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Abstract: Complex power electronic conversion devices, most of which have high transmission
performance, are important power conversion units in modern aircraft power systems. However,
these devices can also affect the stability of the aircraft power system more and more prominent due
to their dynamic and nonlinear characteristics. To analyze the stability of aircraft power systems
in a simple, accurate and comprehensive way, this paper develops a unified large signal model of
aircraft power systems. In this paper, first the Lyapunov linearization method and the mixed potential
theory are employed to analyze small signal and large signal stability, respectively, and then a unified
stability criterion is proposed to estimate small and large signal stability problems. Simulation results
show that the unified large signal model of aircraft power systems presented in this paper can be
used to analyze the stability problem of aircraft power systems in an accurate and comprehensive
way. Furthermore, with simplicity, universality and structural uniformity, the unified large signal
model lays a good foundation for the optimal design of aircraft power systems.

Keywords: aircraft power system; unified large signal model; small signal stability; large signal
stability; Lyapunov linearization method; mixed potential theory

1. Introduction

At present, countries around the world have begun to consider issues of energy consumption and
environmental pollution comprehensively, combined with the current status of their national economy
and social development. To save energy, reduce costs and improve the performance of aircraft systems,
electricity is increasingly being adopted in modern aircraft as a form of energy supply instead of the
hydraulic and barometric energy used in traditional aircraft [1–3]. Therefore, the safe operation of
aircraft now depends to a great degree on their electric power systems, as the concept of multiple
electricity uses is gradually penetrating into the design of future aircraft.

Aircraft power systems are primarily responsible for power generation, conversion and
distribution. More importantly, aircraft power systems needs to transmit electricity to the loads
safely and appropriately. More electric aircraft provide electric power drives for the secondary
power components with the help of a large number of power electronic conversion devices, such as
autotransformer rectifiers (ATRUs), buck/boost converters [4,5], etc., which provide great convenience
in the operation and control of aircraft, however, due to the dynamic, nonlinear, cascading and parallel
connections of power electronic devices, the stability of aircraft power systems becomes a more
and more prominent issue when high performance in necessary [6,7]. In addition, most of the load
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equipment in more electric aircraft power systems can be regarded as a constant power load (CPL)
due to the fast response characteristics of controllers [8,9], and its negative impedance characteristics
are seriously harmful to the stability of aircraft power systems. Therefore, the stability analysis electric
aircraft power systems has become an important research topic, including power system modeling
and simulation, small signal and large signal stability analysis, etc.

Aircraft power systems are a strong nonlinear systems; therefore it is relatively complicated
to develop a precise model for the system. Previous publications have shown three typical kinds
of methods to model the aircraft power system, which are the state space averaging (SSA), the
dq-transformation and the average value method (AVM).

The SSA method is normally used to solve three kinds of problems: (1) many power converters
in DC distribution systems [10,11]; (2) uncontrolled and controlled rectifiers in single-phase AC
distribution systems [12]; and (3) 6- and 12-pulse diode rectifiers in three-phase systems [13]. However,
this approach can result in complex high-order mathematical models when this method is applied
to three-phase systems. In addition, the subsequent analysis of the produced complex mathematical
models is difficult.

The dq-transformation method is widely used for AC system modeling analysis [14,15], in which
power converters can be treated as time-varying transformers. The dq-transformation provides lower
order system models compared to SSA models. Moreover, it is much easier to apply this method to a
converter controlled in terms of rotation dq frame aligned with the grid voltage [16]. A dq modeling
approach has been proposed to model a diode bridge rectifier in [15,16]. In [12], it is reported that there
are no performance advantages in comparison to the SSA method, although the SSA yields high-order
models for three-phase systems.

The AVM method has been used for modeling 6- and 12-pulse diode rectifiers in many
publications [17], and it is also widely used for modeling generators with line-commutated
rectifiers [18]. These rectifiers can be modeled with good accuracy as a constant DC voltage source.
The AVM model easily allows establishing the output impedance of the source subsystem for stability
analysis using the impedance-admittance method as described in [19]. Zhu et al. have reported a new
average-value model of three-phase and nine-phase diode rectifiers to improve the AC current and
DC voltage dynamics in [20].

