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Abstract: This paper provides a comprehensive review of the major concepts associated with the
µgrid, such as constant power load (CPL), incremental negative resistance or impedance (INR/I) and
its dynamic behaviours on the µgrid, and power system distribution (PSD). In general, a µgrid is
defined as a cluster of different types of electrical loads and renewable energy sources (distributed
generations) under a unified controller within a certain local area. It is considered a perfect solution
to integrate renewable energy sources with loads as well as with a traditional grid. In addition, it can
operate with a conventional grid, for example, by energy sourcing or a controllable load, or it can
operate alone as an islanding mode to feed required electric energy to a grid. Hence, one of the
important issues regarding the µgrid is the constant power load that results from the tightly designed
control when it is applied to power electronic converters. The effect of CPL is incremental negative
resistance that impacts the power quality of a power system and makes it at negative damping. Also,
in this paper, a comprehensive study on major control and compensation techniques for µgrid has
been included to face the instability effects of constant power loads. Finally, the merits and limitations
of the compensation techniques are discussed.

Keywords: µgrid; power system distribution (PSD); power electronics; power converters; constant power
load (CPL); incremental negative resistance (INR); instability effect of CPL; compensation techniques

1. Introduction

The development of electronic switch devices has led to penetrations of power electronic
applications in a power system [1,2], advanced control approaches, and more renewable energy
sources [3], and on the other hand an increase in energy demands that has consequently led to
increased environmental problems such as greenhouse gases being emitted from non-renewable
energy sources [4,5]; all these factors have contributed to the appearance of new applications in power
systems and have taken many forms in modern life [6]. One of these applications is the µgrid, a new
concept for a power system. The µgrid is proposed to avoid other issues like voltage variations and
protection problems when renewable energy sources were placed individually in a power system [7].

Energies 2017, 10, 1656; doi:10.3390/en10101656 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-2347-8878
https://orcid.org/0000-0001-6424-0343
https://orcid.org/0000-0003-3212-2750
https://orcid.org/0000-0002-4556-2774
http://dx.doi.org/10.3390/en10101656
http://www.mdpi.com/journal/energies


Energies 2017, 10, 1656 2 of 20

The µgrid is a combination of distributed generations, including renewable energy sources and storage
devices, and different types and electrical loads interface with a power electronic converter under the
control approach in order to achieve proper system operation. The µgrid can connect to the LV of a
traditional distribution network and also can operate as islanded from a distribution system for some
cases like a fault in the main distribution grid [7]. From consumers’ perspective, the µgrid contributes
to feed different types of load and power quality by supporting voltage for end users and reduces
emissions by using clean energy sources [8–10]. In addition, it has improved local stability, increased
the efficiency of the system and improved the reliability of the power system by bringing renewable
energy sources into reach of consumers [7].

A few years ago, the µgrid attracted the attention of researcher [11–13]. Those researchers
introduced the concept of the µgrid and solutions to its challenges via stability analysis of the µgrid in
connected and islanded modes [8,14], integration of distributed generations [15–19] and harmonics
elimination [20]. The following factors will depict vital issues related to constant power loads (CPL)
and their effect on the µgrid. CPLs affect the power quality of electric system and bring instability,
which eventually might lead the system into failure [21–23]. Because of the demand to meet the proper
requirements of different loads, µgrids usually have a large number of power electronic elements
for cascade, parallel, driving, and isolation, which are together known as a multi-converter power
electronic system [24,25]. In control topology, the converter plays a very important role. Some controls
needs to apply to converters of µgrid to maintain the system characteristics (voltage, frequency and
power share between distributed generations (DG)) at desired values or regulate these values during
transient or sudden increasing of loads [9,10,26]. For example, a common control method is droop
control in islanded mode [8]. While most control approaches are well designed and satisfy the stability
requirements in islanded mode and grid connected for a single converter, the stability of a cascaded
convertors system is still a big issue as a result of complex interfacing among converters of the
system [1]. As a result, most load converters behave as a constant power load. Many solutions have
been proposed to mitigate or solve this problem, but these solutions have some limitations and also
focus on DC-DSP. In this paper, the major compensation techniques and their control approaches used
to face CPL instability effects in the µgrid and power system distribution will be considered.

