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Abstract: In order to reduce the online calculations for power system simulations of transient stability,
and dramatically improve numerical integration efficiency, a transient stability numerical integration
algorithm for variable step sizes based on virtual input is proposed. The method for fully constructing
the nonhomogeneous virtual input for a certain integration scheme is given, and the calculation
method for the local truncation error of the power angle for the corresponding integration scheme is
derived. A step size control strategy based on the predictor corrector variable step size method is
proposed, which performs an adaptive control of the step size in the numerical integration process.
The proposed algorithm was applied to both the IEEE39 system and a regional power system
(5075 nodes, 496 generators) in China, and demonstrated a high level of accuracy and efficiency in
practical simulations compared to the conventional numerical integration algorithm.
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1. Introduction

The transient stability of a power system refers to the ability of a power system to regain its original
state or achieve a new stable state after it has been suddenly subjected to an extreme disturbance
in a given operating state. In transient stability simulations, the existence of numerous nonlinear
equations limits the methods that can be used for this purpose. Since the 1990s, with the development
of computing methods for matrix equations, real improvements have been made in the domain
of differential equation calculations. The precise time step integration proposed by Zhong [1–3] is
increasingly used in dynamic structural analysis. The precise time step integration has very high
accuracy, and the calculation process is more stable, which makes the method superior in solving
nonlinear dynamic differential equations.

However, precise time step integration will introduce calculation errors into the calculation of
the inverse matrix, which requires a full rank matrix. When considering the use of precise time
step integration in transient stability analysis, it is inevitable that even if the precise solution is used,
it brings the problem of numerical instability to the algorithm itself. Given the applications of all
kinds of quick regulating devices in a power system, the above problem may seriously affect the
application of precise time step integration in transient stability simulations. Because the matrix
inversion implies a disadvantage in the application and numerical stability of the numerical algorithm,
large numbers of studies have been carried out on the precise time step integration method without
matrix inversion. The increment dimensional method is a modified approach for precise time step
integration [4–6]. The basic principle is to treat the nonhomogeneous term as a state variable of the
dynamic equation by increasing the dimensions, so the nonhomogeneous dynamic equation can be
transformed into a homogeneous dynamic equation. This method avoids the matrix inversion in
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the calculation process, and it is better than the conventional algorithm in general. However, when
the number of dimensions is too high, there will be problems, such as the curse of dimensionality.
The parallel algorithm based on the high precision direct integration method is presented and
evaluated [7–9]. In reference [7], an integration scheme is derived by distinguishing the rigid-body
modal. This parallel algorithm improves the calculation efficiency and the stability of precise time
step integration. The authors of [8] present a parallel algorithm. A mixed fine grain and coarse
grain strategy for parallel computing is developed. A hybrid form involving two types of coarse
parallelization is also shown to have advantages when a Fourier series form of the high precise direct
method is used. The authors of [9] propose a parallel high precision integration based on matrix
exponential and time domain segmentation for solving the semi-discretized system by SEM. It is
very suitable for long time simulation and can achieve accuracy several orders higher than that of
conventional time stepping methods such as the Runge-Kutta schemes. The authors of [10] extend
high precise direct scheme to analyses systems with loading or impact, through Fourier expansion and
homogenizing the initial system. Compared with other methods, the new scheme named homogenized
high-precision direct integration has a higher precision and wider application. The authors of [11]
propose a new efficient and high precision direct integration scheme based on 2N type algorithm for
the computing of exponential matrix. The study demonstrates that precise integration method can be
effectively applied to nonlinear numerical analysis of rotor-seal system. The scheme is significantly
less sensitive to the size of time step compared with other existing methods, so a large time step may
be used and the computing time reduced substantially. The generalized precise time step integration
method proposed by professor Fu [12] uses Taylor series expansion, and skilfully makes use of the
transfer function matrix formed in each integration subinterval. The method greatly reduces the matrix
multiplication times introduced by direct expansion, and the truncation error is still introduced by
the homogeneous method. The natural computational advantage renders it the best precise time step
integration method for calculating nonlinear nonhomogeneous equations, and it is quite suitable for
transient stability simulations.

Existing studies have already introduced precise time step integration into transient stability
simulations for power system. The authors of [13] used an algorithm of the factors table based
on precise time step integration to avoid the inverse matrix calculation, and proposes a fast power
system dynamic simulation method, which reduces the number of calculations and has improved
computational stability. The author of [14] proposed an implicit precise integration method based on
Duhamel integration. The calculation speed can be improved to some extent, while the calculation
accuracy for power angle is not improved significantly. The author of [15] presented a high-precision,
high efficiency precise time-integration method based on multi-step prediction. The multi-step
prediction polynomial fitting of nonlinear part is used in this method. However, the systematic
construction method for the nonlinear part is not given, and the multi-step construction for the transient
stability simulation is not presented in detail. The authors of [16] presented a novel time-domain
integration method for transient analysis of non-uniform multi-conductor transmission lines. In order
to eliminate the Courant-Friedrich-Levy condition constraint, a precise time-step integration method is
utilized in time-domain calculation. The proposed method has the superiority of calculation accuracy
and stability. Considering the applications to transient stability simulations, relevant studies have
made great achievements, although they have some shortcomings also. First, the existing studies only
give a relatively concrete integration scheme when proposing an algorithm based on precise time step
integration. However, a systematic and complete construction method for arbitrary accuracy is not
given. Additionally, when analysing the accuracy for the algorithm, only the accuracy of the transfer
matrix is analysed, and the accuracy of the generator state variable is not analysed. Second, the use of
a larger integration step size is a strong advantage in precise time step integration. Existing algorithms
all use a unified step size, which does not take advantage of the high accuracy and convergence
characteristics of the precise time step integration. Moreover, the scale of the cases used in the existing
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studies is so small that the actual effect of the algorithm in applications with a large-scale power system
and engineering practices cannot be fully shown.