The stability analysis of aircraft power systems includes small signal stability analysis and large
signal stability analysis. Small signal stability analysis refers to the influence caused by a disturbance
such as a series of stability problems caused by load fluctuations or slow parameter changes and so on,
that is small enough that the system model can be linearized and it does not affect analysis accuracy.
Large signal stability analysis mainly studies the effects of large disturbances such as sudden load
variations, short-circuit faults, load rejection and broken lines on system stability.

A great deal of research work has been done by scholars both at home and abroad on small
signal stability analysis of aircraft power systems. Reference [16] applies the dq-transformation
method to establish a mathematical model for a three-phase frequency-wild AC system feeding CPL
through a 6-pulse uncontrolled rectifier. This framework can be used for the study of aircraft power
system stabilities for representative architectures and worst case operational modes. Reference [21]
investigated the small signal stability of a representative 270 V DC power system for a more electric
aircraft. Areerak et al. introduced the small signal stability analysis of aircraft AC frequency-wild
power systems representing a real AC-DC hybrid distribution architecture with a multiplicity of
actuators, aircraft loads, and bus geometries in [22].

However, small signal stability analysis is only limited to stability research near the steady
operating point of system, which is not suitable for large signal disturbances such as short circuit
faults. In addition, an accurate and effective large signal model should be able to derive the small
signal characteristics of the original system at any equilibrium point [23]. The stability analysis of
aircraft power systems is mainly focused on separate analysis of small signal or large signal [21,24]
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stability and there is no a simple and convenient tool for analyzing system stability under both large
and small signal disturbances.

From the perspective of large signal research, this paper develops a unified large signal model of
aircraft power systems based on the AVM. The Lyapunov linearization method and the mixed potential
theory are adopted to analyze the small signal stability and the large signal stability of aircraft power
systems, respectively. By analyzing the small and large signal stability, a unified stability criterion
of the system is obtained. In addition, the accuracy and universality of model are also verified in
this paper. It is the first time a unified large signal model is applied to the large signal and small
signal stability analysis of complicated aircraft power systems, and the proposed model should help to
simplify the design process and provide an approach for optimizing aircraft power system design.

2. A Unified Large Signal Model of Aircraft Power Systems

The typical structure of many electric aircraft power systems is shown in Figure 1. A synchronous
variable frequency generator is connected to a 235 V high voltage alternating current (HVAC) bus and
fed to the resistive load of the wing ice protection system (WIPS); The 270 V high voltage direct current
(HVDC) bus is obtained from the HVAC bus by an Auto Transformer Rectifier unit (ATRU); The
output of the ATRU provides electricity to the airborne electrical equipment, such as environmental
control system (ECS) and speed-regulated motors driven by power electronics in the aircraft operating
system, etc., through an R-L-C filter. In addition, the resistive load with constant voltage can also be
connected to the HVDC bus.
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Figure 1. Typical structure of most electric aircraft.

With the development of power electronics technology, the scale of electric aircraft power systems
is becoming larger and larger, and loads are becoming more and more complicated, which brings
difficulty in modeling and stability analysis of aircraft power systems. Therefore, it is necessary to
make a simplify aircraft power systems, reasonably and appropriately, so as to establish a unified large
signal model for stability analysis.

The 12-pulse autotransformer rectifier is firstly modeled and simplified by the AVM, for among
the various components of an aircraft power system, the circuit structure is relatively complex. Then
generator and relevant loads are equalized to obtain the unified large signal model of the aircraft
power system. A schematic diagram of a 12-pulse autotransformer rectifier is shown in Figure 2.



Energies 2017, 10, 1739 4 of 15
Energies 2017, 10, 1739  4 of 15 

 

 

Figure 2. Schematic of autotransformer based 12-pulse rectifier. 