The following topics will be addressed: Section 2. Concept of µgrid; Section 3. Definition of constant
power load and its sources and effects; Section 4. A brief review of major control and compensation
techniques to mitigate the instability effects of constant power loads; and Section 5. Discussion of results
and conclusions.

2. The µgrid

The µgrid is defined by the Consortium for Electric Reliability Technology Solutions (CERTS) in
the USA as “An aggregation of loads and micro-sources operating as a single system providing both
power and heat”. Another definition set by the European MICROGRIDS project is “a low voltage
distribution network comprising various DG, storage devices and controllable loads that can operate
interconnected or isolated from the main distribution grids” [26–28]. The µgrid was introduced as
an efficient solution to guarantee the reliable operation of distribution generating (DG) when DGs
operate in connected mode or islanded mode [6,25,29,30]. µgrid is a tiny power system consisting of a
set of different distributed generations, loads, power electronic elements, and transmission systems,
as shown in Figure 1.

Distributed generations cover renewable energy sources like a PV system, a wind power system
or micro-turbine systems, and storage systems like a fuel cell system [8,28,31,32]. The output energy
(magnitude and form of current and voltage) from distribution generating is not suitable for use by
consumers because it is affected by environmental conditions and the DGs cannot connect directly
to buses of the distribution grid [7,9,10,31,33,34]. Therefore, DGs connect to a common bus by the
interfacing converters to convert the output power (voltage and current) utility-grade for an AC or DC
system with the desired magnitude voltage and current, and frequency for an AC system [31,34,35].
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The concept of the µgrid becomes suitable and attractive due to power electronic converter facilities,
in which it overcomes some difficulties found in the traditional AC network like power loss in
transformers and long transmission lines, and high voltage transformation [33]. In islanding mode,
the response of the µgrid for the regulation of common bus is by making a one power converter
master and others slaves or making all sources take part in the regulation and of transfer energy to the
loads [13].
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Figure 1. Typical hybrid µgrid configurations.

According to [3,18], loads in the electronic power system are divided among three groups: constant
voltage load, constant current load, and constant power load. The first group sinks the constant value
of voltage from the source regardless of the current. This type includes conventional resistive loads
such as heating equipment, and inductive loads [19]. The constant current load draws a fixed current
under wide variations of voltage source and has transducer and arc lamp as examples. The last type is
CPL and will be the subject of this research. More details and examples about constant power loads
are given in the following sections. The connection between elements of µgrid, like the traditional grid,
can be achieved by ring or radial connections [9].

3. Constant Power Loads

3.1. Problem Definition

Some power systems need a multiconverter to provide the system with various power and voltage
forms [22,36,37]; these are known as multiconverter power electronic system [24,25]. This type of
system consists of large number of power electronic devices in parallel, cascade, stacking and splitting
configurations for loads and source to achieve proper required operation [24]. One multiconverter
power electronic type is the cascade system of a converter, shown in Figure 2, which consists of a source
converter that provides the regulated voltage to the system (others are called upstream converters or
voltage regulators) and a second convertor that converts the line voltage to proper value and frequency
for each load [21,38]. A multiconverter has a large variety of operation instructions because of the
interconnection of components of the multiconverter [22,36,37].
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Figure 2. DC-DC converter with resistive load behaves as a constant power load (CPL).

The load converters (second stage of multiconverter) tend to display the properties of a
constant power load when control is applied tightly [22,36,37], which means a converter has a fast
response and low output ripple [37]; therefore, the converter behaves as the CPL with their control
bandwidth [39]. Constant power loads (CPL) means that the output power of the convertor is constant,
i.e., the output voltage drops when small variations occur in the current value (increasing current
amount), which means that when neglecting the dissipated power into the circuit, the output power
and input power are equal [22,36]. In fact, the converter behaves as a CPL when it has closed loop
control and as a resistive load in open loop as in Figure 3 [1,40]. The power electronic converters tends
to have CPL properties if them output voltage is bigger than voltage reference (Vc) [21,22,30,41–43];
in other word, the converter behaves as resistive load at start-up but as a CPL when it exceeds the
value of voltage reference (Vc) [30].
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Figure 3. V–I curve of load converter.

