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Abstract: This paper proposes an approach toward solving an issue pertaining to measuring
compressible data in large-scale energy-harvesting wireless sensor networks with channel fading.
We consider a scenario in which N sensors observe hidden phenomenon values, transmit their
observations using amplify-and-forward protocol over fading channels to a fusion center (FC), and the
FC needs to choose a number of sensors to collect data and recover them according to the desired
approximation error using the compressive sensing. In order to reduce the communication cost,
sparse random matrices are exploited in the pre-processing procedure. We first investigate the sparse
representation for sensors with regard to recovery accuracy. Then, we present the construction of
sparse random projection matrices based on the fact that the energy consumption can vary across the
energy harvesting sensor nodes. The key ingredient is the sparsity level of the random projection,
which can greatly reduce the communication costs. The corresponding number of measurements is
chosen according to the desired approximation error. Analysis and simulation results validate the
potential of the proposed approach.

Keywords: compressive sensing; energy harvesting; sparse random projection

1. Introduction

A wireless sensor network (WSN) is an intelligent system with data collection, data fusion
and independent transmission, which involves in many applications such as military surveillance,
embedded systems, computer networks and communications. It consists of several sensors and each
node is generally small in size and has a battery of limited capacity and energy. The lifetimes of WSNs
thus are extremely limited by the total energy available in the batteries. Thus, using optimal techniques
for energy management such as energy harvesting (EH), we can prolong the lifetime and duration of
maintenance-free operation of WSNs. For instance, the energy existing in our environment from solar,
wind, and thermal sources is converted into that can be used electrically. The advantages of EH-WSN
solutions include high reliability, low energy needs, time savings, ecological compatibility and cost
benefits [1–3]. In EH-WSN, each sensor node provides two functionalities: sensing, transmitting data
to the fusion center (FC), and harvesting energy from ambient energy sources. The FC collects and
reconstructs the observed signal by querying only a subset of sensors [4,5]. In order to reduce the
energy consumption while forwarding observations to FC, we consider an innovative data gathering
and reconstruction process based on three key subproblems: (i) compressive sensing (CS) based data
acquisition; (ii) transmission of sparse random projection under fading for adapting random energy
availability in EH systems; and (iii) CS based data reconstruction.
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Data collected from wireless sensors are typically correlated, and are thus compressible in
some appropriate domains. According to the CS theory, if a signal x ∈ CN is compressible, it can
be well approximated using a small number k � N of orthogonal transform coefficients [6–8].
Based on the CS model, the FC receives a compressed approximation of the original signal at multiple
nodes by exploiting dense random matrix, i.e., all of the EH sensors in the networks participate
in forwarding observations, and the FC randomly chooses them. However, in order to avoid this
situation, which consumes a large amount of energy, we first have to build a sparse random projection
such that the information can be extracted from any k-sparse signal. Second, we need to design a
suitable recovery algorithm to reconstruct the original signal with good accuracy for given energy
neutral conditions. Therefore, it would be good for EH sensors to prolong their lifetime and for FC to
query an appropriate number of random projections and to still reconstruct a good approximation.
Regarding sparse random projections, a good random projection will preserve all pairwise distances
with a high probability. Thus, it can be used as a reliable estimator of distances in the original
space. In [9], the authors proposed a distributed compressive sensing scheme for WSNs, where the
sparsity of the random projections is used consistently to reduce the computational complexity and
the communication cost. They also proved that the sparse random projections are sufficient to recover
a data approximation that is comparable to the optimal k-term approximation with a high probability.
With the fading channel and energy-harvesting constraints, the problems regarding sparsity of random
projections are studied in [10,11]. In [10], the authors only considered additive white Gaussian noise
(AWGN) channels, while, in [11], the authors focused on Rayleigh fading channels and investigated
sufficient conditions for guaranteeing a reliable and computationally-efficient data approximation for
the sparse random projections. Due to the harvesting conditions, the sensors typically have different
energy harvesting rates that lead to different available energy constraints. However, the sparsity
factors in the aforementioned works have been assumed to be homogeneous for all sensors and were
kept fixed for entire transmission states. Thus, they cannot be responsive to battery dynamics and
channel conditions. To overcome those issues, we consider a dynamic sparsity factor that relates to
the available energy constraints of wireless sensors and transmission between them, and then build a
sparse random projection matrix that is stable and robust under channel fading effects and CS recovery.