In light of these problems, and based on generalized precise time step integration, a new numerical
integration algorithm for variable step sizes based on virtual input is proposed. In this study, the idea
of virtual input is presented, and the systematic construction method for vitual input is given. The local
truncation error of the power angle for the corresponding integration scheme is derived. Then, a step
size control strategy based on the predictor-corrector variable step size method is proposed, realizing
adaptive control of the step size in the numerical integration process. The whole procedure for the
proposed algorithm is presented, at the same time, a practical large-scale power system is used to
demonstrate the proposed algorithm. The rest of the paper is organized as follows: In Section 2,
the new algorithm is presented in detail. Section 3 presents the concrete form of the differential
equations. Section 4 shows the integration step size adaptive control strategy. Section 5 presents the
limiting link process and gives the whole procedure for the algorithm. Section 6 presents a case study
and discusses the results thus obtained. Section 7 provides concluding remarks for the paper.

2. Transient Stability Numerical Integration Based on Virtual Input (VII)

Differential equations for power systems can be expressed as:{ .
x = f (t, x(t), y(t))
x(tk) = xk

, t ∈ [tk, tk+1] (1)

Since the analytical solutions of nonlinear differential equations cannot be obtained, a linear term
Hx(t) and a nonlinear term F(t, x(t), y(t)) are separated from f (t, x(t), y(t)). Thus, Equation (1) can
be expressed as: { .

x = Hx(t) + F(t, x(t), y(t))
x(tk) = xk

, t ∈ [tk, tk+1] (2)

where H is a constant matrix, and F(t, x(t), y(t)) = f (t, x(t), y(t))− Hx(t). F(t, x(t), y(t)) here is a
nonlinear function of the simulation time, state variables, and operational variables.

On the premise that is a constant matrix, in the integral interval [tk, tk+1], the analytic high-order
function that has the form of Equation (6) is used to fit the nonhomogeneous term, the coefficients of
which are constructed using the value of F(t, x(t), y(t)) at time tk and tk+1 as shown in Equation (10).
The nonhomogeneous term F(t, x(t), y(t)) of this construction method is defined as the “virtual input”.

According to control theory, the scheme of the virtual input can directly influence the
dynamicresponse of the nonlinear system, and based on the virtual input, a transient stability numerical
integration algorithm is proposed in this paper.

The state variable at time tk is known as xk = x(tk); and thus the state variable at the time
tk+1 = tk + h is:

xk+1 = eHhxk +
∫ h

0
eH(h−τ)F(tk + τ)dτ (3)

Equation (3) can be expressed as:

xk+1 = eHhxk + υm (4)

υm =
∫ h

0
eH(h−τ)F(tk + τ)dτ (5)

where eHhxk is the homogeneous solution of the differential equation, and υm is the nonhomogeneous
solution. For the nonhomogeneous solution, a high-order function is used to fit F(tk + τ) during the
integration interval so that the real value can be approximated to the maximum, that is:
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F(tk + τ) =
l

∑
r=0

υr × τr (6)

and Equation (6) can be substituted into Equation (5):

υm =
∫ h

0
eH(h−τ)

l

∑
r=0

υr × τrdτ =
l

∑
r=0

∫ h

0
eH(h−τ)υr × τrdτ (7)

First, calculate the integration value of each order function in the nonhomogeneous solution (see
Appendix A):

∫ h
0 eH(h−τ) × τ0dτ = h +

Hh2

2
+

H2h3

6
+

H3h4

24
+

H4h5

120
+

H5h6

720
+ · · ·∫ h

0 eH(h−τ) × τ1dτ =
h2

2
+

Hh3

6
+

H2h4

24
+

H3h5

120
+

H4h6

720
+ · · ·∫ h

0 eH(h−τ) × τ2dτ =
h3

3
+

Hh4

12
+

H2h5

60
+

H3h6

360
· · ·

...

(8)

In the derivation of Equation (8), eHh is expanded into the power series:

eHh = I + Hh +
H2h2

2!
+

H3h3

3!
+

H4h4

4!
+

H5h5

5!
+

H6h6

6!
+ · · · (9)

Second, use the value Fk and Fk+1 of the F(t, x(t), y(t)) at time tk and tk+1 to construct υr in the
implicit scheme: 

υ0 = akFk + ak+1Fk+1

υ1 = (bkFk + bk+1Fk+1)/h

υ2 = (ckF′k + ck+1F′k+1)/h
...

(10)

In Equation (10), there is (see Appendix B):

Fk = x(1)k − Hxk

F′k = x(2)k − Hx(1)k

Fk+1 = −Hxk + (I − Hh)x(1)k + (h− Hh2

2 )x(2)k + ( h2

2 −
Hh3

6 )x(3)k + ( h3

6 −
Hh4

24 )x(4)k + ( h4

24 −
Hh5

120 )x(5)k + ( h5

120 −
Hh6

720 )x(6)k + · · ·

F′k+1 = −Hx(1)k + (I − Hh)x(2)k + (h− Hh2

2 )x(3)k + ( h2

2 −
Hh3

6 )x(4)k + ( h3

6 −
Hh4

24 )x(5)k + ( h4

24 −
Hh5

120 )x(6)k + ( h5

120 −
Hh6

720 )x(7)k + · · ·

(11)

Then, take the quadratic function as an example to construct the virtual input, and the concrete
numerical integration scheme and the highest calculation accuracy of the power angle can be calculated.
Substitute Equation (11) into Equaiton (10):