Many loads like motor drives or electronic loads with tightly regulated controllers behave as a constant
power load [22,36,37]. Figure 4 is an example of CPL, where the motor is driving by DC-AC inverter,
and the inverter is tightly regulated to control the speed. When the load is rotating, the motor will have
one to one of torque-speed characteristics and the relationship between the speed and torque is linear.

For a linear relationship, each value of speed has only one corresponding value of torque.
Therefore, the power equals the multiplication of torque and speed, which will be constant [22,36,37].

Another example is a DC-DC converter, which feeds the electric load and is tightly controlled to
maintain an output voltage fixed on the load [22,36,37], as shown in Figure 2. The power of the load is
constant when there is a linear relationship between voltage and current.
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In CPL, the output power will be equal to the input power, neglecting power losses in the system.
As in [44], the mathematical model of CPL can be derived as follows:

Pin = Pout = cons. (1)

The differential change in the input power can be expressed as:

∂P(v, i) = 0 = vdi + idv. (2)

The input incremental resistance rin can be defined as:

rin =
dv
di

= −v
i

. (3)

The negative sign that appears in Equation (3) means that the CPL characteristics can be explained
by the negative slope of the V−I curve shown in Figure 5 [45]. The CPL has inherent incremental
negative resistance (INR). There is more than one way to realise a mathematical formula of INR [22].
This instability effect of NIR does not discuss when the converter is designed but in a multiconverter
the level should be taken into consideration. This phenomenon will impact the stability of µgrid and
make the LC filter oscillatory [46].

3.2. The Negative Incremental Resistance (NIR) of the Constant Power Loads (CPL)

The converter that is used for open loop or bad close loop control does not have constant power
load properties. The CPL consumed a fixed power and Negative Incremental Resistance with its
bandwidth control. In the CPL, the relative rate of change between the voltage and current is negative
(dv/di < 0), but the instantaneous value of impedance is positive (V/I > 0) [21,22,36,37,42,43,47,48].
The stability point of a system means; the system will return to a specific point if any disturbance
occurs. The steady state point in a system that includes the CPL is obtained when the CPL voltage is
equal to the voltage source. At this point, the system will be stable. Nevertheless, if any disturbance
occurs, the system cannot return to this point [49,50].

This can be understood as follows: if a small disturbance makes the load voltage less than the
voltage value of the stable point then the load current will be bigger than the load current at constant
power of the load and result in the filter capacitor being discharged. Thus, the load current will increase
to make the power constant and at the same time the voltage will decrease. If a system does not have a
proper control to prevent this phenomenon during transient or any small disturbance, the voltage will
be zero and the current will go to infinity. Previously the system behaved as a feedforward. Now if
there are any changes in the voltage of the source converter (i.e., decreasing), the load converter will



Energies 2017, 10, 1656 6 of 20

increase the duty cycle to regulate the voltage, which means the current will increase to maintain
constant power [49].Energies 2017, 10, 1656 6 of 20 
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Figure 6 includes the connection of CPL with the parallel capacitor [22]; the state equation of the
circuit can be written as follows:

vc =
P
i

and − i = C
dvc

dt
.

The solution of these equations gives

v2
c = V2

c − 2
P
C

t and i =
P√

V2
c + 2P

C t
.
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Figure 6. A constant power load parallel with a capacitor.

The solved equations show the circuit that exists from the CPL and parallel capacitor is unstable
because as (t = V2

c C/2P) the voltage goes to zero and the current goes to infinity. Therefore, the CPL is
unstable with a parallel capacitor. The equilibrium point of the circuit is when voltage of CPL is equal
to the source voltage. In other cases, the system loses its stability and cannot restore the steady state
because the INR of CPL and voltage will go to infinity as the current goes to zero and vice versa.