The AC power supply consists of three balanced voltage sources; and the line-to-neutral 

voltages are expressed by the vector vn: 

cos

cos( 2 / 3)

cos( 2 / 3)

A

n B m

C

V t

v V V t

V t



 

 

   
   

  
   
      

 (1) 

The phase shifting device produces two sets of three phase voltages with a phase difference of 

30°, the two six-pulse rectifiers are parallel-connected to feed the load via the DC-link filter. The 

three equal inductors Lr represent the primary leakage inductances and the inductances of supply 

lines, the secondary leakage inductances of the phase-shifting devices are represented by three equal 

inductors Ls in series with each of the inputs to the two rectifiers, Lipr represents the DC side 

inductance. The output voltages of two rectifiers V1, V2 may be expressed by Equation (2) [17]: 

1

1 1 1 1 2

2

( ) ( )n

V d d
Av B i C i

V dt dt

 
   

 

 (2) 

where  1 1 2 3

T
i I I I  and  2 4 5 6

T
i I I I  are vectors of the two rectifier input currents; A1, B1 

and C1 are coefficient matrices, which depend on the type of transformer, circuit inductances and the 

analysis interval. The 12-pulse autotransformer rectifier output voltage Vr can be obtained by the 

average value of V1 and V2. Therefore, within a specific 30° intervals the rectifier output voltage Vr 

may be expressed generally as: 

1 2( ) ( ) D ( )r n L

d d d
V Av B i C i i

dt dt dt
     (3) 

where iL is DC link current; A, B, C also are coefficient matrices; D depends on the connection of the 

bridge outputs and the arrangement of the inter-phase reactors. 
rV , the averaged overall output 

voltage of Vr, is determined by the integration of (3) over a 30° interval of 
1 2    , divided by 

time: 

   2

1

/
1 2 1 1 2 2 2 1

/

( / ) ( / ) ( / ) ( / )1
( ) L

r n

i i i i di
V Av dt B C D

t t t dt

 

 

        
   
    (4) 

where /Ldi dt  is the local average rate of change of the DC link current, and / 6t    . The DC 

link current at the start of the interval is assumed to be 
Li , the local average value, and during the 

interval the current is assumed to rise by i . Assuming that the three phase input to the upper 

bridge leads the input to the lower one by 30°, the 30° averaging interval begins at 
1  when the load 

current starts to commutate from D1_1 to in D1_3 the upper bridge, and the interval ends at 
2  

when the current commutation from D2_1 to D2_3 begins in the lower bridge. By substituting 

VA

VB

VC

Lr

Lr

Lr

Ls

Ls

Ls

Ls

Ls

Ls

I1

I2

I3

I4

I5

I6

D1_1 D1_3 D1_5

D1_2D1_4D1_6

D2_1 D2_3 D2_5

D2_2D2_4D2_6

IPR1

IPR1

Lipr

Lipr

Vr

iL
V1

V2

Figure 2. Schematic of autotransformer based 12-pulse rectifier.

The AC power supply consists of three balanced voltage sources; and the line-to-neutral voltages
are expressed by the vector vn:

vn =

 VA
VB
VC

 = Vm

 cos ωt
cos(ωt− 2π/3)
cos(ωt + 2π/3)

 (1)

The phase shifting device produces two sets of three phase voltages with a phase difference of
30◦, the two six-pulse rectifiers are parallel-connected to feed the load via the DC-link filter. The three
equal inductors Lr represent the primary leakage inductances and the inductances of supply lines, the
secondary leakage inductances of the phase-shifting devices are represented by three equal inductors
Ls in series with each of the inputs to the two rectifiers, Lipr represents the DC side inductance. The
output voltages of two rectifiers V1, V2 may be expressed by Equation (2) [17]:[

V1

V2

]
= A1vn − B1

d
dt
(i1)− C1

d
dt
(i2) (2)

where i1 =
[

I1 I2 I3

]T
and i2 =

[
I4 I5 I6

]T
are vectors of the two rectifier input currents;

A1, B1 and C1 are coefficient matrices, which depend on the type of transformer, circuit inductances
and the analysis interval. The 12-pulse autotransformer rectifier output voltage Vr can be obtained by
the average value of V1 and V2. Therefore, within a specific 30◦ intervals the rectifier output voltage
Vr may be expressed generally as:

Vr = Avn − B
d
dt
(i1)− C

d
dt
(i2)− D

d
dt
(iL) (3)

where iL is DC link current; A, B, C also are coefficient matrices; D depends on the connection of
the bridge outputs and the arrangement of the inter-phase reactors. Vr, the averaged overall output
voltage of Vr, is determined by the integration of (3) over a 30◦ interval of θ1 < θ < θ2, divided by time:

Vr =
1

∆t

∫ θ2/ω

θ1/ω
(Avn)dt− B

[i1(θ2/ω)− i1(θ1/ω)]

∆t
− C

[i2(θ2/ω)− i2(θ1/ω)]

∆t
− D

diL
dt

(4)

where diL/dt is the local average rate of change of the DC link current, and ∆t = π/6ω. The DC link
current at the start of the interval is assumed to be iL, the local average value, and during the interval
the current is assumed to rise by ∆i. Assuming that the three phase input to the upper bridge leads
the input to the lower one by 30◦, the 30◦ averaging interval begins at θ1 when the load current starts
to commutate from D1_1 to in D1_3 the upper bridge, and the interval ends at θ2 when the current
commutation from D2_1 to D2_3 begins in the lower bridge. By substituting ∆t = π/(6ω), diL/dt
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and the related parameters into Equation (4), the general expression for averaged output voltage of
12-pulse autotransformer rectifier Vr becomes:

Vr =
6ω

π
A
∫ θ2/ω

θ1/ω
Vndt− 6ω

π
kB

 −1
1
0

iL −

kB

 0
1
−1

+ kC

 1
0
1

+ D

diL
dt

(5)

The 12-pulse autotransformer rectifier generally used in most electric aircraft produces two
sets of three phase waveforms that are phase shifted by ±15◦ with respect to the AC supply [25].
The turns-ratio n:1 of autotransformer is 6.464:1. The values of θ1 and θ2 are (π/3− π/12) and
(π/2− π/12) respectively, and the constant k is 0.5. The coefficient matrices A, B, C and D are:

A =
[

1+1/n
2

1+1/n
2 − n+1

n

]
B =

[
2Lp

n
Lp(n−1)

n + Ls
2 − Lp(n+1)

n − Ls
2

]
C =

[
Lp(n−1)

n + Ls
2

2Lp
n − Lp(n+1)

n − Ls
2

]
D = 2Lipr

(6)

Therefore, the averaged output voltage of 12-pulse autotransformer rectifier is:

Vr =
12
√

3
π

sin
[ π

12

]
Vm −

[
3ω

2π

(
2
(

1− 3
n

)
Lr + Ls

)]
iL −

[
2Lr + Ls + 2Lipr

]diL
dt

(7)

The simplified averaged model of 12-pulse autotransformer rectifier following Equation (7) is
shown in Figure 3.
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Figure 3. Average value model of 12-pulse autotransformer.

A generator can be equivalent to an ideal voltage source due to its good voltage control
characteristics. The autotransformer rectifier uses the average model shown in Figure 3; the airborne
electrical equipment driven by power electronic devices, such as AC speed regulating motors, can be
regarded as constant power loads and represented by constant current sources; the voltage of HVAC
bus is relatively stable, so the impact produced by AC resistive loads and speed regulating motors can
also be neglected [26]. Therefore, the typical structure of an aircraft power system is rationally and
appropriately simplified by the AVM, and the equivalent circuit for system stability analysis based on
the unified large signal model is shown in Figure 4.

As shown in Figure 4, Veq = 12
√

3
π sin( π

12 )Vm is the equivalent voltage source of AC power supply
on DC side, where Vm is the amplitude of AC voltage. Leq = 2Lr + Ls is the equivalent inductance
in the DC side by the primary and secondary leakage inductances of the autotransformer and the
line inductance. Req = 3ω

2π

[
2(1− 3

n )Lr + Ls
]

is the DC side equivalent resistance considering the
commutation overlap angle of rectifier, n = 6.464. Ldc, Rdc and Cdc are the parameters of DC side filter,
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Vs is the voltage across the DC link capacitor Cdc and the loads are represented as a constant-power
load Pcpl.
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3. Stability Criterion of Aircraft Power Systems Based on the Unified Large Signal Model

The power system of more electric aircraft is a complex time-varying nonlinear system; the method
of linearizing at the equilibrium point can only be used to analyze small signal stability problems, and
large signal analysis study methods are needed for large signal disturbances. In this paper, the stability
criteria of small signal and large signal stability are solved by the Lyapunov linearization method and
the mixed potential function theory, respectively.