The main purpose of this paper is to study sparse representation and sparse random projection
for EH WSNs under fading channels. We consider a problem of data transmission in EH WSNs where
multiple sensors send spatially-correlated data to a fusion center using amplify-and-forward (AF)
protocol over independent Rayleigh fading channels with additive noise. Supposing that the measured
data are compressible under an approximate orthogonal transform, our task is first choosing a certain
number of sensors to query according to the desired approximation error by designing a sparse random
projection matrix, and then exploiting the CS recovery algorithm to obtain an optimal approximation.
Inspired by the work in [12] on sparse random projections for heavy-tailed data, we propose a random
projection-based CS scheme where the sparsity factor is dynamic due to energy constraints. We also
prove that, under the fading channel condition, our projection matrix still satisfies the restricted
isometry property (RIP) for successful recovery in CS.

The organization of this paper is as follows. In Section 2, we introduce the problem of recovering
a signal observed by an EH WSN under channel fading, and briefly introduce the compressive sensing.
In Section 3, we present our construction on basis representations for compressible data and sparse
random projection design. Section 4 proves that our sparse random matrices preserve the pairwise
distance under the fading and guarantee the reconstruction accuracy subject to the energy constraints.
The simulation results and conclusion are presented in Sections 5 and 6, respectively.

Notations: We denote A = [aij] as a matrix whose entries are aij, (·)−1 as the matrix inverse
operation, (·)∗ as the conjugate transpose, b·c as the floor operation, |T| = supp(T) as the number of
elements in a given set T, E(·) and Var(·) as the expectation and the variance operators, respectively.
The `p norm of a vector x = [x1 · · · xn]T is defined as ||x||p = (∑n

i=1 |xi|p)1/p for a positive integer
p. We call a signal x is a k-sparse vector if ||x||0 , | supp(x)| ≤ k. The notation O(·) denotes the
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complexity operation, CN (µ, Σ) denotes the circularly symmetric complex Gaussian distribution with
mean µ and covariance Σ, and w ∼ CN (µ, Σ) means that w is distributed according to CN (µ, Σ),

alternatively, w ∼ N
(

µ, 1
2

[
Re(Σ) − Im(Σ)
Im(Σ) Re(Σ)

])
.

2. System Model

2.1. Problem Formulation

We consider an EH-WSN consisting of N sensors, each of which observes a single value xj ∈ C
then transmits it to the FC with the AF protocol. Note that the decode-and-forward (DF) approach
can be used for sensor transmissions, where we apply digital modulation schemes to transmit the
data. However, as shown in [13–15], for a simple distributed sensor network, the AF approach over
multiple-access channel (MAC) is optimal for signal detection and estimation, as well as saving energy
in relaying data. Thus, we restrict our analysis in this paper to analog transmission suitable for
energy-constrained EH-WSNs, while digital modulated signals will be considered in the future work
The FC collects the received signals in M (M < N) time slots and recovers the original signal based on
this measurement as

y = Bx + w, (1)

where B = H � A with � representing the Hadamard product. The matrix H = [hij] ∈ CM×N

represents the flat fading channels between the sensors and the FC, which is a random matrix
having independent and identically distributed (i.i.d.) complex circular Gaussian entries with
zero-mean and unit variance, i.e., hij = hR

ij + jhI
ij, where hR

ij ∼ N (0, 1
2 ) and hI

ij ∼ N (0, 1
2 ). The matrix

A = [aij] ∈ RM×N represents the random projection with energy constraints, which will be described
later, x = [x1, · · · , xN ]

T is the transmitted vector, and w = [w1, · · · , wM] is the additive noise where
each wj ∼ CN (0, σ2

w). The real-value of Equation (1) can be written as

ŷ =

[
Re(H�A) − Im(H�A)

Im(H�A) Re(H�A)

] [
Re(x)
Im(x)

]
+

[
Re(w)

Im(w)

]

= B̂

[
Re(x)
Im(x)

]
+

[
Re(w)

Im(w)

]
,

(2)

where

B̂ =

[
Re(H)�A − Im(H)�A
Im(H)�A Re(H)�A

]
∈ R2M×2N . (3)

Our goal is to find a good approximation for x given y and B. According to the CS theory, for a
given upper bound of error ε, the FC can recover x by solving the following optimization problem [6]:

x̂ = min
z∈CN

||z||1 subject to ||y− Bz||22 ≤ ε. (4)

However, in order to obtain recovery guarantees of a given x based on Equation (4), some essential
conditions for x and B will be considered in the next section.

