
energies

Article

A New Platform for Automatic Bottom-Up Electric
Load Aggregation

Alfredo Bartolozzi 1, Salvatore Favuzza 2, Mariano Giuseppe Ippolito 2, Diego La Cascia 2,
Eleonora Riva Sanseverino 2 and Gaetano Zizzo 2,* ID

1 Direzione Territoriale Lazio Abruzzo Molise (DTR LAM)-e-distribuzione SPA, ENEL Group,
via della Bufalotta 255, 00139 Rome, Italy; alfredo.bartolozzi@e-distribuzione.com

2 Department of Energy, Information Engineering and Mathematical Models (DEIM)-University of Palermo,
viale delle Scienze-Edificio 9, 90128 Palermo, Italy; salvatore.favuzza@unipa.it (S.F.);
marianogiuseppe.ippolito@unipa.it (M.G.I.); diego.lacascia@unipa.it (D.L.C.);
eleonora.rivasanseverino@unipa.it (E.R.S.)

* Correspondence: gaetano.zizzo@unipa.it; Tel.: +39-091-2386-0205; Fax: +39-091-488-452

Received: 23 August 2017; Accepted: 18 October 2017; Published: 25 October 2017

Abstract: In this paper, a new virtual framework for load aggregation in the context of the liberalized
energy market is proposed. Since aggregation is managed automatically through a dedicated platform,
the purchase of energy can be carried out without intermediation as it happens in peer-to-peer
energy transaction models. Differently from what was done before, in this new framework,
individual customers can join a load aggregation program through the proposed aggregation platform.
Through the platform, their features are evaluated and they are clustered according to their reliability
and to the width of range of regulation allowed. The simulations show the deployment of an effective
clustering and the possibility to meet the target power demand at a given hour according to each
customer’s availability.
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1. Introduction

The overall dispatching regulatory framework is experiencing a revision process in order to
enable a more active participation by all energy resources (producers, consumers, prosumers) and the
full exploitation of services by the Transmission System Operators (TSO)s and Distribution System
Operators (DSO)s [1,2]. In this way, it will be possible to better exploit (economically) the services
that can be provided even by the non-programmable resources, including those connected to the
Medium Voltage (MV) and Low Voltage (LV) networks, traditionally excluded from the provision of
ancillary services. The basic concept that should be underlined here is that such provision should
be as much as possible independent from the traditional fossil fuel sources. Given the minimum
requirements for the admission to the considered market session, the TSO should then select offers
for ancillary services provisions that are based on economic merit and according to a criterion of
technological neutrality [3]. In this scenario, in order to evaluate if and to what extent it is reasonable
to allow a dispatching service that involves production plants and final customers, it is quite important
to analyze possible future assets of distribution networks. This will allow the active participation of
producers to the electricity market, also enabling the Distributed Generation (DG) units connected to
the LV and MV networks to supply balancing services. Moreover, in the future, the implementation
of dispatching control in distribution networks will enable a more active participation also by
final customers, promoting solutions for demand-side management and demand response.

The electrical system is evolving towards a smart grid system increasingly characterized by
flexibility and interoperability [4,5]:
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- from the point of view of thermal and hydropower producers that will be increasingly called
upon to change their production profile to accommodate random generation sources;

- from the point of view of network operators, increasingly called upon to manage their networks
actively involving subjects that until now were considered “not relevant” (rated size below
10 MVA);

- from the point of view of intermediaries (aggregators, market participants), increasingly called
upon to play a more “technical” role, not only commercial, having to optimize the operation of
production facilities in an integrated environment, taking into account the systemic needs;

- from the point of view of end users (LV consumers), those who are at the same time consumers and
producers (prosumer), which will have to be increasingly involved in the context of demand-side
management and demand response.

The aforementioned interoperability is not just about electricity producers, end customers and the
respective network operators. It is also about the different network operators (there is an increasing
need for close collaboration between TSOs and DSOs in relation to DG), and the different parties
that are responsible for drawing up technical regulations that have to be increasingly integrated.
What described so far shows a new electrical system that will take several years to be fully implemented
but that has already started to operate.

The present work is part of the smart system landscape and, in particular, focuses on the
active demand (AD) from the aggregation point of view of electrical loads in the form of LV users.
Taking advantage of the flexibility in the consumption of participating users, this papers shows the
key-role of loads clustering to create new energy resources that are able to operate in the electricity
markets and in particular within the Ancillary Services Market (ASM) (the regulatory framework
taken as background is the Italian energy market).

The aggregation of electrical loads is still a hot research topic and is treated by several important
European projects among which the Address project (“Active Distribution networks with full
integration of Demand and distributed energy resources”) [6–9], co-funded by the European Union
in the 7th Framework Programme (2007–2013). The project was aiming to develop a comprehensive
technical and commercial framework for the development of AD. According to Address, the new actor
capable of performing the aggregation of electrical loads is called “Aggregator”, defined as an entity
that collects, predicts, controls and manages a portfolio of distributed energy resources, in order to
minimize the energy cost for “flexible” consumers (able to change their energy consumption) and
maximize network injections from DG and AD. The Aggregator provides services to the actors of the
energy system via the electricity market, brings interesting economic benefits for the consumers [10]
and environmental advantages for the community, supporting the development of renewable energy
and thus reducing CO2 emissions [11,12].

The main role of the Aggregator is to combine the loads’ flexibilities; in this way he is the mediator
between consumers, of which sells the flexibility and the market, where such flexibility is sold to
other participants in the energy system. For a satisfactory operation, the aggregator has to forecast the
aggregated load demand response of a large number of prosumers, accordingly to various methods.