3.3. Negative Incremental Resistance Effects on the µgrid

As mentioned previously, a system that has a CPL could be unstable. This instability is produced
by the interaction between the power system structure and the negative impedance created by the
CPLs. Negative incremental impedance impacts the power quality of the system and can lead to system
voltage oscillations or even collapse, and reduces system damping. These system voltage oscillations
put additional stress on the components and may lead to the system failing or its components being
damaged [23,25].

Most often, a filter, which usually consist of inductor (L) and capacitor (C), place after a pulse
width modulation power converter to minimise the input current harmonics. Because of the small
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value of the resistance of the LC filter, a large transient oscillation can occur between L, C when
operating conditions change suddenly [51].

CPL instability will occur when the applied control on a system is tightly regulated and has a
closed loop. Feedback controllers of the closed loop depend on the process output (voltage or power).
The NIR of CPL makes the damping of the input LC filter of multiconverter system negative and the
LC filter oscillatory [52]. Therefore, this oscillation at the output will make the system unstable. Thus,
the instability effects of CPL (INR) can be summarised on any power electronic system as mentioned
in [2,25] as follows: CPL reduces the equivalent resistance of the system, causes a high inrush current
as the voltage builds up slowly from its initial value, makes the system poorly dampened and impacts
on the stability [37,38,47,53,54], which causes limit cycle oscillation in the DC bus voltage and currents
and may lead to voltage collapse [23,53,55].

4. Compensation Techniques Used to Combat the Instability Effects of CPL

Because of the non-linearity and time dependency of converters’ operation and the incremental
negative impedance effects of constant power loads, classical linear control methods (like a
conventional proportional integral PI controller) have stability limitations around the operating points
and are not applicable to these systems. Therefore, digital and nonlinear stabilising control methods
must be applied to ensure large-signal stability [21,22,36,42,48,56,57]. Compensation Techniques of
the instability of CPL can be achieved by adding an extra element like passive elements or devices to
the power system, or redesigned the control loop of a source or load converter [25,58]. The following
sections summarise the methods used to compensate for the instability effects of INR in previous years.

4.1. Passive Damping

Passive damping is a simple method to increase the damping of a system by adding passive
elements; which are contain resistance (R), inductor (L) and capacitor (C), to the input filter of the
system, as described in [39,59]. The authors introduced three methods for passive damping by adding
RC and RL in parallel with input filter and RL in series. In [60], the method used is adding only R in
parallel with the L-filter. As in [39], the method proposed here to stabilise the system is minimisation
of the peak output impedance of the filter by adding a passive damping (passive elements) circuit
to the LC filter. The stability of the CPL system requires the impedance ratio Zd/Z1 to meet the
Nyquist stability criterion, or alternatively, the characteristic polynomial of (1/(1 + Zd/Z1)) to meet
the Routh–Hurwitz criterion. The paper introduced three methods of passive damping: (a) RC parallel
damping; (b) RL parallel damping; (c) RL series damping, as shown in Figure 7.

These methods were tested by the authors, who obtained the following results: the best method is
adding RC parallel damping because large CPL compensation by RL parallel damping is needed to
minimise the L-filter, which is undesirable. RL series damping can compensate only if RCPL > (3L/2C)1/2

and the dissipated average power is the biggest in RL series damping and RC parallel damping and the
smallest in RL parallel damping.

Another method to achieve passive damping was developed by [61,62]. The effect of the converter
parasitic, which includes the resistance of the ‘ON’ switch, inductor and diode in the presence of CPLs,
is analysed in detail under both converter operation modes; continuous conduction mode (CCM)
and discontinuous conduction mode (DCM). Also, design recommendations are presented to face
instabilities of CPL in a DC distribution system with a pure CPL and a combination of CPL with
resistive loads.