3.1. Criterion for Small Signal Stability

The Lyapunov linearization method judges small signal stability of a system according to the
characteristics of the roots of its state equations [23]. For a linear time-invariant system, stability
can be judged just by the roots of its eigenvalue equation. However, for nonlinear system such as
aircraft power system, it must be linearized firstly, and then stability can be judged by the roots of
the linearized eigenvalue equation. According to the equivalent circuit shown in Figure 4, set the
state variables:

X =
〈

I f , Vs

〉
(8)

input variables:
u =

〈
Veq, Pcpl

〉
(9)

and output variables:
y = Vs (10)

Then, applying Kirchhoff’s Voltage Law (KVL) and Kirchhoff’s Circuit Laws (KCL), the following
equations in state space are derived:

.
I f = −

R f
L f

I f − 1
L f

Vs +
1

L f
Veq

.
Vs =

1
Cdc

I f −
Pcpl

CdcVs

(11)

where L f = Leq + Ldc, R f = Req + Rdc.
Equation (11) is linearized using the first order terms of the Taylor expansion so as to obtain a set

of linear differential equations around an equilibrium point. We get:
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δ
.
x = A(x0, u0)δx + B(x0, u0)δu

δy = C(x0, u0)δx + D(x0, u0)δu
(12)

where δx =
[

I f Vs

]T
, δu =

[
Veq Pcpl

]T
, δy = [δVs], align A(x0, u0) = − R f

L f
− 1

L f

1
Cdc

Pcpl

CdcV2
s,0

, B(x0, u0) =

[ 1
L f

0

0 − 1
CdcVs,0

]
, C(x0, u0) =

[
0 1

]
and D(x0, u0) =

[
0 0

]
.

In the matrix A(x0, u0), Vs,0 = 1
2 (Veq +

√
V2

eq − 4Pcpl R f ).

Based on the Jacobian matrix A(x0, u0), the eigenvalue equation of aircraft power system is:

det[λI − A] = λ2 + λ(
R f

L f
−

Pcpl

CdcV2
s,0

) +
V2

s,0 − R f Pcpl

L f CdcV2
s,0

= 0 (13)

According to the Lyapunov linearization method, to ensure that the system is asymptotically
stable at the equilibrium point, the real part of all eigenvalues of the Jacobian matrix A(x0, u0) must be
negative. i.e.,

real λi < 0 (14)

where i = 1, 2, . . . , n (n—the number of state variables).
By Viete theorem, Let λ1, λ2 < 0, the criterion for small signal stability of aircraft power system is:

Pcpl

V2
s,0

<
R f Cdc

L f
(15)

3.2. Criterion for Large Signal Stability

For circuit systems containing nonlinear inductance, capacitance, resistance and other components,
the large disturbance stability can be studied by constructing a global Lyapunov energy function and
combining the stability judgment theorem of mixed potential function theory [27,28].

The mixed potential function P can be obtained by the components in a circuit and their topological
relations, which general mixed potential function is:

P(i, v) = −A(i) + B(v) + D(i, v) (16)

where i, v are the inductance current and capacitor voltage of the equivalent circuit, respectively; A(i)
and B(v) are potential functions for the circuit’s currents and voltages, respectively; D(i, v) = iT · γ · v
is the energy of capacitor and some non-energy storage elements in the circuit, and γ is a constant
matrix related to the circuit topology.

Here the third stability theorem [29] in mixed potential function theory is re-described for the
convenience of application:

Let Pi =
∂P(i,v)

∂i , Pv = ∂P(i,v)
∂v and Aii =

∂2 A(i)
∂i2 , Bvv = ∂2B(v)

∂v2 . The Lyapunov energy function can be
constructed as:

P∗(i, v) =
u1 − u2

2
· P(i, v) +

1
2

PT
i · L−1 · Pi +

1
2

PT
v · C−1 · Pv (17)

where L and C are the diagonal matrix of inductance and capacitor components within the circuit,
respectively; u1 and u2 are the minimum eigenvalue of L−1/2 · Aii · L−1/2 and C−1/2 · Bvv · C−1/2,
respectively.