For example, in [9] the authors propose a set of software tools for the aggregator, comprising short
term forecasting of electricity market prices, forecasting of loads and their responses to control signals,
optimal selection of the control signals and of the responses in each situation. In [13] a simulation
tool employing a bottom-up approach in order to build the aggregated load demand response model
is described. Simulation of the individual responses is carried out with an optimization algorithm
that minimizes the electricity bill whilst maintaining consumer’s comfort level. To improve the
performance of the model, a genetic algorithm for fitting the input parameters according to measured
data is also provided. In [14] the authors propose a modelling and control protocol design approach
for the aggregation of heterogeneous thermostatically controlled loads (TCL). The authors use a
model predictive control scheme to obtain the optimal control actions along the prediction horizon.
In addition, implementation of the control signal for adjusting TCLs’ statuses are also investigated
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with practical situations considered. In [15] is presented a management approach that can be applied
by an aggregator managing the flexibility of a large number of domestic electric storage water heaters.
The approach aims at minimizing the electricity cost by using the thermal storage of the water
heaters and is based on a model-free batch reinforcement-learning algorithm in combination with a
market-based heuristic.

Differently from the above-cited research studies, in the present work a different connotation
to the aggregation function is given. The main contribution of the work is the definition of a load
aggregation system able to cluster end-users on the basis of their flexibility, in order to maximize
the advantages of load aggregation in the ASM. In particular, the proposed system characterizes
and classifies end-users by means of specific parameters, allowing to choose the most appropriate
end-users for the provision of flexible services according to the needs of the grid.

The rest of the paper is organized as it follows: Section 2, describes in detail the proposed system
for end-users aggregation; Section 3, describes the methodology used for load clustering; Section 4,
presents a case study showing the potentiality of clustering by means of the proposed system; Section 5,
finally, contains the conclusions of the paper.

2. Monitoring System and Web Platform for Bottom-Up Aggregation

The choice of customer baseline is fundamental in demand response (DR) markets [16]. From the
electrical user side, offering a flexible service means meeting the requests from the manager of the ASM
within one hour, by means of the variation of its electric “habits”. This change of habits, in terms of
average hourly power consumption, is highly dependent on the following aspects: types of appliances
present at the user’s facility, electric habits, ability to change habits. The three points mentioned
are different but at the same time highly correlated [17–20]. In the proposed system, the single user
determines the priorities of electrical appliances, choosing voluntarily, and in relation to a certain
time period.

Based on these considerations, it is possible to give the definition of flexibility as actually intended
in this work: “average hourly power that a given user can provide, upwards (f_up) or downwards
(f_down) or both, compared to the average hourly power (Pm) absorbed under normal conditions”.

According to the above definition, being Pm the average power requested by the user in a
given hour, the flexibility is intended as the quota of power sf (f_up or f_down) that the user can
sum or subtract to Pm for participating to the ancillary service market. As a consequence, the user is
characterized in a specific hour by:

• Pm, the average power absorbed when the end user does not take part to the ancillary
service market;

• sf, the flexibility of the user;
• Pmf = Pm + sf, the average power the user can absorb when participating to the ancillary

service provision.

Other definitions of flexibility have been given over time, the most recent ones [21,22] based
on statistical considerations that assess the ability of groups of users to change their consumption
in specific future periods of time. The study carried out here, however, does not rely on a statistical
approach. Indeed, the parameters chosen for the characterization of the individual user, together with
continuous learning ability about consumer behavior implemented in the platform, allow to classify
and always select the users deemed best to participate in the creation of new energy resources, in a
specified timeframe.

Therefore, according to the above definition of flexibility, to evaluate the flexibility of each user
in the considered hour it is essential to determine the average power Pm. This is done by using a
suitable monitoring system, installed at the user’s premises, able to record the hourly average power
and connected to a web platform enabling the participation of the user at the ancillary service market
(Figure 1).
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In a realistic scenario, the monitoring system could be provided by the electrical utility supplying
the community of end-users, given that it is the party that has the main advantages from the
exploitation of the users’ flexibility.

In Figure 1, the aggregation platform receives a flexibility request by the DSO/TSO and sends it
to the community of end-users. Each user, for every hour of the day offers its flexibility by entering the
web platform.

Initially, each user, once signed up on the load aggregation web platform, must necessarily go
through an initializing period in which its consumption is monitored precisely. From this first phase
of monitoring, a vector Pms,d is defined that, for a generic user contains the average power values and
is made of 4 (seasons) × 2 (typical days) × 24 (hours) elements:

Pms,d = [Pm1,sd, Pm2,sd, . . . . Pm24,sd] (1)

where s is the season (four seasons: summer, winter, fall, spring) and d is the day (two typical types
of days: weekdays and holidays). For simplicity, in the following the subscripts s and d will not be
reported. The user can set the system in order to characterize more than two typical days, according to
its personal habits. Therefore, vector Pms,d can contain more than 4 × 2 × 24 elements.

This first phase of consumption characterization is only one of the two basic actions that the
monitoring system is expected to perform. In fact, a second phase, that is equally important, is the
one relating to the monitoring of the average hourly consumption of each user, after that it has been
required to exert a certain flexibility. Ultimately, the monitoring system has to play two equally
essential actions:

• Phase 1: user monitoring from the time of subscription to the platform, so as to record the daily
consumption and make a first classification;

• Phase 2: continuous monitoring in order to verify compliance with the declaration of
user flexibility.

Phase 2 is considered fundamental in the determination of the relative flexibility parameter; the
features described above, namely the average power value of absorbed power without flexibility and
the flexibility, are not able to give a full characterization of the user. Indeed, it is necessary to define
another key parameter for the classification of the users. This parameter is called relative flexibility (a)
and takes into account the actual behavior of each user with respect to the flexibility that the same
customer declares:

a =
Pmf_eff

Pmf
(2)
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where Pmf_eff is the hourly average power actually absorbed by the user after the request of a
given flexibility.