2.2. Signal Reconstruction with Compressive Sensing

We define Σk by the set of all k-sparse signals as Σk = {x ∈ CN , ||x||0 ≤ k}. We say that the matrix
B satisfies the restricted isometry property (RIP) of order k if there exists a number δ ∈ (0, 1) such that
(1− δk)||x||22 ≤ ||Bx||22 ≤ (1 + δk)||x||22, ∀x ∈ Σk. The best k-term approximation denoted by xk, can be
obtained by
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xk = arg min
z∈Σk
||x− z||1. (5)

We suppose that B satisfies the RIP of order 2k, i.e., Bx1 6= Bx2 for any pair x1, x2 ∈ Σk,
where x1 6= x2, and the corresponding restricted isometry constant δ2k <

√
2 − 1. For a given

measurement y in Equation (1), where ||w||2 ≤ ε, and the solution of Equation (4) obeys

||x̂− x||2 ≤ c0ε + c1
||x− xk||2√

k
, (6)

where c0 = 4
√

1+δ2k
1−(1+

√
2)δ2k

, c1 = 2 1−(1−
√

2)δ2k
1−(1+

√
2)δ2k

, according to the results in [8].

3. Compressive Sensing for Wireless Energy Harvesting Nodes

3.1. Motivation

In this section, we present the idea of constructing a sparse random projection and
basis representation for achieving a significant speed up with little loss in accuracy recovery.
First, we introduce an appropriate sparse representation basis for complex data, which takes into
account data transmission cost and data recovery quality. The goal of this step is to obtain the sparse
representation learned from the sensor data; thus, it has the ability to adapt the signal under fading.
Second, we provide the concept of the sparse random projection, which is used for measurement matrix
design. This design ensures that each sampling value represents one CS measurement guaranteeing a
successful recovery, and satisfies the assumptions of energy on sensing. Finally, we verify the sparsity
level and the RIP condition for the sensing matrix.

3.2. Basis Representation for Compressible Data

In practice, the signal x may not be sparse, but we want to resolve it in a certain sparse basis Ψ,
i.e., x = Ψα, where Ψ is a unitary N×N matrix and α ∈ CN has at most k < bN

2 c non-zero components.
The matrix Ψ can be obtained either from an appropriate transform (e.g., wavelets transform, discrete
Fourier transform, etc.) or from learning a dictionary to perform best based on a training set [16].
In this case, we require that BΨ satisfies the RIP and the performance will depend on ||α̂− α||2. We can
sort elements of the vector x in the decreasing order of magnitude, where the i-th largest coefficient
satisfies |xI(j)| ≤ Gi−1/r, j = 1, · · · , N. Here, I ⊂ {1, · · · , N} represents the index set of the sorted
elements, where |I(j)| ≤ M� N. For a rate of decay 0 < r < 2, the approximation error in `2-norm
can be obtained by taking the k largest coefficients as

||x̂− x||2 = ||α̂− α||2 ≤ (rs)−
1
2 Gk−s, (7)

where G is a constant and s = 1
r −

1
2 [7].

3.3. Measurement Matrix: Sparse Random Projection Design

We first introduce the Johnson–Lindenstrauss (JL) lemma and its connection with the random
matrix constructions of CS with regard to the stable embedding of a finite set of points under a random
dimensionality-reducing projection. This lemma is stated as follows.

Lemma 1. Let Q be a collection of finite points in RN . Given 0 < ε < 1 and β > 0, let A be a random
orthogonal projection from RN to RM with M� N and

M ≥
(

4 + 2β

ε2/2− ε3/3

)
log(|Q|). (8)
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According to [17], with probability at least 1− |Q|−β, for all qi, qj ∈ Q, i 6= j, the following statement holds

(1− ε)

√
M
N
||qi − qj||22 ≤ ||Aqi −Aqj||22 ≤ (1 + ε)

√
M
N
||qi − qj||22. (9)

With respect to the JL lemma, the authors in [9,10] consider the AWGN channel, where the random
projection matrix A with i.i.d. entries is defined as

aij =
1
√

ρ


+1, with probability (w. p.) ρ

2 ,

0, w. p. 1− ρ,

−1, w. p. ρ
2 ,

(10)

where ρ is a factor that provides the probability of measurement and controls the sparsity level of A.
For example, if ρ = 1, the random matrix has no sparsity, and if ρ =

log N
N , the expected number of

non-zeros in each row is log N. Moreover, these authors proved that the aij are four-wise independent
in rows and independent across rows, i.e.,

E[aij] = 0, E[a2
ij] = 1, E[a4

ij] =
1
ρ

. (11)

Note that the energy consumed for wireless transmission cannot exceed the energy available in
each slot. Thus, it is reasonable to take into account both the energy constraint and the sparse random
projection for reducing data transmission cost and improving data recovery quality. With regard to
fading channels, Ref. [11] gave us an improvement of Equation (10), with which the projected data
matrix A is associated with a squared-amplitude bj > 0. Each entry is

aij =
√

bj


+1, w. p. ρ

2 ,

0, w. p. 1− ρ,

−1, w. p. ρ
2 ,

(12)

for j = 1, · · · , M. Given an available energy Ej, the value of bj is chosen such that

ρbj ≤ Ej, j = 1, · · · , N. (13)

It leads to E(a2
ij) =

pbj√
N
≤ Ej, that is, the energy can be saved for the future transmission. In this

paper, we define our sparse measurement matrix as A = [aij], where each entry aij is defined by

aij =
4
√

N
√

ρij


+1, w. p.

