(xD, yeD, βtD)

∂yD
= 0,

∂pD(xD, 0, βtD)

∂yD
= 0 (A6)

As shown in Figure 4, we can obtain that pD = pID and pD = pIID in Region I and Region II respectively.
Equation (A3) can be simplified as a group of one-dimensional equations.
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(1) In Region I, the linear flow is parallel to the surface of fracture (y-direction), Equation (A3) is simplified as:

∂2 pID

∂y2
D

=
∂pID

∂
(

βtD f

) (A7)

Initial condition:
pID(xD, yD, 0) = 0 (A8)

Boundary condition:

∂pID

(
xD, yeD, βtD f

)
∂yD

= 0 (A9)

Interface conditions:

pID(xD,
yeD

2
+ y f D, βtD f ) = pI ID(xD,

yeD
2

+ y f D, βtD f ) (A10)

∂pID(xD, yeD
2 + y f D, βtD f )

∂yD
=

∂pI ID(xD, yeD
2 + y f D, βtD f )

∂yD
(A11)

(2) The flow in the reservoir is mainly the linear flow vertical to the surface of fracture in Region II (dominated
in x-direction). The flow in the reservoir can be simplified as follows:

∂2 pI ID

∂x2
D

+
1

y f D

∂pID(xD, yeD
2 + y f D, βtD f )

∂yD
=

∂pI ID

∂
(

βtD f

) (A12)

Initial condition:
pI ID(xD, yD, 0) = 0 (A13)

Boundary condition:

∂pI ID

(
xeD, yD, βtD f

)
∂xD

= 0 (A14)

Interface conditions:
pI ID(

1
2

xeD +
1
2

w f D, yD, βtD f ) = p f D(yD, βtD f ) (A15)

K
µ

∂pI ID(
1
2 xeD + 1

2 w f D, yD, βtD f )

∂xD
=

K f

µ

∂p f D(
1
2 xeD + 1

2 w f D, yD, βtD f )

∂xD
(A16)

(3) It is believed that the steady flow of fluid in the fracture is symmetric (Cinco, 1978). Compared with
the entire effective drainage area of the well, the width of the fracture is relatively small. The corresponding
dimensionless governing equation is simplified as follows:

d2 p f D

dy2
D

+
2

c f D

∂pI ID(
1
2 xeD + 1

2 w f D, yD, βtD f )

∂xD
= 0 (A17)

Outer boundary condition:

dp f D

(
1
2 yeD + y f D

)
dyD

= 0 (A18)

Inner boundary condition (constant flow rate or constant bottom-hole pressure):

dp f D

(
1
2 yeD

)
dyD

= − π

c f D
(A19)

p f D(
1
2

yeD) = 1 (A20)
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The Laplace transform and superposition principle are used to deal with Equations (14)–(17) in Section 3.2 of
this article. Then, the pressure distribution function and production behavior of an infinite-conductivity fractured
well in the Laplace domain can be derived.

sp̃ f D(yD, s) =
π

c f D

1√
D(s)

cos h
(

yD − 1
2 yeD − y f D

)√
D(s)

sinhy f D
√

D(s)
(A21)

sq̃wD(yD, s) =
c f D

π

√
D(s) ·

sinhy f D
√

D(s)

cos h
(

yD − 1
2 yeD − y f D

)√
D(s)

(A22)

where:
D(s) = 2C(s)/c f D;C(s) =

√
B(s) tan h(xeD −

1
2

xeD −
1
2

w f D)
√

B(s);

B(s) = s +
1

y f D
A(s);A(s) =

√
s tan h(yeD −

1
2

yeD − y f D)
√

s.
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