This method is simple to implement. It does not require the addition of any control terms to the
control loop of the system. By using this method, the stability of the system is achieved. The efficiency
of the system is decreased because there will be a greater power loss when using this method. It will
be expensive when passive elements are added, especially capacitors. This method in [39,59] is valid
for small disturbances [60].
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4.2. Active Damping

Active damping, another solution to the instability problem introduced by INR, involves a
modification control loop by creating a damping effect of passive damping or modifying the DC bus
capacitance. Also, it can be achieved by adding a device that injects a compensating current [63].
The active damping can be done by three methods [2]. The first is source-side active damping.
The compensation at the source subsystem by active damping aims to add loop in loop control to
improve the output impedance of feeder converter to satisfy the impedance stability criterion. This type
is impossible to apply to a system when the input stage is LC or uncontrolled rectifiers. To overcome
the instability effect of INR, the CPL side Active Damping is considered when the source subsystem
of a CPL is LC filter. The concept of this method is achieved by injecting a current or power into the
CPL control loops to modify the input impedance Zin, such that Middlebrook’s stability criteria are
satisfied [2,25]. The third is adding auxiliary device that injects the desired compensating current
within operation range system.

Virtual impedance or resistance is one method of active damping introduced by researchers
in [34,45,54,63–68]. Active damping, by adding virtual resistance, achieves the improvement transfer
function of a system and forces the movement of the poles towards stable region (left half of s-plane).
It guarantees that any extra power does not dissipate into the system [45,63,64], as in Figure 8a. In fact,
the virtual resistance makes the output impedance of the source converter less than its maximum
value [58]. The output voltage V is measured and controlled to track the reference voltage Vref −
iLReq instead of a constant voltage reference, as shown in Figure 8b. The new reference value will
vary according to the value of the load current and hence produces the equivalent function of adding
physical resistor Req. [45,64]. In [63] the authors presented a new method to overcome the problems of
CPL by adding virtual resistance, which will affect the series resistance with an inductor to feedback
control system. In [34] the authors introduced the virtual impedance as series-connected resistance
and inductance and two types of stabiliser; one is based on capacitor voltage feedback, and the other
is based on inductance current feedback for achieving a virtual impedance method and a model
including a droop control index. In [66] an additional proportional voltage feedback control is inserted
with virtual resistance to improve the system performance and overcome the disadvantages which
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produced from adding a large value of virtual resistance. One of these advantages is the region stability
of virtual resistance will narrow as the output power increases [2].
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In [69] a feed-forward control with extra elements to improve the stability of hybrid electric
vehicles (HEV) with CPL is introduced. The purpose of this method is changing the impedance of the
load converter to match the impedance of the source. The changes are approved by the impedance
frequency and analysed by a low pass filter, and negative impedance can be eliminated by adjusting the
virtual resistance in the control loop. In [70], active damping was achieved by modifying the duty ratio
of the converter by using a first-order high-pass filter with a corner frequency and high magnitude.

In [71,72], the authors presented an input-resistance compensator to eliminate the instability of
INR in a system that has a power electronic brushless DC motor drive with constant power-load
characteristics, as shown in Figure 9. The strategy is to feed a portion of the changes in the DC-link
voltage into the current control loop to modify the system input impedance in the mid-frequency
range and thereby to damp the input filter. The input-resistance compensator is a high-pass filter
with corner frequency and high frequency magnitude. Its operation depends on the DC link voltage.
the current output is a current (the stabilising signal) that will act with the speed control loop to give
a current reference to the control motor current by high frequency pulse width modulation (PWM)
with a duty cycle determined by the PI controller. At steady state, the authors assumed the output of
IRC will be zero if there is a change in the DC link voltage but if the output of IRC is non-zero, then a
signal will be generated to modify the motor current and the inverter input impedance, damp the
DC-link oscillations.
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Figure 9. Negative input-resistance compensator of motor drive.

In [23] a new device called a solid state defender (SSD) is added between the load converter and
source to protect the system and its elements against the fault and instability phenomena of INR and
prevent the system from failure or damage of components. The SSD works as a power buffer in the bus
fault case and transfers the stored energy in a capacitor to feed the load and current limiting in load
fault by limiting output current. On the other hand, it works as an impedance transformer to address
the oscillation and transience produced by INR. The SSD improves the power quality of the system
and eliminates the oscillations caused by the negative incremental impedance characteristic of loads.
Active damping has received interest from researchers [34,45,54,58,63–68,73]; however, active damping
causes effective performance but only compensates for limited values of CPL [25] and sometimes
causes the output voltage to drop, as in [63].