ρij

2
√

N
,

0, w. p. 1− ρij,

−1, w. p.
ρij

2
√

N
.

(14)

Based on the definition of A in Equation (14), the measurement vector y can be expressed as in
Equation (1). In the sequel, we explain the reasons for choosing this sparse random projection.

(i) It has been shown that the conventional random projections A ∼ N (0, 1) are appropriate only
for the `2 norm, while, in many applications, there is greater concern for the inner product [12].
Moreover, one can use 1

ρ � 3 in Equation (10) to speed up the computation process [12].
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(ii) The projection given in Equation (14) selects the sensor to transmit and assigns weights to the data
according to the harvested energy at the sensor. For instance, the sparsity of random projection
given Eij, can be defined as

ρij =
popt

ij

Eij
, (15)

where popt
ij is the optimal power allocation and Eij is the available energy of node j during the i-th slot.

Therefore, we obtain

E(aij) = 0, E(a2
ij) = Var(aij) = 1, E(a4

ij) =

√
N

ρij
. (16)

4. Proposed Distributed Algorithm and Analysis

4.1. Sparse Random Projection with Fading Channels

Suppose that we have two input vectors x1 = [x(1)1 , · · · , x(1)N ]T , x2 = [x(2)1 , · · · , x(2)N ]T ∈ CN

(alternatively, x1, x2 ∈ R2N) and the random matrix B̂ = [b̂ij] given in Equation (3). The corresponding
projections of x1 and x2 are defined by

u =
1√
M

B̂x1, v =
1√
M

B̂x2 ∈ R2M. (17)

We also assume that under fading the channel matrix H is independent of the random matrix A.
Thus, we have

E(b̂ij) = 0, E(b̂2
ij) = Var(b̂ij) = 1, and E(b̂4

ij) =
3
√

N
ρij

. (18)

The sparse random projection A is desired to have the properties of length, distance, and inner
product preservation. We need to check that those properties are still preserved under fading channel
conditions. In order to check the length preservation of the sparse random matrix B̂, we first express
E(||u||22) = ∑2M

i=1 E(u2
i ), where

E(u2
i ) =

1
2M

E
[

2N

∑
j=1
{x(1)j }

2b̂2
ij + ∑

l 6=m
x(1)l x(1)m b̂il b̂im

]

=
1

2M

[
2N

∑
j=1
{x(1)j }

2E(b̂2
ij) + ∑

l 6=m
x(1)l x(1)m E(b̂il)E(b̂im)

]

=
1

2M

[
2N

∑
j=1
{x(1)j }

2

]
=

1
2M
||x1||22.

Thus, E(||u||22) = ∑2M
i=1

1
2M ||x1||22 = ||x1||22.

For the distance preservation, we have

E(||u− v||22) =
2M

∑
i=1

E[(ui − vi)
2]

=
2M

∑
i=1

1
2M

[
2N

∑
j=1
{x(1)j − x(2)j }

2E(b̂2
ij)

]

=
2M

∑
i=1

1
2M
||x1 − x2||22 = ||x1 − x2||22.
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Similarly, we can compute the inner product as E(u · v) = E(uTv) = ∑2M
i=1 E(uivi), where

E(uivi) = E
[

1
2M

(
2N

∑
j=1

x(1)j b̂ij

)(
2N

∑
j=1

x(2)j b̂ij

)]

=
1

2M

2N

∑
j=1

[
x(1)j x(2)j E(b̂2

ij) + ∑
l 6=m

x(1)l x(2)m E(b̂il)E(b̂im)

]

=
1

2M

2N

∑
j=1

x(1)j x(2)j =
1

2M
xT

1 x2.

Thus, the inner product is still preserved by applying B̂ since we have E(u · v) = x1 · x2.