According to the equivalent circuit of the unified large signal model shown in Figure 4, the
potential functions of currents and voltages of non-energy-storage elements are:

A(i f ) =
1
2

R f i2f (18)
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B(vs) =
∫ vs

0

Pcpl

vs
dvs (19)

The mixed potential function of the aircraft power system is given by:

P(i f , vs) = −
1
2

R f · i2f +
∫ vs

0

pcpl

vs
dvs + i f · (Veq − vs) (20)

Combining the stability definition of mixed potential function, we can get:

Aii =
∂2 A(i f )

∂i2f
=

∂2( 1
2 R f · i2f )
∂i2f

= R f (21)

Bvv =
∂2B(vs)

∂v2
s

=
∂2(
∫ vs

0
Pcpl
vs

dvs)

∂v2
s

= −
Pcpl

vs2 (22)

Both L
−1/2

f · Aii · L
−1/2

f and C
−1/2

dc · Bvv ·C
−1/2

dc are first-order matrix, due to the equivalent inductance
and capacitance are represented by only one inductor Lf and one capacitor Cdc in the equivalent circuit,
and their minimum eigenvalue u1 and u2 are:

u1 = min
[
λ(L

−1/2

f · Aii · L
−1/2

f )
]
=

R f

L f
(23)

u2 = min
[
λ(C

−1/2

dc · Bvv · C
−1/2

dc )
]
= −

Pcpl

Cdcv2
s

(24)

By (17) and (20), the global Lyapunov energy function of system can be obtained as:

P∗(i f , vs) =
u1 − u2

2
· P(i f , vs) +

1
2
· 1

L f
(Veq − R f · i f − vs)

2 +
1
2
· 1

Cdc
(

Pcpl

vs
− i f )

2

(25)

According to the stability theory of mixed potential function [23], for all if and vs belong to some
region, if:

u1 + u2 > 0 (26)

and P∗(i f , vs)→ ∞ when
∣∣∣i f

∣∣∣+ |vs| → ∞ , then all the solutions of the system will tend to steady
operating point, and the system can finally run stably.

From Equations (23), (24) and (26), the criterion for large signal stability of aircraft power system
under unified large signal model can be obtained as:

Pcpl

V2
s

<
R f Cdc

L f
(27)

3.3. Unified Criterion for Large and Small Signal Stability

In order to ensure that Equation (27) can be satisfied continuously during a large signal
disturbance, the critical minimum Vsmin that output voltage Vs may reach should be taken into
account. Therefore, the Equation (27) can be rewritten as:

Pcpl

V2
smin

<
R f Cdc

L f
(28)

Alignment of the constraints of Equations (15) and (28) indicates that, since the critical minimum
Vsmin of the system output voltage during the disturbance process is less than the rated output
voltage Vs,0, the criterion for large signal stability (Equation (28)) covers the criterion for small signal



Energies 2017, 10, 1739 9 of 15

stability (Equation (15)). That is, the system parameters must meet more stringent conditions if the
aircraft power system is to remain stable under larger signal disturbances as compared to small signal
disturbances. On the other hand, it is also proved that the stability of aircraft power systems under
small signal disturbance doesn’t represent the stability under large signal disturbance.

Hence, based on the unified large signal model of aircraft power system, shown in Figure 4, the
stability criterion shown in Equation (28) is suitable for both large and small signal stability analysis.
The aircraft power system is able to remain stable under either small or large signal disturbances as
long as the inequality (28) is satisfied. The combination of two stability criteria helps to further simplify
the analysis process of aircraft power system.

4. Simulation Verification

This paper tries to verify the reliability of the unified criterion for large and small signal stability
derived from the unified large signal model established by the AVM. A detailed simulation experiment
is implemented by the MATLAB and simulation results are compared with the theoretical calculation
results. Meanwhile, by taking a permanent magnet synchronous motor (PMSM) as load, a large signal
disturbance experiment of short-circuit fault is carried out to further verify the accuracy of the unified
large signal model.