υ0 = (−Hak − Hak+1)xk + [ak + (I − Hh)ak+1]x
(1)
k + (h− Hh2

2 )ak+1x(2)k + ( h2

2 −
Hh3

6 )ak+1x(3)k

+( h3

6 −
Hh4

24 )ak+1x(4)k + ( h4

24 −
Hh5

120 )ak+1x(5)k + ( h5

120 −
Hh6

720 )ak+1x(6)k

υ1 = {(−Hbk − Hbk+1)xk + [bk + (I − Hh)bk+1]x
(1)
k + (h− Hh2

2 )bk+1x(2)k + ( h2

2 −
Hh3

6 )bk+1x(3)k

+( h3

6 −
Hh4

24 )bk+1x(4)k + ( h4

24 −
Hh5

120 )bk+1x(5)k + ( h5

120 −
Hh6

720 )bk+1x(6)k }/h

υ2 = {(−Hck − Hck+1)x(1)k + [ck + (I − Hh)ck+1]x
(2)
k + (h− Hh2

2 )ck+1x(3)k + ( h2

2 −
Hh3

6 )ck+1x(4)k

+( h3

6 −
Hh4

24 )ck+1x(5)k + ( h4

24 −
Hh5

120 )ck+1x(6)k + ( h5

120 −
Hh6

720 )ck+1x(7)k }/h

(12)
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Since the matrix H (the concrete form will be explained in detail) possesses the quantitative
relation Hr(δ, :) = 0, r ≥ 2, this means that the power angle line is a zero vector in the high-order
power of matrix H, and the product of the high-order power of matrix H and the state variable vector
is the zero vector. Therefore, Equation (8) can be simplified by omitting the high-order term:

∫ h
0 eH(h−τ) × τ0dτ = h + Hh2

2∫ h
0 eH(h−τ) × τ1dτ = h2

2 + Hh3

6∫ h
0 eH(h−τ) × τ2dτ = h3

3 + Hh4

12

(13)

For the power angle δ, the product of Equations (12) and (13) is equal to that of Equations (8) and (12).
Multiply Equations (12) and (13):


∫ h
0 eH(h−τ)υ0 × τ0dτ = [−Hhak − Hhak+1]xk + [(h + Hh2

2 )ak + (h− Hh2

2 )ak+1]x
(1)
k + [h2ak+1]x

(2)
k

+[( h3

2 + Hh4

12 )ak+1]x
(3)
k + [( h4

6 + Hh5

24 )ak+1]x
(4)
k + [( h5

24 + Hh6

80 )ak+1]x
(5)
k

+[( h6

120 + Hh7

360 )ak+1]x
(6)
k∫ h

0 eH(h−τ)υ1 × τ1dτ = [−Hh
2 bk − Hh

2 bk+1]xk + [( h
2 + Hh2

6 )bk + ( h
2 −

Hh2

3 )bk+1]x
(1)
k + [( h2

2 −
Hh3

12 )bk+1]x
(2)
k

+[ h3

4 bk+1]x
(3)
k + [( h4

12 + Hh5

144 )bk+1]x
(4)
k + [( h5

48 + Hh6

360 )bk+1]x
(5)
k + [( h6

240 + Hh7

1440 )bk+1]x
(6)
k∫ h

0 eH(h−τ)υ2 × τ2dτ = [−Hh2

3 ck − Hh2

3 ck+1]x
(1)
k + [( h2

3 + Hh3

12 )ck + ( h2

3 −
Hh3

4 )ck+1]x
(2)
k + [( h3

3 −
Hh4

12 )ck+1]x
(3)
k

+[( h4

6 −
Hh5

72 )ck+1]x
(4)
k + [ h5

18 ck+1]x
(5)
k + [( h6

72 + Hh7

1440 )ck+1]x
(6)
k + [( h7

360 + Hh8

4320 )ck+1]x
(7)
k

(14)

Substituting Equation (14) into Equation (7), υm is obtained. Then, the final form of Equation (4) is:

xk+1 = (I + Hh− Hhak − Hhak+1 − Hh
2 bk − Hh

2 bk+1)xk

+[(h + Hh2

2 )ak + (h− Hh2

2 )ak+1 + ( h
2 + Hh2

6 )bk + ( h
2 −

Hh2

3 )bk+1 − Hh2

3 ck − Hh2

3 ck+1]x
(1)
k

+[h2ak+1 + ( h2

2 −
Hh3

12 )bk+1 + ( h2

3 + Hh3

12 )ck + ( h2

3 −
Hh3

4 )ck+1]x
(2)
k

+[( h3

2 + Hh4

12 )ak+1 + ( h3

4 )bk+1 + ( h3

3 −
Hh4

12 )ck+1]x
(3)
k

+[( h4

6 + Hh5

24 )ak+1 + ( h4

12 + Hh5

144 )bk+1 + ( h4

6 −
Hh5

72 )ck+1]x
(4)
k

+[( h5

24 + Hh6

80 )ak+1 + ( h5

48 + Hh6

360 )bk+1 +
h5

18 ck+1]x
(5)
k

+[( h6

120 + Hh7

360 )ak+1 + ( h6

240 + Hh7

1440 )bk+1 + ( h6

72 + Hh7

1440 )ck+1]x
(6)
k

+ · · ·

(15)

In the derivation of Equation (15), eHh is simplified by omitting the high-order term as
Equation (16) because the product of the high-order power of matrix H and the state variable vector is
the zero vector:

eHh = I + Hh (16)

Since ωsω(1) = δ(2), ωsω(2) = δ(3) · · · , there is H(δ, :)x(1)k = δ
(2)
k , H(δ, :)x(2)k = δ

(3)
k · · · . For the

power angle δ, Equation (15) can be translated into Equation (17):

δk+1 = H(δ, :)h(1− ak − ak+1 − bk
2 −

bk+1
2 )xk + δk + [ak + ak+1 +

1
2 bk +

1
2 bk+1]hδ

(1)
k

+[ 1
2 ak +

1
2 ak+1 +

1
6 bk +

1
6 bk+1]h2δ

(2)
k + [ 1

2 ak+1 +
1
6 bk+1 +

1
12 ck +

1
12 ck+1]h3δ

(3)
k

+[ 1
4 ak+1 +

1
12 bk+1 +

1
12 ck+1]h4δ

(4)
k + [ 1

12 ak+1 +
1

36 bk+1 +
1

24 ck+1]h5δ
(5)
k + [ 1

48 ak+1 +
1

144 bk+1 +
1

72 ck+1]h6δ
(6)
k + · · ·

(17)