4.3. The Space Pole Placement Control

The Space Pole Placement Control is used to shift the pole of the system from RHP to LHP of
the s-plane. A new pole location must be chosen to satisfy the characteristic equation of the closed
loop system to make the system is stable. According to the paper, this method can be achieved by
multiplying the specific gain (calculated by Ackermann’s formula) by the state variables (inductor
current and voltage capacitor) in closed loop control. However, the result is subtracting from the
reference voltage. The generated switch pulse has been produced from comparison of the difference
with the tooth signal as shown in Figure 10 [49]. This method needs to represent all the state variables
in a control loop [2,49].

Energies 2017, 10, 1656 10 of 20 

 

 

Figure 9. Negative input-resistance compensator of motor drive. 

In [23] a new device called a solid state defender (SSD) is added between the load converter and 

source to protect the system and its elements against the fault and instability phenomena of INR and 

prevent the system from failure or damage of components. The SSD works as a power buffer in the 

bus fault case and transfers the stored energy in a capacitor to feed the load and current limiting in 

load fault by limiting output current. On the other hand, it works as an impedance transformer to 

address the oscillation and transience produced by INR. The SSD improves the power quality of the 

system and eliminates the oscillations caused by the negative incremental impedance characteristic 

of loads. Active damping has received interest from researchers [34,45,54,58,63–68,73]; however, 

active damping causes effective performance but only compensates for limited values of CPL [25] 

and sometimes causes the output voltage to drop, as in [63].  

4.3. The Space Pole Placement Control 

The Space Pole Placement Control is used to shift the pole of the system from RHP to LHP of the 

s-plane. A new pole location must be chosen to satisfy the characteristic equation of the closed loop 

system to make the system is stable. According to the paper, this method can be achieved by 

multiplying the specific gain (calculated by Ackermann’s formula) by the state variables (inductor 

current and voltage capacitor) in closed loop control. However, the result is subtracting from the 

reference voltage. The generated switch pulse has been produced from comparison of the difference 

with the tooth signal as shown in Figure 10 [49]. This method needs to represent all the state variables 

in a control loop [2,49].  

 

Figure 10. Pole placement control. Figure 10. Pole placement control.



Energies 2017, 10, 1656 11 of 20

4.4. Pulse Adjustment Control Technique

The papers [43,48,56,74] presented pulse adjustment control technique as a new control method
to damp the instability caused by CPL with a DC-DC converter in vehicular systems. The pulse
adjustment control is a digital control that drives the PWM control. The adjustment controller regulates
the output voltage by generating high and low power pulse through comparing the output voltage and
reference (desired) voltage and sending this pulse to the PWM. For output voltage (capacitor voltage)
less than the reference voltage the controller will increase the transferred energy from input to output.
The CPL will consume the required energy and voltage will be increased as a result of charging the
capacitor with the remaining power as in Figure 11. This paper presented the same controller as in [48]
to provide the buck–boost converter but in discontinuous conduction mode (DCM). The drawbacks
of this technique are high output voltage ripple, noise and the sub-harmonic presented at the output
voltage, although it has fast response times and a robust controller [75].
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Figure 11. Block diagram of the pulse adjustment control technique.

4.5. Sliding Mode Control

Sliding mode control has been used to address the instability effects of INR in the
literature [21,25,36,57,76–82]. The aim of this controller is to control the output power of a DC-DC
converter with CPL by setting the reference value of power and comparing it with the measured
output power of the DC-DC converter [21,36]. The proposed sliding mode control outputs a duty ratio,
which is used to generate pulse width modulated (PWM) gate signals for the DC-DC converter.

This controller improves signal stability and dynamic response; however, it is sensitive to large
changes in load [36] and the controller is effective at a high voltage above 400 volts but has disturbance
at low voltages [57], which means the output voltage is not fixed.