The relative flexibility parameter takes into account the user’s behavior in a certain time
(a day, a season, etc.). In order to achieve a correct characterization of each user, this parameter
must be calculated as the average of many “a” parameters, calculated as described above in
equivalent homogeneous hours (hours belonging to the same day and season). By implementing
this method, the relative flexibility holds memory of past behavior and the greater the number
of averaged parameters, the better the characterization of the users. Another important aspect
to consider is the treatment of any extraordinary behavior of the individual user. From this
point of view, the authors found correct to eliminate the highest and the lowest registrations.
Ultimately, the characterization of the individual user is made on the basis of two quantities that must,
for a certain time, be necessarily associated with each user:

• flexibility or flexible power (f_up and f_down);
• the relative flexibility (a) as defined by (2).

Most of the commercially available apparatus for domestic load monitoring easily allow the
registration of the energy absorbed by each appliance in a given timeframe. Some of these tools
allow the wireless transmission of the data to a local concentrator, where further elaborations can be
carried out. To evaluate precisely the flexible power of each appliance and thus the flexibility offer that
the user can display at given hour of the day, any of these commercial monitoring apparatus are needed.
The load aggregation platform must take into account that the users, in most cases, are managed by
non-expert people that may not know how to translate a given demand of flexibility (expressed in
Watt) in terms of use of a given appliance. In this aim, a Matlab code was designed to determine for
each hour of the day what combination of appliances, and for how long, can be used to satisfy a given
flexibility requirement. The same software is used to support the user to formulate his own flexibility
proposal at a given hour, using a drop down menu in the user interface (Figure 2), even before the
same user is asked to display a given amount of flexible power.
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Hour of the day

 Pm: actual consumption

Figure 2. Mask to determine the flexibility offer.

The proposal about flexibility must be displayed by the user before the algorithm defines the
participant users and their degree of flexibility (contribution that must be compatible with the flexibility
declared by each user). Flexibility can be upwards or downwards. The software can include a safety
coefficients for lowering the error that each end user can do in the evaluation of its own flexibility.
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Summarizing, the single user’s code is composed of two parts:

• the first part helps the user to compose the flexibility offer in the platform starting from the
possibility to shift in time the appliances use;

• the second part helps the user to choose the appliances to be used to satisfy the flexibility demand
coming from the aggregation platform and to formulate the final flexibility offer.

This last part of code is structured so as to combine different appliances (up to four); if only one
appliance can satisfy the request, the algorithm can display the correct operating or non operating time.
The time interval in which the aggregation algorithm displays its functions is one hour, since from
one hour to the next, the users can be clustered differently and the needs of the ASM may change.
The main functions of the platforms are:

• acquiring data from the market;
• acquiring data from users;
• clustering users;
• conceiving and producing composite offers of flexibility on the ASM.

The energy needs of the ASM, defined by the TSO and DSO, are translated and sent to the
aggregation platform through two hourly average power values, once defined the objectives of powers:

• hourly average power Pobb, to which each user must as much as possible comply by means of the
declared flexibility;

• hourly average power Ptot, the platform asks the aggregate of users as a consequence of the
ASM needs.

The first value is needed to create a clear objective for each user that will be satisfied acting on the
local flexibility. Moreover, the software can employ different types of flexibility according to the type
of appliance considered. The latter may indeed have an on-off or modulating behavior. Based on the
flexibility declared by each user, two extreme behaviors can be identified:

• users that at that time offer large flexibility and that are thus available for varying their electric
‘habits’ in order to offer a service to the electrical system;

• users that can or cannot vary their own consumptions and do not have a high flexibility,
namely availability of flexible power.

3. Users Clustering

The method used for users clustering is the well-known k-means algorithm [23], “k” being the
number of clusters identified in the group of users (Figure 3).
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The algorithm can classify a given number of objects in k smaller subgroups. The clustering
takes place by minimizing the sum of Euclidean distances between the elements and the reference
cluster center. Such minimization is carried out in an iterative and heuristic way, depicted in Figure 3
below and explained in the following lines. Variables of the optimization are the clusters composition:

min(E) = min(
K

∑
i=1

∑
x ∈Ci

d(x, Zi) ) (3)

where:

• E is the function to be minimized;
• Ci is the i-th cluster;
• Zi is the coordinate of the center of cluster Ci;
• d(x, Zi) is the Euclidean distance between a point x and Zi, the coordinate of the cluster center.

Here the minimization is intended as the way to find the best classification of samples
into subgroups. So, at each iteration, a new classification is tested and new cluster centers are identified.
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In this way, as a new clustering is considered, each element is assigned to the cluster for which the
distance to the cluster center is reduced as compared to the current choice.

The k-means clustering algorithm [24,25] is not a global optimization method, although it
proved to provide good solutions whose quality depends largely on the quality of initial choice of
cluster centers. The variables are the clusters identified, namely the attribution of a class to each sample.

The algorithm is described by the flow chart in Figure 3 and comprises the following steps:

(1) choice of the number of clusters;
(2) preliminary calculation of the clusters’ centres;
(3) distribution of the users between clusters;
(4) calculation of the new centres’ coordinates.

The algorithm repeats steps 3 and 4 until the cluster centers’ coordinates do not vary.
The clustering module is a simple tool that is extremely efficient if the clustering parameters

contain useful information for the aim of providing good coverage of the demand from the ASM.
It works also with thousands of elements providing a solution in a very short-time.

Following the logic of the implemented algorithm, the clustering cannot neglect two parameters
that are considered very relevant:

(1) the absolute difference, between the target value Pobb and the average hourly power the user
declares to be able to absorb by means of its own flexibility:

p1 = |Pobb − (Pm + f)| (4)

(2) the absolute difference between the relative flexibility and 1 (ideal relative flexibility).

p2 = |1 − a| (5)

The first classification parameter gives evidence of the declared capacity of each user to satisfy the
average hourly power. The second gives evidence of the actual fulfillment of the promised flexibility
by each user.