On the other hand, according to the Taylor series expansion, δk+1 is:

δk+1 = δk + hδ
(1)
k +

h2

2
δ
(2)
k +

h3

6
δ
(3)
k +

h4

24
δ
(4)
k +

h5

120
δ
(5)
k +

h6

720
δ
(6)
k + · · · (18)
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The configuration of Equation (10), that is, the values of ak, ak+1, bk, bk+1, ck, ck+1, determine the
accuracy of power angle for the constructed scheme. If the sixth-order is the reached, the coefficient of
each term in Equations (17) and (18) should be equal. The undetermined coefficients’ equation system
can be obtained: 

1− ak − ak+1 − bk
2 −

bk+1
2 = 0

ak + ak+1 +
bk
2 +

bk+1
2 = 1

ak
2 +

ak+1
2 + bk

6 +
bk+1

6 = 1
2

ak+1
2 +

bk+1
6 + ck

12 +
ck+1
12 = 1

6
ak+1

4 +
bk+1
12 +

ck+1
12 = 1

24
ak+1
12 +

bk+1
36 +

ck+1
24 = 1

120
ak+1
48 +

bk+1
144 +

ck+1
72 = 1

720

(19)

It is worth noting that the equation system has infinite solutions if the first six equations are
considered, while it has no solution when the rest of the equations are considered. Thus, it can be found
that the calculation of the power angle can reach fifth-order accuracy when the quadratic function is
used to fit the virtual input, and the principal local truncation error is

∣∣∣h6x(6)k /1440
∣∣∣. A set of solutions

is given as:

ak = 1, ak+1 = 0, bk = −
9

10
, bk+1 =

9
10

, ck =
3
5

, ck+1 = −2
5

that is:

F(tk + τ) = Fk +
−0.9Fk + 0.9Fk+1

h
× τ +

0.6F′k − 0.4F′k+1
h

τ2

In a similar way, the calculation of the power angle can reach third-order accuracy when the linear
function is used to fit the virtual input, and the principal local truncation error is

∣∣∣h4x(4)k /24
∣∣∣. A set of

solutions is given as:
ak = 1, ak+1 = 0, bk = −1, bk+1 = 1

that is:
F(tk + τ) = Fk +

Fk+1 − Fk
h

× τ

The calculation of the power angle could reach third-order accuracy when the constant is used
to fit the virtual input, and the principal local truncation error is

∣∣∣h4x(4)k /24
∣∣∣. The unique solution is

given as:

ak =
2
3

, ak+1 =
1
3

that is:
F(tk + τ) =

2
3

Fk +
1
3

Fk+1

It should be noted that a function could also construct an integration scheme of relatively lower
accuracy. For example, the quadratic function could also construct an integration scheme at the fourth
order. In addition, it is observed that the high-order derivative of the generator state variables must
be calculated when an integration scheme is constructed for which accuracy exceeds the third order.
The author of [17] gives the derivation process of the derivative of the power angle. It relies on
the derivative of bus node voltages when the complicated generator model is applied, and it can
only be calculated by solving the network equations. This is hard to apply to fast transient stability
simulation, as it concentrates on computing speed. On the other hand, the derivative of state variables
can be calculated by a difference quotient instead of a differential quotient, using the multi-step
method. However, using the difference quotient of the numerical result from the forward step and
backward step directly in a large step size cannot assure accuracy, and many additional calculations
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for differential algebraic equations are introduced if the large step is divided into small ones, which
seriously influences the computing speed. Thus, in practical application, the constructed integration
scheme generally has lower than third-order accuracy.

After constructing a virtual input at a certain accuracy, define MH
r (h) as:

MH
r (h) =

∫ h
0 eH(h−τ)τrdτ ≈

∫ h
0 (I + H(h− τ) + 1

2! H2(h− τ)2 + 1
3! H3(h− τ)3 + 1

4! H4(h− τ)4)τrdτ

= hr+1

r+1 I + hr+2 H
(r+2)! +

hr+3 H2

(r+3)! +
hr+4 H3

(r+4)! +
hr+5 H4

(r+5)!

(20)

Because the integration interval of a homogeneous item continuously extends in the form of the
power of 2, the calculation equation of MH

r (h) from a small integration interval h0 to 2h0 should be
derived after the step size h is elaborated:

MH
r (2h0) =

∫ 2h0
0 eH(2h0−τ)τrdτ = eHh∫ h0

0 eH(h0−τ)τrdτ +
∫ 2h0

h0
eH(2h0−τ)τrdτ = eHh0 MH

r (h0) +
∫ 2h0

h0
eH(2h0−τ)τrdτ (21)

Let γ = τ − h0

∫ 2h0
h0

eH(2h0−τ)τrdτ =
∫ h0

0 eH(h0−γ)(γ + h0)
rdγ =

r
∑

i=0
Ci

rhr−i
0
∫ h0

0 eH(h0−γ)γidγ =
r
∑

i=0
Ci

r MH
i (h0)hr−i

0 (22)

Substitute Equation (22) into Equation (21):

MH
r (2h0) = eHh0 MH

r (h0) +
r

∑
i=0

Ci
r MH

i (h0)hr−i
0 (23)

The final integration equation for the state variable is:

xk+1 = T(h)xk +
l

∑
r=0

MH
r (h)υr (24)

where T(h) = eHh is calculated by precise time step integration, and no further details are given here.