In [36], the authors tested the CPL with a parallel capacitor by using a series inductor and a
buck converter. The circuit is unstable: instability will quickly appear in the buck converter and
other instability will occur within a short time. Due to the instability of CPL that occurs within an
interval smaller than the switching time, there is a need to increase the switching frequency of L and C.
The paper presented the sliding mode as improving the large signal stability and dynamic response
of the buck converter. The objective of the control system in DC-DC converters with constant power
loads is to control the output power. Pout is the output power and K is the output power reference.

1- Buck converter with CPL in Figure 12 can be written using the state space averaging method:

.
x1 = − 1

L
x2 +

d
L

Vin
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.
x2 =

1
C

x1 −
1

RC
x2,

where x1 and x2 are the moving average of the inductor current and the output voltage of the
converter, respectively.
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Figure 12. DC-DC Buck converter feeding CPL.

2- The authors in [36] assumed that K is the output power reference and forced the output power to
be equal to this value by sliding mode control, as follows:

∂Pout

∂t
< 0∀Pout > K

∂Pout

∂t
> 0∀Pout < K.

3- The following equation satisfies the above requirements:

∂Pout

∂t
= −λ · (Pout − K),

where λ is a positive real number and is called the convergence factor.

4- The objective of this paper is to obtain the duty cycle for the buck converter by combining
Equations (1) and (3);

d(t) =
1
L x2

2 − λ(1− λ·RC
2 )(

x2
2

R − K)− 1
C ·

1
x2

2
( λ·RC

2 )
2
(

x2
2

R − K)
2

x2·vin
L

.

In [77] the stable sliding surface (s), shown in Figure 13a, is designed to obtain system control
law (u) is to meet the system stability requirements with reference values for the inductor current and
capacitor voltage. The stable sliding surface (s) can be written:

s = x1 · x2 − x1r · x2r + µ(x2 − x2r)

The control law (u) can be written:

u
1
2
(1− sgn(s)) =

{
1 if s < 0
0 if s > 0

In [57], a third-order SMC is applied to control the buck converter. The signal triangle is regulated by
the input voltage to use with SMC output to generate a signal control to drive the converter, as in Figure 13b.



Energies 2017, 10, 1656 13 of 20

Energies 2017, 10, x 13 of 20 

 

In [57], a third-order SMC is applied to control the buck converter. The signal triangle is 

regulated by the input voltage to use with SMC output to generate a signal control to drive the 

converter, as in Figure 13b.  

 

(a) 

 

(b) 

Figure 13. Sliding mode control with CPL (a) ref. [77]; (b) ref. [57]. 

4.6. Model Predictive Control 

In the literature [51, 55, 83, 84, 85], researchers introduced a model predictive control as a 

solution to mitigate the instability caused by CPL. In [84], a power buffer interfaces between the 

source converter and CPL to modify the load impedance of during a transient or fault case. The 

model predictive controller (MPC) controls the variation of the DC link voltage and modifies of the 

load impedance which is seen at the point of common coupling. In [51], MPC is used with hybrid 

energy storage to manipulate the energy flows between generator, load, and a hybrid ES which is 

shown in Figure 14. In [51, 84], the MPC is not utilised directly to compensate the instability effects 

of CPL but in [84] there is introduced an optimal trade-off between modification of load impedance, 

variation of DC-link voltage and battery current ripples; in [51] this is used to design and/or specify 

the requirements for the ES to achieve the desired transient response. The required duty cycle of 

converter is calculated based on MPC strategies to mitigate the instability induced by CPL. The 

Figure 13. Sliding mode control with CPL (a) ref. [77]; (b) ref. [57].