It is evident how the groups depend on the initial chosen cluster centers and also by the number
of clusters k. The validation of the k-means algorithm is the main subject of validity of the clustering.
Different approaches exist to execute the validation of the algorithm. One of the most common is the
one based on the “Silhouette global index” (SC) [26] determination.

Figure 4 shows the flow chart of the validation algorithm for the k-means algorithm results. As it
can be observed, the validation algorithm comprises four steps:

(1) evaluation of the average distance ai between each object i and the other objects j belonging to
the same cluster;

(2) evaluation of the average distance b between each object i and the objects j belonging to the
closer cluster;

(3) calculation of the silhouette coefficient for each object;
(4) calculation of the local silhouette coefficient;
(5) calculation of the overall silhouette coefficient.

Studies carried out over the validation process [27] have brought the following indication for the
assessment of the global Silhouette coefficient:

• 0.71–1→ strong structure;
• 0.51–0.7→medium structure;
• 0.26–0.5→ weak structure;
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• <0.25→ no substantial structure.

Based on this interpretation, the implemented algorithm is able to identify the optimal number
of clusters, among those allowed (2 < k <

√
n, where n is the number of users to be classified), in which

the platform users can be classified).
At the basis of the choice of the users called to respond to power requirements, as well as the

classification made, there is the further need to order the elements belonging to each cluster in relation
to their relative flexibility. This need arises from the fact that, if to meet the total requirement of average
power Ptot, is not necessary to select all the elements of a given cluster, it is good that in this said
selection the most “reliable” (those with smaller absolute value difference, relative to unitary flexibility)
take part.

The ultimate goal is the choice of the users according to the order defined above and the
determination of the flexibility each user can implement, in relation to its declared flexibility and to
the own relative flexibility. In this phase, the relative flexibility of each user is used by the code to take
into account the actual behavior of each user. This is done by multiplying the elements of flexibility
to go up and down (vectors with as many elements as many users, containing the declared flexible
power availability) for the respective values of relative flexibility:

f_up_t(true) = [f_up(1) • a(1), f_up(2) • a(2), . . . .]

The algorithm created for performing the actions described consists of a series of nested loops.
The outer loop is a while loop, whose stop condition is one for which the total average power obtained
by means of the aggregation of users (sumP) must be limited within a certain interval around the
target value of the total average power Ptot. This range is around ±2%.
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Another variable to be initialized is the number of users chosen for the load aggregation np.
Such a number:

• is increased if sumP is smaller than Ptot minus the uncertainty considered;
• is reduced if sumP is greater than Ptot plus the uncertainty.

Within the above described loop, an internal while loop executes instructions until the convergence
is reached with the considered number of users, np.

The convergence is reached when the power difference the users must implement through their
own flexibility capability does not change in two subsequent iterations. The instructions contained in
the second while cycle, having the aim of determining the power differences that each user must apply
by means of its own flexibility, are reported in Figure 5.
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4. Application

In this section, are shown and commented the results of the application carried out for a
realistically simulated set of customers. Considering a typical community of residential end-users
supplied by the same substation, 100 customers are considered. These results are referred to set of
input data and strictly depend of the values of the vectors a, f_up (f_up(1), f_plus(2) . . . ) ed f_down
(f_down(1), f_down(2) . . . ), calculated in random mode but coherently with the same input data
(power Pm).

4.1. Input Parameters of the Algorithm

In the application, a sample of 100 homogeneous domestic users has been chosen. The sample
has been outputted using the simulator developed in [28] and based on a Monte Carlo approach and
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real usage probability data for domestic devices and appliances. For each of them the vector Pm has
been defined. The time period between 8 p.m. and 9 p.m. in a summer holiday has been chosen.
The following target values for power has been assumed:

Pobb = 900 W;

Ptot = 60000 W.

In Table 1, the input vectors for the clustering algorithm are reported. The vectors a_1 and a_2
represent two different conditions:

• a_1 is the input for which users showing very different habits, with different degrees of reliability
(very different “a” parameters), are considered;

• a_2 is the input for which users showing similar habits are considered. Values in the
vector are close to unity (users with similar behavior and reliable in terms of fulfillment of
promised flexibility).

In particular, a_1 contains values that are dispersed in a large interval, as for example 0.1–1.9,
while a_2 contains the same number of values, in a smaller range, as 0.51–1.44 (with a greater
concentration around the unity). This discrimination comes from the need to show how the algorithm
works in presence of different clusters of users.

Table 1. Users’ characteristic features.

User Pm [W] f_up [W] f_down [W] f_f a_1 a_2

1 349.4 470 −120 0 0.6 0.666667
2 1109.4 0 −170 1 0.3 1.083333
3 544.4 290 −190 0 0.4 1.2
4 1214.4 720 −770 1 0.7 1.233333
5 835.8 720 −210 1 1.4 0.894444
6 964.4 0 −350 0 0.6 1.005556
7 294.4 980 0 1 1.1 0.911111
8 1252.15 380 0 0 0.6 1.194444
9 361.9 270 −170 1 1 0.894444
10 294.4 450 0 1 1.9 0.833333
11 944.4 0 −400 0 0.2 1.033333
12 564.4 440 −160 1 0.5 1.033333
13 674.4 880 0 1 0.5 0.911111
14 294.4 900 0 0 0.6 1.144444
15 544.4 190 −150 1 1.6 1.044444
16 1286.4 0 −270 1 0.7 1.011111
17 634.4 870 −180 1 0.5 0.755556
18 634.4 850 −140 1 0.4 1.044444
19 376.9 1040 −140 0 0.6 1.227778
20 1414.4 730 −510 0 0.7 1.016667
21 1636.9 0 0 0 0.7 0.894444
22 1237.9 440 0 0 0.6 1.138889
23 634.4 1120 −150 1 0.6 0.877778
24 2429.4 0 −800 1 0.8 1.15
25 325.4 570 −130 1 1.7 1.066667
26 1746.9 0 0 0 1.4 1.038889
27 1891.4 0 −860 0 1.5 0.994444
28 912.3 870 −270 1 0.5 0.833333
29 634.4 0 −180 0 0.3 0.777778
30 1914.4 0 −830 1 0.6 1.438889
31 306.9 670 −160 0 1.6 1.011111
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Table 1. Cont.