3. Concrete form for the Differential Equations

The sixth-order generator model is applied, E′q, E′′q , E′d, E′′d for which there is change.
The differential equations for the model are:

dδ
dt = ωs(ω− 1)

TJ
dω
dt = Pm−Pe

ω

T′d0
dE′q
dt = E f d − [E′q + (xd − x′d)Id + (KG − 1)E′q]

T′′d0
dE′′q
dt = −E′′q − (x′d − x′′d )Id + E′q + T′′d0

dE′q
dt

T′q0
dE′d
dt = −E′d + (xq − x′q)Iq

T′′q0
dE′′d
dt = −E′′d + (x′q − x′′q )Iq + E′d + T′′q0

dE′d
dt

(25)

A conventional or fast excitation system and thyristor regulator are applied, and the simulation
construction is shown in Figure 1.
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The differential equations for the variables are the following:
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(26)

A universal governor model that is applicable to hydropower generating units and thermal
power generating units is applied, and this model includes the measurement part, distributing valve,
servosystem, feedback loop, water hammer effect, and generator reheating regulator. The simulation
construction is shown in Figure 2.
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The differential equations for the variables are as follows:



d(SV)
dt = −Kδ
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Ts
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Ts
(SF) + KδωR
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Ts

d(SF)
dt = −KβKδ
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TsTi
(SF) +

KβKδωR
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− KβKiµ0
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TsTo
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TsTo
+ TW KmHKiu0

TsTo
+ KmHµ0

To

d(GH)
dt = 1−α

Trh
(WH)− 1

Trh
(GH)

(27)

The differential equations for the generator rotor, exciter, and governor above constitute all of
the differential equations for transient stability analysis. The constant matrix H and virtual input
F(t, x(t), y(t)) separated from the differential equation system are shown in Figure 3. The reason for
putting (KG − 1)E′q(t)/T′d0, which contains a state variable, into the virtual input is that the saturation
coefficient KG will change in every iteration, assuring that H is a constant matrix so that the calculation
of the transfer matrix eHh can be fully completed offline without the costs of online simulation time.
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Figure 3. The constant matrix H and virtual input F(t, x(t), y(t)).

4. Integration Step Size Adaptive Control Strategy

Because the solutions of stiff problems have rapidly varying components and slowly varying
components, a small step size should be applied when the solution changes rapidly, and a large
step size should be applied when the solution changes slowly. Besides, in considering self-starting,
a small step size is applied at the beginning of the simulation, and then, the step size may be adjusted
appropriately to obtain the optimal step size as the simulation goes forward. The optimal step size
here is taken to mean that the amount of computing is minimized while the solution satisfies the
given accuracy.
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The local truncation error is estimated using the difference value of the explicit Euler predictor
and high-order corrector proposed in this paper. Supposing that the power angle calculated by the
explicit Euler predictor at time t + h is x1, there is:

x(t + h)− x1 =
h2

2
δ(2) + O(h3) ≈ ωsh2

2
Pm − Pe

ωTJ
(28)

Supposing that the corrector has the highest accuracy of p order, and the power angle calculated
by the corrector at time t + h is x2, there is:

err = x(t + h)− x2 = Cp+1hp+1x(p+1) + O(hp+2) (29)

Substituting Equation (28) into Equation (29):

err =
ωsh2

2
Pm − Pe

ωTJ
+ x1 − x2 (30)

The step size could be adjusted according to the value calculated by Equation (30) so that the
local truncation error can stay near the maximum permissible error. For an integration scheme of
third-order accuracy with the virtual input fitted by the linear function, the local truncation error of the
power angle at time k + 1 is proportional to the fourth-order power of the step size. If the maximum
permissible error is ε, the updating equation for the step size is:

h′ = hpre × (ε/err)
1
4 (31)

where hpre is the previous step size. An advantage of using precise time step integration to calculate
the transfer matrix is that when knowing all the parameters of the generators, the full calculations can
be completed offline. Take 0.01 s as the basic step size. The transfer matrix can be calculated for all the
possible step sizes. The updating equation of step size h can be improved to:

h =
[
h′/0.01

]
/100 (32)

where [ ] is the integral function. In this way, all of the possible transform matrixes can be calculated
offline and the step size avoids being updated too frequently.

5. Variable Step Size Transient Stability Numerical Integration Algorithm Based on Virtual
Input (VSVII)

5.1. Process for Nonlinear Links

There are many nonlinear links such as the output limiting link, the dead time in the transient
stability simulation, the exciter and governor introduced in Section 3 for instance. In practical
engineering applications, the number of such nonlinear links is enormous for a large power system
with hundreds of generators. In the conventional process for such links, the exact time when the state
variables would reach the limiting value is calculated and the present result would be abandoned.
Then, the simulation goes back to the previous time step and recalculates to the limiting time using
the functions for the limiting case. Although this method is very accurate for a large power system,
the backoff calculations cost too much time, and are more significant than using a large step size.

The algorithm in this paper applies the following method. For a certain state variable x and
its limiting values x (or x), a limiting control interval [x− ε, x] is set. The step size is decreased if
the value of the state variable falls into the control interval, and the simulation goes with a small
step size. When the state variable reaches its limiting value x, the function for the limiting case and
a large step size are applied. Although the method cannot ensure that the limiting link is exactly
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calculated, by adjusting the limiting interval range, excessive back-off calculations can be avoided
while guaranteeing a certain accuracy, which significantly reduces the additional calculations, and this
is especially suitable for transient stability simulations of a large-scale power system.

5.2. Simulating Procedure for the VSVII Algorithm

The full simulation procedure for VSVII is presented as follows:

Step 1: Input all the information for the power system, and proceed to power flow calculation to
obtain the operational variable values y(0) for the stable state, including bus node voltage
V(0), injection current I(0) to the network, and electromagnetic power Pe(0).

Step 2: Calculate the initial value of the state variables, including the power angle δ(0), angular
frequency ω(0), transient and sub-transient electromotive force (EMF) of the generators,
and all the initial values for the exciters and governors.

Step 3: Form the differential equations and network algebraic equations describing the transient
process of the power system, and form the factors table.