4.1. Validation of the Stability Criterion

The equivalent circuit of the unified large signal model of aircraft power system shown in Figure 4
is used as an experimental object, which parameters are shown in Table 1.

Table 1. Simulation parameters of aircraft power system.

Parameter Value Parameter Value

Vm 162/V Ldc 50/uH
f 400/Hz Cdc 20–160/uF

Lp 30/uH Rdc 0.5/Ω
Ls 80/uH Pcpl 0.5–4.0/kW

For analysis of small signal stability, the eigenvalues of the system are calculated from the matrix
A(x0, u0) in Equation (12). The eigenvalues plotted by slowly changing Pcpl from 0.5 kW to 4.0 kW is
shown in Figure 5.Energies 2017, 10, 1739  10 of 15 
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As can be seen from Figure 5, the eigenvalues of the power system are gradually shifting to the
right when the size of constant power load is increasing slowly. In particular, the eigenvalue becomes 0
when power is increased to 3.535 kW, and the system is under a critical condition of stability according
to the stability theorem of Lyapunov linearization method. Furthermore, if the load power increases
continuously, the system will become unstable since the real part of eigenvalue becomes positive.

The large disturbance stability of aircraft power systems under load change is studied by adopting
the mixed potential function theory and the simulation result as shown in Figure 6. It can be seen
that the stability region of the system decreases as the load power step increases, and when the load
power reaches about 3.2 kW, the stability domain tends to 0, i.e., the system will be in the critical
stable state. Thus, the parameters of aircraft power system need to meet more stringent conditions
to maintain stability under large signal disturbances, as compared with the parameters under small
signal disturbances.

Energies 2017, 10, 1739  10 of 15 

 

Pcpl=3.535kW

Pcpl=3.6kW

Real(eigenvalues)

Im
ag

(e
ig

en
v
al

u
es

)

 

Figure 5. Eigenvalue plot of system. 

As can be seen from Figure 5, the eigenvalues of the power system are gradually shifting to the 

right when the size of constant power load is increasing slowly. In particular, the eigenvalue 

becomes 0 when power is increased to 3.535 kW, and the system is under a critical condition of 

stability according to the stability theorem of Lyapunov linearization method. Furthermore, if the 

load power increases continuously, the system will become unstable since the real part of eigenvalue 

becomes positive. 

The large disturbance stability of aircraft power systems under load change is studied by 

adopting the mixed potential function theory and the simulation result as shown in Figure 6. It can 

be seen that the stability region of the system decreases as the load power step increases, and when 

the load power reaches about 3.2 kW, the stability domain tends to 0, i.e., the system will be in the 

critical stable state. Thus, the parameters of aircraft power system need to meet more stringent 

conditions to maintain stability under large signal disturbances, as compared with the parameters 

under small signal disturbances. 

 

Figure 6. Changes in system stability region. 

Figure 7 shows the time domain simulation result of the stability effect is caused by different 

load powers of an aircraft power system. It can be seen that the system couldn’t maintain stability 

when the constant power load increases to 3.6 kW, causing vibration and divergence of load voltage. 

Furthermore, the simulation results shown in Figures 5 and 6 indicate that the stability region 

Current  / (A)

V
o
lt
a
g
e
 /

 (
V

)

 

 

-100 -80 -60 -40 -20 0 20 40 60 80 100
-300

-200

-100

0

100

200

300

Pcpl=0.5kW

Pcpl=1.5kW

Pcpl=2.5kW

Figure 6. Changes in system stability region.

Figure 7 shows the time domain simulation result of the stability effect is caused by different load
powers of an aircraft power system. It can be seen that the system couldn’t maintain stability when the
constant power load increases to 3.6 kW, causing vibration and divergence of load voltage. Furthermore,
the simulation results shown in Figures 5 and 6 indicate that the stability region calculated by the
Lyapunov linearization method and the mixed potential function theory is approximately consistent
with the time domain simulation result within a certain range, verifying that the unified large signal
model is viable and accurate for the stability analysis of aircraft power systems.