User Pm [W] f_up [W] f_down [W] f_f a_1 a_2

32 624.4 920 −190 1 0.9 1.033333
33 228.9 880 0 0 0.4 0.861111
34 1189.4 710 −450 1 1.1 1.2
35 944.4 870 −420 1 1.5 1.011111
36 1024.4 650 −280 1 1.4 1.088889
37 289.65 330 0 0 1.4 0.833333
38 794.4 0 −120 0 1.5 0.861111
39 391.9 940 −160 1 0.9 0.516667
40 1231.9 140 −390 1 0.5 1.244444
41 1246.9 220 −290 0 1.8 1.15
42 1189.4 580 0 1 1.9 1.183333
43 504.4 1110 −120 1 1.5 1.044444
44 654.4 0 −190 0 1.3 1.077778
45 514.4 300 −130 1 1.5 1.022222
46 396.9 870 −120 0 0.9 0.811111
47 331.65 650 0 0 1 1.127778
48 604.4 0 0 0 0.7 0.955556
49 294.4 740 0 1 1.8 1.2
50 1069.4 570 −380 0 0.9 1.055556
51 1576.9 590 0 1 1.1 0.911111
52 562.15 730 −110 0 0.1 0.877778
53 221.9 880 0 0 0.6 1.311111
54 539.4 1090 −110 0 1.1 1.133333
55 497.3 0 0 0 0.6 0.877778
56 256.9 200 0 0 1.2 0.933333
57 261.65 0 0 0 1.9 0.805556
58 571.9 390 −200 0 1.7 0.822222
59 244.8 540 0 0 1.7 1.1
60 1286.65 340 −420 0 1.5 1.205556
61 1314.4 0 −590 1 1.4 0.805556
62 562.3 470 −110 0 1.3 0.888889
63 1904.4 0 −730 1 1 1.244444
64 711.9 250 −150 0 0.9 1.138889
65 499.4 0 −160 0 1.4 0.9
66 301.9 0 −140 0 0.7 0.855556
67 386.9 600 −150 0 0.2 0.883333
68 341.9 1150 −190 1 1.9 1.083333
69 285.4 420 0 0 1.4 1.127778
70 631.9 590 −140 1 1 1.105556
71 1619.65 0 −300 1 0.2 1.083333
72 657.9 620 −160 1 1.8 1.005556
73 214.4 800 0 1 0.9 0.811111
74 394.15 620 −110 1 1.1 0.811111
75 341.9 610 −150 1 0.1 1.105556
76 1516.9 440 −640 1 0.3 1.038889
77 614.4 190 −190 1 0.9 1.077778
78 339.4 1080 −180 0 0.4 1.288889
79 1259.4 700 −300 0 0.8 1.316667
80 756.9 1060 −110 1 0.4 0.883333
81 1214.4 200 −520 1 0.7 1.055556
82 1371.4 790 −350 0 1.7 0.95
83 619.15 0 0 0 1.4 1.111111
84 234.4 210 0 0 1.4 1.233333
85 1256.9 540 −640 0 0.1 1.077778
86 279.4 620 0 0 1.2 1.072222
87 224.8 780 0 0 1.1 0.972222
88 1276.9 530 0 0 1.9 1.033333
89 398.3 0 −180 0 1.8 1.266667
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Table 1. Cont.

User Pm [W] f_up [W] f_down [W] f_f a_1 a_2

90 991.9 490 0 0 1.5 0.983333
91 903.9 650 −120 1 0.5 1.061111
92 224.4 0 0 0 1.4 1.072222
93 1054.4 130 −150 1 0.4 1.083333
94 474.15 370 −200 0 0.7 1.344444
95 1006.9 830 −440 0 0.2 1.088889
96 1041.9 0 −460 1 0.5 1.172222
97 271.4 0 0 0 0.5 0.938889
98 634.8 750 −140 1 0.5 0.905556
99 214.4 0 0 0 1.2 0.861111

100 511.9 810 −160 1 0.2 1

Figures 6 and 7 are a graphical representation of the declarations about flexible powers of each user,
also keeping into account the further discrimination about the possibility to modulate the promise
of flexibility.
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4.2. Results of the Clustering and Choice of Users to Satisfy the Demand

In this section, the results of k-means clustering based on parameters 1 and 2 previously defined
are reported. As already expressed above, to show the effect of clustering in different conditions,
the classification parameter 2 is first chosen, using the two relative flexibility vectors a_1 (case 1) and
a_2 (case 2) reported in Tables 2 and 3, respectively.

Table 2. Cluster centers coordinates (case 1).

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

p1 0.08722 0.08227 0.06584 0.57269 0.41446
p2 0.08824 0.42 0.725 0.33529 0.87143

Table 3. Cluster centers coordinates (case 2).

Parameter Cluster 1 Cluster 2

p1 0.079844805 0.540495652
p2 0.125180505 0.138888889

4.2.1. Results Analysis—Case 1

Keeping in mind that the smaller the classification parameters are the more reliable are considered
the users, some interesting considerations about the quality of the classification can be drawn by
analyzing the graph in Figure 8 and the values of the coordinates in Table 2.
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Figure 8. Users on the plan p1-p2 (case 1).