Step 4: Set the initial calculation time for transient stability t = 0.
Step 5: Check if a fault occurs; if so, proceed to step 6. If not, proceed to Step 8.
Step 6: Modify the network algebraic equations and the factors table according to the faults

and operations.
Step 7: Solve the network algebraic equations and obtain the new values for the operational variables.
Step 8: Calculate the values of the state variables at time t + h including the power angle δ(t + h),

angular frequency ω(t + h), transient and sub-transient EMF of the generator, and all
the values for the exciter and the governor. Calculate the values for the operational
variables including bus node voltage V(t + h), injection current I(t + h) for the network,
and electromagnetic power Pe(t + h). The steps in the process in detail are as follows:

Step 8.1: Update the step size according to the process for limiting links in Section 5.1 and
the step size control strategy in Section 4. Check if the step size h obtained is the
same as the previous size. If so, proceed to Step 8.3. If not, proceed to Step 8.2.

Step 8.2: Call the state transfer matrix T(h) and MH
r (h) calculated offline. Calculate υr for

each order in the nonhomogeneous term using the values of the state variables and
operational variables at time t and calculate the values of the state variables at time
t + h using Equation (24).

Step 8.3: Set the iteration time m = 0.
Step 8.4: Calculate the values of the operational variables using the network equation and

the values of the state variables obtained.
Step 8.5: Update the value Fk+1 in υr using the new values for the operational variables

obtained. Calculate the new values for the state variables.
Step 8.6: Check the maximum difference value of the power angle for each generator between

two iterations. If the value is greater than the given precision, set m = m + 1 and go
back to Step 8.4. Otherwise, proceed to step 9.

Step 9: The simulation goes on to the next step; set t = t + h.
Step 10: If t ≥ T, go to step 11. Otherwise, go back to Step 5.
Step 11: The simulation is completed. Output the result.

6. Simulation and Results

First, the VSVII algorithm was applied to the IEEE39 system, the computer equipment used in the
simulation comprised an Intel Core 2 CPU i3-2100, 3.10 GHz, with 8 GB of memory, equipped with the
Windows 7 operating system.
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The study first focused on a comparison of the simulation results using the algorithms for VSVII,
VII with third-order accuracy, and implicit trapezoidal integration (TI) to illustrate that VSVII and VII
had the same simlation results as TI and the standard value, while reducing the amount of computing
for the differential algebraic equations. A three-phase short circuit fault was set on line 35 (case A),
line 9 (case B), and line 44 (case C) for 0.2 s, respectively, and then cut. The simulation result calculated
by the synthesis program of the China Electric Power Research Institute (PSASP) using a step size of
0.001 s was regarded as the standard value. The step size for TI, VII and the initial step size for VSVII
was 0.01 s. The simulation lasted for 5 s. If the maximum power angle difference in the simulation was
not greater than 180 degrees, the power sytem had transient stability. In each case, the power angle
of the same generator using different integration algorithms was observed, the curves of which are
shown in Figure 4.

It can been seen from Figure 4 that the power angle curves calculated by VSVII and VII are
consistent with TI and the standard value, illustrating the effectiveness of VSVII and VII. The main
calculation of the transient stability analysis concentrates on the solution of differential equations and
algebraic equations, which reflects the integrated performance of different algorithms. Table 1 gives
the detailed numerical results, and it can be found that VSVII significantly reduces the amount of
calculation for the differential algebraic equations, although there is no significant reduction for VII
using a small step size compared with TI.

To analyze the superiority of VII using a large step size compared with TI, the numerical integation
is performed using the step sizes of 0.01 s, 0.02 s, 0.05 s, and 0.08 s, respectively, in each case, and the
simulation results are shown in Figures 5–7. It can be seen that VII and TI have an approximate
simulation accuracy using different step sizes in case A. In case B, VII has a high accuracy at the step
sizes of 0.02 s, 0.05 s, and 0.08 s. In case C, VII has a high accuracy at the step sizes of 0.02 s, 0.05 s,
and 0.08 s, but the power angle curve starts to appear different from the standard curve using the step
sizes of 0.05 s and 0.08 s. Since the state variables for the differential equations change little with a
small step size, the superiority of VII is not represented significantly. However, with a large step size,
the accumulated error of TI gradually increases, while the accumulated error of VII is much smaller.
By comparing the accuracy and amount of computation for VII and TI using a large step size (through
Table 1 and Figures 5–7), it is observed that VII significantly reduces the amount of computing for
the differential algebraic equations, for which there is a more than 30% reduction, guaranteeing the
required accuracy.
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Table 1. Simulation results for the IEEE39 system.

Simulation Results for Case A

Step Size (s) Algorithm Repetitions to Solve the
Differential Equations

Repetitions to Solve the
Algebraic Equations The Number of Time Steps Maximum Power Angle

Difference (Degrees) Computing Time (ms)

0.01
TI 1073 4441

500
91.19 35.94

VII 1000 4361 91.15 32.41

0.02
TI 750 2785

250
90.90 29.63

VII 750 2765 91.14 28.33

0.05
TI 636 1886

100
90.53 25.21

VII 394 1458 91.13 16.76

0.08
TI 1178 2427

63
90.42 27.71

VII 359 1212 90.97 12.68

VSVII 380 1219 60 90.57 17.27

Simulation Results for Case B

Step Size (s) Algorithm Repetitions to Solve the
Differential Equations

Repetitions to Solve the
Algebraic Equations The Number of Time Steps Maximum Power Angle

Difference (Degrees) Computing Time (ms)

0.01
TI 1415 6725

500
174.70 58.80

VII 1307 6465 174.36 41.18

0.02
TI 859 4214

250
172.40 30.97

VII 750 3752 174.41 29.40

0.05
TI 728 2855

100
170.58 33.87

VII 412 2153 174.72 16.62

0.08
TI 1333 3527

63
172.07 38.63

VII 376 1804 175.41 18.95

VSVII 388 1936 79 174.96 22.44

Simulation Results for Case C

Step Size (s) Algorithm Repetitions to Solve the
Differential Equations

Repetitions to Solve the
Algebraic Equations The Number of Time Steps Maximum Power Angle