4.6. Model Predictive Control

In the literature [51,55,83–85], researchers introduced a model predictive control as a solution to
mitigate the instability caused by CPL. In [84], a power buffer interfaces between the source converter
and CPL to modify the load impedance of during a transient or fault case. The model predictive
controller (MPC) controls the variation of the DC link voltage and modifies of the load impedance
which is seen at the point of common coupling. In [51], MPC is used with hybrid energy storage to
manipulate the energy flows between generator, load, and a hybrid ES which is shown in Figure 14.
In [51,84], the MPC is not utilised directly to compensate the instability effects of CPL but in [84]
there is introduced an optimal trade-off between modification of load impedance, variation of DC-link
voltage and battery current ripples; in [51] this is used to design and/or specify the requirements for
the ES to achieve the desired transient response. The required duty cycle of converter is calculated
based on MPC strategies to mitigate the instability induced by CPL. The duty cycle configurations are
chosen to guarantee the stabilisation of the CPL by associating the CPL current and voltage with the
predicted output voltage values of the converter [55].
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4.7. Feedback Linearization

Feedback linearization is a nonlinear control technique to overcome the instability caused by CPL,
as proposed in [47,52,86–88]. This technique aims to cancel the nonlinearity introduced by CPL by
determining the parameters that can be manipulated to obtain a system without instability without
using a conventional PI controller, which has its disadvantages.

In [47], the authors discuss the stability of a DC-DC buck converter that is feeding the resistive
load (constant voltage load (CVL)) and CPL as in Figure 15, the large signal stability used, and the
stability of system tested by Lyapunov theory. The procedure can be summarised as follows.
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Figure 15. DC-DC buck converter feeding CPL and constant voltage load (CVL).

1- Two differential equations describe the circuit in the Figure 15 as follows:

diL
dt

=
1
L
[dvin − vo]

dvc

dt
=

1
C

[
iL −

vo

R
− P

vo

]
.

2- The paper authors in [47] suggested the change of variables:

x1 = iL −
vo

R
− P

vo

x2 = vo −VoREF,

where VoREF is the reference value for the output voltage of the buck converter.



Energies 2017, 10, 1656 15 of 20

3- Rewrite the equations to result in:

.
x1 =

dvin
L
− x2 + VoREF

L
− x1

RC
− Px1

C(x2 + VoREF)

.
x2 =

x1

C
.

4- Then the following equations were used to cancel out the output nonlinearity in Step 3:

dvin
L

= k1x1 − k2x2 −
.
Px1

C(x2 −VoREF)
+ ω and ω =

VoREF
L

,

where k1, k2, and
.
P are parameters of the controller to be designed.

5- The equations in Step 4 can be rewritten as

.
x = (k1 −

1
RC

)x1 + (k2 −
1
L
)x2 +

x1

(x2 + VoREF)
2 (P−

.
P)

.
x2 =

x1

C
.

If P =
.
P then the system is linear and k1, k2 can be manipulated to put the poles of the system in

their proper locations to get a stable system.
In [52] an improvement mothed of feedback linearization [47] cancels the nonlinearity of the

system by adding an extra feedback loop that has optimum factor which is named feedback gain
(KFB = (VTr · P̂ · L̂)/V_in) in Figure 16. This factor is chosen such that P̂ and L̂ are equal to P and
L, respectively.
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Feedback linearization ensures large signal stability and an unlimited value of CPL; however,
the drawbacks are low performance and speed [2,25].

5. Conclusions

Negative incremental impedance of a constant power load makes a system undergo negative
damping and oscillation when a small variation occurs in the load. This phenomenon subjected parts
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of the µgrid (converters, switches, etc.) to stress and caused voltage collapse or damage to parts of the
µgrid, which might have induced failure.

In this paper we introduce compensation methods that try to make the system stable when it
has a constant power load. Many of these methods are aimed at redesigning the feedback of source
converter such as feedback linearization, sliding mode control, pulse adjustment control technique,
and state pole placement. These have the advantage of not having any effect on the load performance.
Other methods were achieved by inserting an auxiliary circuit or power buffer between the source
converter and the load converter. However, the auxiliary circuit increases the costs and complexity of
the system, and might behave as another CPL in the system.

Author Contributions: All authors contributed for bringing the manuscript in its current state. Their contributions
include detailed survey of the literatures and state of art which were essential for the completion of this
review paper.
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