The first cluster is the group containing the best users, namely those characterized by points that are
closer to the origin. The second and third clusters, even though containing users with p1 coordinates as
scattered as to those of the first cluster, show worst relative flexibility. The third cluster shows a cluster
center with smaller p1 as compared to the first two clusters but all users show low relative flexibility
and for this reason it is considered the worst cluster. The fourth and the fifth clusters are the worst,
since users show worst (larger) p1 and p2 parameters as a whole.

This type of classification can be considered equally weighted on the basis of the two
used parameters. This is due to the fact that the classification parameters show the same order
of magnitude and a similar dispersion around a central value. Based on the two power target values,
the algorithm chooses the users that will provide the flexibility service. In this case, out of 100,
67 customers will provide the flexibility service and out of these, the 17 users of the first cluster are
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called to take part to the program, while 35 users of the second cluster and 15 on a total of 24 users of
the third, fourth and fifth clusters are discarded.

Using the flexibility provided by the cited users and aggregating their load request the following
values of power are absorbed in the considered hour:

• Average absorbed power in the considered hour, Pm_u = 900 W;
• Average hourly power absorbed by the aggregate of the users, Ptot_u = 60.3 kW.

4.2.2. Results Analysis—Case 2

From the analysis of the graph in Figure 9 and of the coordinates in Table 3, some interesting
considerations can be drawn. The first cluster is the group of best users, namely those showing
parameters that are closer to the origin. The second cluster, even though showing p2 coordinates
similar to the first is characterized by largely worse p1 values.
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A classification of this type can be weighted on the basis of parameter p1
(namely |Pobb − (Pm + f)|). This is due to the fact that, even if the two parameters show the
same order of magnitude, the one related to relative flexibility is more concentrated in a small range.
A classification carried out following this logic can be considered optimal since it is correct to consider
among equally reliable users those that have a flexibility promise that is closer to the target value Pobb.

On the basis of the two target values, also in this case, 67 users out of 100 provide the
flexibility service, they all belong to the first cluster while the second cluster is discarded. Using the
flexibility provided by the cited users and aggregating their load request the following values of power
are absorbed in the considered hour:

• average absorbed power in the considered hour, Pm_u = 900 W;
• average hourly power absorbed by the aggregate of the users, Ptot_u = 60 kW

As it can be noted in both cases (1 and 2), the algorithm is able to cover the request formulated by
the platform and fulfill the objectives.

4.3. Uniform and Controlled Power Absorption

Figures 10 and 11 show a comparison between the average hourly power absorbed by the 100
users with and without flexibility in the two cases. It is evident that following the target values Pobb
implies in both cases large benefits in terms of power absorbed by the users taking part to the service.
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The aggregated consumers indeed absorb an average hourly controllable power, in relation to the
needs of the ancillary service market, and show a uniform behavior.

The above figures allow to identify which users among those that have subscribed in the platform
(following the order of Table 3), are called to take part to the flexibility service in this hour of the day.Energies 2017, 10, 1682  16 of 23 
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4.4. Performance of the Algorithm

For better showing the performance of the clustering algorithm another application example
its provided. Tables 4 and 5 report two different communities of customers. In Table 4 are listed
100 customers showing highly dispersed values of f_up and f_down. On the contrary, Table 5 shows
100 customers with similar values of f_up and f_down. Figures 12 and 13 show the users distribution
on the plane p1-p2 for both the cases, demonstrating the good performance of the clustering algorithm
also varying the values of f_up and f_down.
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Table 4. Users characteristic features (highly dispersed f_up and f_down).

User a f_up [W] f_down [W] f_f

1 1.3 790 −1470 1
2 0.3 590 −700 1
3 1.4 1210 −720 1
4 1.2 1120 −670 1
5 0.1 540 −1100 1
6 1.6 750 −1020 1
7 1.9 1380 −1220 1
8 0.9 1100 −1470 1
9 0.7 660 −670 1
10 0.1 700 −670 1
11 0.5 840 −830 1
12 1.2 550 −770 1
13 1.2 1000 −560 1
14 0.5 790 −1120 1
15 1.3 610 −540 1
16 0.2 930 −1420 1
17 1.8 1220 −990 1
18 0.2 830 −750 1
19 0.7 1340 −1250 1
20 1.3 1030 −1070 1
21 1 660 −900 1
22 1.1 1440 −1390 1
23 0.8 1400 −950 1
24 1.5 930 −1350 1
25 0.6 750 −1050 1
26 1.3 1030 −1150 1
27 1.8 1270 −620 1
28 0.7 1230 −1090 1
29 1.6 1100 −860 1
30 1.5 630 −1000 1
31 0.3 810 −920 1
32 0.3 1440 −1070 1
33 0.8 530 −570 1
34 1.4 1430 −1140 1
35 1.3 760 −710 1
36 1.3 1010 −940 1
37 0.1 1190 −1410 1
38 0.3 1370 −560 1
39 1.5 600 −650 1
40 1.6 1410 −1490 1
41 1.5 1020 −850 1
42 1.8 890 −850 1
43 1.8 1260 −920 1
44 0.5 1130 −1220 1
45 1 1340 −1070 1
46 1.5 1130 −670 1
47 1 770 −1100 1
48 1.2 1050 −1060 1
49 1.1 590 −760 1
50 1.4 530 −1070 1
51 0.2 540 −520 1
52 1 1020 −590 1
53 0.5 880 −620 1
54 0.7 760 −590 1
55 1.1 1400 −1100 1
56 1.5 1130 −930 1
57 0.8 1400 −1290 1
58 1 500 −620 1
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Table 4. Cont.