Difference (Degrees) Computing Time (ms)

0.01
TI 1176 5283

500
338.19 46.17

VII 1071 5157 336.64 31.83

0.02
TI 750 3374

250
344.93 40.67

VII 750 3162 335.90 23.99

0.05
TI 652 2312

100
346.43 26.53

VII 403 1756 333.91 16.52

0.08
TI 1228 2902

63
351.32 32.34

VII 345 1424 331.11 16.83

VSVII 390 1740 98 333.68 18.80
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Since VII has the advantage of high accuracy and convergence, it has practical engineering
significance in applying the algorithm using a large step size. The calculation accuracy of VII in
different cases is not the same when observing the above cases. Furthermore, the optimal step size
for different cases is not the same for analyzing the variations in the amount of computing for the
differential algebraic equations as the step size changes in Figures 8–10. It can be seen that the
algorithm requires less computing for the differential equations using the step sizes of 0.06–0.10 s,
and less computing for the algebraic equations using the step sizes 0.08–0.12 s. Considering the
computing accuracy, VII still has high accuracy when using the step size of 0.08 s in case A and case
B, and has a high accuracy using the step size of 0.05 s, which starts to reduce when using a step
size greater than 0.05 s as compared to the standard value from PSASP in case C. Therefore, VSVII as
proposed in this paper must adaptively control the variation in the step size in different cases, and
save the volume of computing as much as possible while maintaining a certain level of accuracy.
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For the simulation of VSVII, the initial step size is set at 0.01 s, and the accuracy of the local
truncation is controlled to ε ≤ 0.005. The variation in power angle is shown in Figure 4, and the detailed
numerical results are shown in Table 1. Figures 11–13 show the step size and the alternating iteration
times at every time step for each case. The step size is generally maintained within 0.08 s–0.11 s in case
A, 0.05 s–0.07 s in case B, and 0.04 s–0.06 s in case C. From the previous analysis, the step size determined
can guarantee the calculation accuracy and reduce the total amount of computing. Though the total
amount of computing can be further reduced using an even larger step size, the required accuracy
cannot be satisfied. In general, the amount of computing for differential algebraic equations can be
reduced by more than 60% using VSVII compared to VII with a constant step size of 0.01 s. Because the
calculations for the transfer matrix can be fully completed offline, the computing time can be reduced
by about 50%, as seen in Table 1.

Finally, VSVII was applied in a regional power system in China to verify the viability for large-scale
power systems. The regional power system contained 496 generators and 5075 computational nodes.
Generator models of type 0, type 2, and type 6, the constant impedance load, the exciter in Figure 1,
and the governor in Figure 2 were applied. The simulation lasted for 5 s, and the initial step size for
VSVII was 0.01 s. The step size for TI as a contrast is 0.01 s. Three sets of faults were set respectively to
make the system stable, reach a critical state, and become unstable, and detailed simulation results
are given in Table 2. It can be seen that the algorithm proposed in this paper can obtain an accurate
simulation result and reduce the amount of computing. It is worth mentioning that because of using
the system itself, the step size during simulation was not greater than 0.03 s. The computing time was
reduced by 15% or so.
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Table 2. Simulation results for a regional power system in China.

Case Type Algorithm Repetitions to Solve the
Differential Equations

Repetitions to Solve the
Algebraic Equations The Number of Time Steps Maximum Power Angle

Difference (Degrees) Computing Time (s)

Stable
TI 1014 1674 500 93.34 1.40

VSVII 907 1498 490 93.38 1.17

Critical
Stable

TI 1035 1912 500 178.48 1.36
VSVII 1010 1703 495 185.78 1.18

Unstable
TI 1816 3454 500 413.52 1.96

VSVII 1307 2370 497 408.18 1.51



Energies 2017, 10, 1736 19 of 21Energies 2017, 10, 1736  19 of 21 

 

 
Figure 12. The variation in the step size and iteration times using VSVII in case B. 

 

Figure 13. The variation in the step size and iteration times using VSVII in case C. 

7. Conclusions 

A transient stability numerical integration algorithm for variable step sizes based on virtual 
input is proposed in this paper. The method for constructing the nonhomogeneous virtual input in a 
certain integration scheme is given fully, and the calculation method for the local truncation error for 
the power angle is derived. A step size control strategy based on the predictor corrector variable step 
method is proposed, performing an adaptive control of the step size. The algorithm is applied in the 
IEEE39 system and in a regional power system in China (5075 nodes, 496 generators), showing the 
high precision and high efficiency of the algorithm in practical engineering simulations. 

At the same time, the following directions will be further investigated at the next stage: 

Figure 12. The variation in the step size and iteration times using VSVII in case B.

Energies 2017, 10, 1736  19 of 21 

 

 
Figure 12. The variation in the step size and iteration times using VSVII in case B. 

 

Figure 13. The variation in the step size and iteration times using VSVII in case C. 

7. Conclusions 

A transient stability numerical integration algorithm for variable step sizes based on virtual 
input is proposed in this paper. The method for constructing the nonhomogeneous virtual input in a 
certain integration scheme is given fully, and the calculation method for the local truncation error for 
the power angle is derived. A step size control strategy based on the predictor corrector variable step 
method is proposed, performing an adaptive control of the step size. The algorithm is applied in the 
IEEE39 system and in a regional power system in China (5075 nodes, 496 generators), showing the 
high precision and high efficiency of the algorithm in practical engineering simulations. 

At the same time, the following directions will be further investigated at the next stage: 

Figure 13. The variation in the step size and iteration times using VSVII in case C.