In addition, the use of the unified large signal model is still feasible to analyze the system’s
stability when other disturbances occur in an aircraft power system. Figure 8 shows the stability results
caused by the parameters of filter capacitance under small and large signal disturbances, respectively.
It can be seen that the airborne power system based on the unified large signal model can be easily
used to analyze the change of the system stability domain with the parameters, and the calculation
process is simple and time-consuming.
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4.2. Simulation Example of Large Signal Disturbance

In an aircraft’s electro-mechanical actuator system, a short-circuit fault is a common large signal
disturbance. In this paper, taking a PMSM as a load of the unified large signal model, a simulation
experiment is carried out. The load model of PMSM is shown in Figure 9, including inverter, PMSM
and its controller.

The parameters of PMSM and its controller are shown in Table 2.

Table 2. Simulation parameters of PMSM.

Parameter Value Parameter Value

Stator resistance 2.875/Ω Rotational inertia 0.008/kg·m2

Exciting flux 0.175/Wb Pole-pairs number 1
Stator d-axis inductance 0.0085/uH Speed regulator Kp/Ki 11.7/140
Stator q-axis inductance 0.0085/uH Current regulator Kp/Ki 10.7/80
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Figure 9. Simulation schematic based on PMSM.

The simulation experiment of short circuit fault in the aircraft power system is implemented with
the results shown in Figure 10.
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Figure 10. Large disturbance simulation experiment with PMSM load (P = 0.5 kW): (a) Voltage
fluctuation; (b) Current fluctuation.

The simulation results in Figure 10 show that, the system is stable before the short-circuit fault
occurs; the voltage suddenly drops to zero when the large disturbance of short-circuit fault occurs; and
the system is restored to stability after the fault is removed. In addition, with the PMSM load model,
the stability domain under large signal disturbance calculated by the mixed potential function theory
is shown in Figure 11.

Figure 11 indicates that, the system’s stability domain boundary calculated by the mixed potential
function theory covers a large range around the stable point, which can be used to evaluate the system’s
ability of resisting large signal disturbance, direct the optimal design of system. It is further validated
that the unified large signal model of aircraft power systems established in this paper is effective.
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4.3. Discussion

Simulation results show that the proposed unified large signal model of aircraft power systems
can generate about 1.8% of error when it is used to analyze small signal stability problems. In addition,
the proposed unified large signal model yields about 13.3% of error when it is applied to deal with
large signal stability problems. Therefore, within a certain error range, the proposed model can be
used to deal with both small and large signal stability problems, even though it has smaller error
when applied to solve small signal stability problems. Compared with [16], which generates about
1.5% of error when dealing with small signal stability problem, this method does however reduce the
simulation accuracy:

(1) The proposed method can not only be used to analyze small signal problem, but also to analyze
large signal problems of aircraft power systems;

(2) The proposed method successfully reduces the order of aircraft power system models by using
a reasonable and appropriate equivalent. By doing that, aircraft power system models can
be simplified. This has many potential benefits for the theoretical analysis of aircraft power
system stability;

(3) The proposed method avoids calculating complicated impedance in the process of solving the
stability criterion; therefore, it reduces the amount of calculation work.

5. Conclusions

From the research perspective of large signals, this paper develops a unified large signal model
of aircraft power systems based on the AVM, in which small and large signal stability are studied by
the Lyapunov linearization method and the mixed potential function theory, respectively, obtaining a
unified stability criterion of large and small signal disturbances.

Analysis and simulation results show that the unified large signal simplification model of aircraft
power systems proposed in this paper can be effectively applied to analyze the stability of the systems
when small or large disturbances occur.

The most remarkable advantage of the unified large signal model is that the large and small signal
stability criteria of complex aircraft power systems are combined by constructing a reasonable and
simplified model, which in turn simplifies the design process, avoids complicated and cumbersome
calculations, and is able to quickly and accurately judge the stability of aircraft power systems. With
simplicity, universality and structural uniformity, the model lays a good foundation for the stability
analysis and the optimal design of aircraft power systems.
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