User a f_up [W] f_down [W] f_f

59 0.3 740 −1260 1
60 0.5 1140 −1200 1
61 0.6 1330 −620 1
62 0.9 1450 −1110 1
63 0.5 1300 −1340 1
64 0.6 1130 −800 1
65 1.7 590 −970 1
66 1.2 1390 −1240 1
67 1.8 740 −660 1
68 1.2 1000 −1350 1
69 0.5 730 −840 1
70 0.2 1060 −1210 1
71 1.1 1120 −780 1
72 0.9 780 −1090 1
73 1.4 860 −720 1
74 1.5 640 −600 1
75 0.8 790 −1000 1
76 1.1 1280 −820 1
77 0.4 650 −800 1
78 1.8 630 −550 1
79 1 1390 −990 1
80 0.6 1180 −520 1
81 0.5 630 −750 1
82 1.9 1330 −720 1
83 1.4 690 −1070 1
84 1.4 510 −1180 1
85 1.3 630 −1050 1
86 1.5 1070 −710 1
87 1.2 920 −970 1
88 1 1430 −600 1
89 1.7 1050 −600 1
90 0.8 550 −690 1
91 0.5 840 −1270 1
92 0.6 1320 −1150 1
93 1.8 670 −1470 1
94 1.4 1460 −820 1
95 1.7 1360 −560 1
96 0.8 1180 −580 1
97 1.3 760 −610 1
98 0.1 1420 −1200 1
99 1.8 570 −730 1

100 0.9 590 −770 1

Table 5. Users characteristic features (similar f_up and f_down).

User a f_up [W] f_down [W] f_f

1 0.7 160 −260 0
2 1.4 320 −160 0
3 1.8 310 −300 0
4 0.9 260 −310 1
5 1.2 390 −270 1
6 1.4 190 −200 1
7 1.6 240 −170 0
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Table 5. Cont.

User a f_up [W] f_down [W] f_f

8 1.7 190 −170 1
9 0.9 310 −220 1

10 1.4 190 −370 1
11 1.5 170 −140 1
12 0.9 160 −390 0
13 1.2 350 −370 0
14 1.4 330 −180 0
15 0.4 230 −290 1
16 0.6 160 −150 0
17 1 270 −120 1
18 0.4 330 −160 0
19 0.9 290 −200 0
20 1.6 400 −400 0
21 1.3 170 −300 1
22 0.6 170 −260 0
23 0.1 150 −120 0
24 1.2 210 −380 0
25 1.3 390 −320 1
26 0.8 110 −370 0
27 1.7 230 −220 1
28 1 150 −260 1
29 1 270 −140 1
30 1.8 170 −290 1
31 0.6 240 −130 0
32 0.6 180 −300 0
33 1.7 320 −230 1
34 1.7 340 −230 1
35 1.6 360 −260 0
36 1.2 340 −100 0
37 1.9 260 −260 0
38 0.5 360 −180 0
39 1.5 210 −120 1
40 0.6 300 −380 0
41 0.1 380 −350 0
42 0.6 240 −290 1
43 1.9 240 −390 1
44 0.8 150 −170 0
45 1.9 260 −190 0
46 0.5 310 −160 0
47 1.3 210 −340 0
48 1.4 300 −200 0
49 1.4 380 −220 1
50 1.4 260 −220 1
51 0.3 190 −260 1
52 0.3 280 −170 0
53 1.2 210 −120 0
54 1 140 −300 1
55 1.3 270 −120 0
56 1.8 300 −330 1
57 0.7 300 −200 1
58 0.9 120 −370 1
59 1.6 250 −220 1
60 0.6 120 −210 0
61 1.2 190 −390 1
62 1.6 230 −350 0
63 0.2 160 −200 0
64 1.2 300 −240 1
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Table 5. Cont.

User a f_up [W] f_down [W] f_f

65 1.6 250 −400 0
66 0.2 370 −300 0
67 0.6 300 −160 0
68 0.2 380 −160 0
69 0.6 210 −160 0
70 0.6 110 −340 0
71 1 310 −210 1
72 1.4 360 −260 1
73 0.8 370 −360 1
74 1 160 −130 1
75 0.3 200 −340 0
76 1.3 180 −240 1
77 0.9 120 −190 0
78 1.7 290 −200 1
79 1.9 280 −290 1
80 0.5 260 −310 0
81 1.5 160 −140 1
82 1.9 240 −230 1
83 1.4 310 −160 1
84 1.2 340 −120 1
85 0.9 310 −180 1
86 0.3 160 −130 0
87 0.9 240 −130 0
88 1.4 260 −360 0
89 0.8 360 −180 1
90 0.7 330 −330 0
91 0.4 140 −160 1
92 0.4 370 −290 0
93 0.4 260 −280 1
94 0.3 130 −160 1
95 1.2 170 −260 1
96 1.9 190 −370 1
97 1.9 280 −400 1
98 1.7 170 −100 1
99 1.5 320 −370 0
100 1.5 120 −160 1
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5. Conclusions

Some conclusions can be given. The paper has proposed a new framework for loads aggregation in
the context of the liberalized energy market. Individual customers can join a load aggregation program
through a software platform. Through the platform, the features of the users are evaluated and the
customers are clustered according to their reliability and to the width of range of regulation allowed.

The proposed aggregation platform, the clustering method and the algorithm proposed in this
work are designed for allowing the participation of the aggregated end-users to the ancillary service
market. Nevertheless, the proposed system can be used also for power management.

Some simulations have been done, showing the deployment of an effective clustering and the
possibility to meet the target power demand at a given hour, according to each customer’s availability.
In particular two cases have been examined. With regards to the results of the simulations, some other
considerations can be given.