7. Conclusions

A transient stability numerical integration algorithm for variable step sizes based on virtual input
is proposed in this paper. The method for constructing the nonhomogeneous virtual input in a certain
integration scheme is given fully, and the calculation method for the local truncation error for the
power angle is derived. A step size control strategy based on the predictor corrector variable step
method is proposed, performing an adaptive control of the step size. The algorithm is applied in the
IEEE39 system and in a regional power system in China (5075 nodes, 496 generators), showing the
high precision and high efficiency of the algorithm in practical engineering simulations.

At the same time, the following directions will be further investigated at the next stage:
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(1) The accuracy estimation method for all the generator state variables will be derived to better
control the numerical integration process.

(2) The algorithm scheme will be completed for all the mathematic models of the real generators and
regulators, more than the models introduced in this paper.
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simulation and wrote the paper; Tannan Xiao analyzed the data and Daozhuo Jiang made suggestions on review.
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Appendix A. Verification of Equation (8)



∫ h
0 eH(h−τ) × τ0dτ =

∫ h
0 eH(h−τ)dτ = −H−1

∫ h
0 eH(h−τ)dH(h− τ) = −H−1 eH(h−τ)

∣∣∣h
0
= −H−1(I − eHh)

= −H−1 + H−1[I + Hh + (Hh)2

2! + (Hh)3

3! + (Hh)4

4! + (Hh)5

5! + (Hh)6

6! + · · · ]

= h + h2

2 + H2h3

6 + H3h4

24 + H4h5

120 + H5h6

720 + · · ·∫ h
0 eH(h−τ) × τ1dτ =

∫ h
0 eH(h−τ)τdτ = −H−1

∫ h
0 eH(h−τ)τdH(h− τ) = −H−1

∫ h
0 τdeH(h−τ)

= −H−1τ eH(h−τ)
∣∣∣h
0
+ H−1

∫ h
0 eH(h−τ)dτ = −H−1τ eH(h−τ)

∣∣∣h
0
− H−2

∫ h
0 eH(h−τ)dH(h− τ)

= −H−1τ eH(h−τ)
∣∣∣h
0
− H−2 eH(h−τ)

∣∣∣h
0
= −H−1h− H−2(I − eHh)

= −H−1h + H−2[Hh + (Hh)2

2! + (Hh)3

3! + (Hh)4

4! + (Hh)5

5! + (Hh)6

6! + · · · ]

= h2

2 + Hh3

6 + H2h4

24 + H3h5

120 + H4h6

720 + · · ·∫ h
0 eH(h−τ) × τ2dτ =

∫ h
0 eH(h−τ)τ2dτ = −H−1

∫ h
0 eH(h−τ)τ2dH(h− τ) = −H−1

∫ h
0 τ2deH(h−τ)

= −H−1τ2 eH(h−τ)
∣∣∣h
0
+ H−1

∫ h
0 eH(h−τ)dτ2 = −H−1τ2 eH(h−τ)

∣∣∣h
0
+ 2H−1

∫ h
0 eH(h−τ)τdτ

= −H−1τ2 eH(h−τ)
∣∣∣h
0
− 2H−2

∫ h
0 eH(h−τ)τdH(h− τ) = −H−1τ2 eH(h−τ)

∣∣∣h
0
− 2H−2

∫ h
0 τdeH(h−τ)

= −H−1τ2 eH(h−τ)
∣∣∣h
0
− 2H−2[τeH(h−τ)

∣∣∣h
0
−
∫ h

0 eH(h−τ)dτ]

= −H−1τ2 eH(h−τ)
∣∣∣h
0
− 2H−2[τeH(h−τ)

∣∣∣h
0
+ H−1 eH(h−τ)

∣∣∣h
0
] = −H−1h2 − 2H−2h− 2H−3(I − eHh)

= −H−1h2 − 2H−2h + 2H−3[Hh + (Hh)2

2! + (Hh)3

3! + (Hh)4

4! + (Hh)5

5! + (Hh)6

6! + · · · ]

= h3

3 + Hh4

12 + H2h5

60 + H3h6

360 + · · ·
...

(A1)

Appendix B. Verification of Equation (11)

Apply Taylor series expansion to Fk+1

Fk+1 = Fk + F′kh +
F(2)

k
2!

h2 +
F(3)

k
3!

h3 +
F(4)

k
4!

h4 +
F(5)

k
5!

h5 +
F(6)

k
6!

h6 · · · (A2)

On the other hand, from the relation between F, Hx and x, there is:

Fk = x(1)k − Hxk

F(1)
k = x(2)k − Hx(1)k

F(2)
k = x(3)k − Hx(2)k

F(3)
k = x(4)k − Hx(3)k

F(4)
k = x(5)k − Hx(4)k

F(5)
k = x(6)k − Hx(5)k

F(6)
k = x(7)k − Hx(6)k

(A3)
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Subsitituting (A3) into (A2):

Fk+1 = [x(1)k − Hxk] + [x(2)k − Hx(1)k ]h +
x(3)k −Hx(2)k

2! h2 +
x(4)k −Hx(3)k

3! h3 +
x(5)k −Hx(4)k

4! h4 +
x(6)k −Hx(5)k

5! h5 +
x(7)k −Hx(6)k

6! h6 + · · ·

= −Hxk + (I − Hh)x(1)k + (h− Hh2

2 )x(2)k + ( h2

2 −
Hh3

6 )x(3)k + ( h3

6 −
Hh4

24 )x(4)k + ( h4

24 −
Hh5

120 )x(5)k + ( h5

120 −
Hh6

720 )x(6)k + · · ·
(A4)

Taking the derivative of the two-sides of Equation (A4):

F′k+1 = −Hx(1)k + (I − Hh)x(2)k + (h− Hh2

2 )x(3)k + ( h2

2 −
Hh3

6 )x(4)k + ( h3

6 −
Hh4

24 )x(5)k + ( h4

24 −
Hh5

120 )x(6)k + ( h5

120 −
Hh6

720 )x(7)k + · · · (A5)
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