The number of aggregated users depends not only on the total requested power Ptot, but also
by the average hourly power Pobb; indeed, increasing or lowering this latter value, the number of
aggregated users can increase or decrease. In particular, if the platform asks the users to increase their
own average hourly consumption, a smaller number of aggregated users will be needed to cover Ptot,
if the tendency is opposite the number will increase. To explain this concept, the logic on which the
platform would act resembles a container with given water capacity (Ptot) that can be filled with water
with a given number of glasses of equal dimension (Pobb). On these numbers, the number of glasses
needed to fill the container depends.

Acting on the target value Pobb can be useful if only a few users are reliable and many are not;
in these conditions, increasing the target value Pobb, means to determine a smaller number of users to
take part to the flexibility service.

As an example, in the case 2, increasing the value of Pobb from 900 W to 1500 W a reduction of
the number of users taking part to the service decreases from 67 to 40, obtaining the following values
of power:

• average absorbed power in the considered hour, Pm_u = 1500 W;
• average hourly power absorbed by the aggregate of the users, Ptot_u = 60 kW

On the contrary, if a larger number of users must be involved, it will be enough to decrease the
value of Pobb. Lowering such value from 900 W to 700 W the following results can be attained, with an
increase of the number of involved customers from 67 to 89:

• Average absorbed power in the considered hour, Pm_u = 700 W;
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• Average hourly power absorbed by the aggregate of the users, Ptot_u = 60.2 kW

As a result, acting on the target value Pobb the number of users changes too, attaining the required
objectives. Finally, the present paper has not discussed the issue of defining guidelines and benefits for
the participation of end-users in the ancillary service market. The simplest solution is to remunerate
the end-user proportionally to the provided flexibility. Nevertheless, this latter is a very topical issue
and is currently widely discussed in many research papers. In a future extension of this work, we will
explore how the effect of policies for remunerating DR programs can affect the user flexibility.

Author Contributions: All the authors gave equal contributions in writing and revising the paper.

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature

a relative flexibility
AD active demand
ASM ancillary services market
Ci i-th cluster
d day
d(x, Zi) Euclidean distance between a point x and Zi

DG distributed generation
DSO Distribution System Operator
E function to be minimized
f average hourly flexible power
f_down average hourly power that the user can provide downwards
f_up average hourly power that the user can provide upwards
k number of clusters identified in the group of users
LV Low Voltage
MV Medium Voltage
n number of users to be classified
NPRS non-programmable renewable sources
Pm average hourly power
Pms,d average hourly power for season s and day d

Pmf_eff
hourly average power actually absorbed by the user after the
request of a given flexibility

Pobb
hourly average power to which each user must as much as
possible comply by means of the declared flexibility

Ptot
hourly average power requested by the platform from the
aggregated users

s season

sf
difference of power in a time interval required to the supplier
according to the needs of the ancillary services market and the
declared flexibility

sumP total average power obtained by means of the aggregation of users
TCL Thermostatically Controlled Loads
TSO Transmission System Operator
Zi coordinate of the center of cluster Ci
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23. Grigoraş, G.; Scarlatache, F.; Cârţină, G. Load estimation for distribution systems using clustering techniques.
In Proceedings of the 2012 13th International Conference on Optimization of Electrical and Electronic
Equipment (OPTIM), Brasov, Romania, 24–26 May 2012.

24. MacQueen, J.B. Some Methods for classification and Analysis of Multivariate Observations. In 5-th Berkeley
Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967;
pp. 281–297.

http://dx.doi.org/10.1016/j.renene.2016.10.017
http://dx.doi.org/10.1016/j.jup.2016.03.006
http://dx.doi.org/10.1016/j.jup.2014.08.003
http://www.addressfp7.org
http://dx.doi.org/10.1109/AEIT.2013.6666787
http://dx.doi.org/10.1109/TSG.2013.2254506
http://dx.doi.org/10.1016/j.jup.2016.11.001
http://dx.doi.org/10.1016/j.apenergy.2016.08.170
http://dx.doi.org/10.1002/etep.1905
http://dx.doi.org/10.1109/TPWRS.2015.2457428
http://dx.doi.org/10.1007/s11149-010-9135-y
http://dx.doi.org/10.1109/TSG.2014.2298514
http://dx.doi.org/10.1109/TPWRS.2014.2328865
http://dx.doi.org/10.1109/TCST.2014.2381163
http://dx.doi.org/10.1109/TSG.2016.2522961
http://dx.doi.org/10.1109/TPWRS.2011.2177280


Energies 2017, 10, 1682 24 of 24

25. Arthur, D.; Vassilvitskii, S. How slow is the k-means method? In Proceedings of the 2006 Symposium on
Computational Geometry (SoCG), Sedona, AZ, USA, 5–7 June 2006.

26. Pal, N.R.; Bezdek, J.C. On Clustering Validity for the Fuzzy Cmean model. IEEE Trans. Fuzzy Syst. 1995, 3,
370–379. [CrossRef]

27. Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation Cluster Analysis. J. Comput.
Appl. Math. 1987, 20, 53–65. [CrossRef]

28. Graditi, G.; Ippolito, M.G.; Lamedica, R.; Piccolo, A.; Ruvio, A.; Santini, E.; Siano, P.; Zizzo, G.
Innovative control logics for a rational utilization of electric loads andair-conditioning systems in a
residential building. Energy Build. 2015, 102, 1–17. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/91.413225
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/j.enbuild.2015.05.027
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Monitoring System and Web Platform for Bottom-Up Aggregation 
	Users Clustering 
	Application 
	Input Parameters of the Algorithm 
	Results of the Clustering and Choice of Users to Satisfy the Demand 
	Results Analysis—Case 1 
	Results Analysis—Case 2 

	Uniform and Controlled Power Absorption 
	Performance of the Algorithm 

	Conclusions 