4.2. Stability and Robustness of Sparse Random Projections

By partitioning the sparse random matrix B̂ into B̂(1), · · · , B̂M2 , where each B̂(`)(` = 1, · · · , M2)

has size M1 × N and 2M = M1M2 (M1 and M2 will be determined later), the corresponding
measurement y ∈ R2M can be split into M2 vectors {y(1), · · · , y(M2)

}. Each y(`) ∈ RM1 is defined as

y(`) = B̂(`)x + w(`). (19)

We let z(`) = B̂(`)ψ, where ψ ∈ R2N and ||ψ||22 = 1. Thus, we can perform

zT
(`)y(`) = ψTB̂T

(`)B̂(`)x + ψTB̂T
(`)w(`) =

M1

∑
i0=1

u(`)
i0

+
M1

∑
i0=1

v(`)i0
, (20)

where u(`)
i0

=
(

∑2N
j=1 b̂(`)i0 j ψj

) (
∑2N

j=1 b̂(`)i0 j xj

)
and v(`)i0

= (∑2N
j=1 b̂(`)i0 j ψj)wi0 . The corresponding means,

variances of ui, vi, and their covariances can be calculated as

E[u(`)
i0

] = ψTx, (21)

Var[u(`)
i0

] = (ψTx)2 + ||ψ||22||x||22 +
2N

∑
j=1

3
√

N

ρ
(`)
i0 j

− 3

 x2
j ψ2

j , (22)

E[v(`)i0
] = 0, (23)

Var[v(`)i0
] = σ2

w||ψ||22, (24)

Cov[u(`)
i0

, v(`)ī0
] = 0. (25)

The detailed derivations of Equations (21)–(25) are given in the Appendix A. Thus, we obtain

E
[

1
M1

zT
(`)y(`)

]
=

1
M1

{
E
[

M1

∑
i=1

u(`)
i

]
+E

[
M1

∑
i=1

v(`)i

]}
= ψTx, (26)

Var
[

1
M1

zT
(`)y(`)

]
=

1
M2

1

[
M1

{
(ψTx)2 + (||x||22 + σ2

w)||ψ||22
}
+

M1

∑
i0=1

2N

∑
j=1

3
√

N

ρ
(`)
i0 j

− 3

 x2
j ψ2

j

]
. (27)
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For any ε > 0, using the Chebychev’s inequality and the fact that ||ψ||22 = 1, we have

P
{∣∣∣∣ 1

M1
zT
(`)y(`) −ψTx

∣∣∣∣ ≥ ε||x||2
}
≤

Var
[

1
M1

zT
(`)y(`)

]
ε2||x||22

=
1

ε2M2
1

M1

[
(ψTx)2

||x||22
+
||x||22 + σ2

w

||x||22

]
+

∑M1
i0=1 ∑2N

j=1

(
3
√

N
ρ
(`)
i0 j

− 3

)
x2

j ψ2
j

||x||22


≤ 1

ε2M1

2 +
σ2

w

||x||22
+

2N

∑
j=1

3
√

N

mini0 ρ
(`)
i0 j

µ2

 , δ.

(28)

We have also used the fact that for any data vector u ∈ R2N , it satisfies the peak-to-total
energy condition, i.e., ||u||∞||u||2

≤ µ [10]. Following the approach given in [9], the probability

that an estimate lies outside the tolerable approximation interval cannot exceed e−c2 M2/12, where

0 < c < 1. Setting M1 = O
[

1
ε2

{
2 + σ2

w
||x||22

+ ∑2N
j=1

3
√

N
mini0 ρ

(`)
i0 j

µ2

}]
yields δ = 1

4 , and setting

M2 = O[(1 + η) log 2N] gives pe ≤ (2N)−η for some constant η > 0. Finally, for M = 1
2 M1M2 =

1
2O
[

µ2(1+η)
ε2

(
2 + σ2

w
||x||22

+ ∑2N
j=1

3
√

N
mini0 ρ

(`)
i0 j

)
log 2N

]
, the sparse random matrix B̂ can preserve all the

pairwise inner products within an approximation error ε with the probability of at least 1− (2N)−η .

Remark 1 (Complexity Analysis). According to CS model with a dense random matrix [6,8], it requires at
least O(k log N

η ) measurements for obtaining an approximation via `1-minimization problem in Equation (4)
with probability exceeding 1− η, and the CS decoding has computational complexityO(N3). On the other hand,
the sparse random projection scheme requires at least O(k2 log N) random projections and the corresponding
decoding process takes O(MN log N), where M is the number of measurements. Since k� N, using sparse
random projection attains low decoding complexity, which makes it applicable for EH sensors, while the FC can
request a little more measurements from sensors and recover the signal with a better approximation. Our proposed
scheme has inherited this advantage and optimized the sparsity level, which adapts to channel conditions and
energy constraints.

4.3. Sparsity Level and RIP Verification

Following the signal model in Equation (1), i.e., y = B̂Ψα + w, the decoding process is to recover
the sparse signal α instead of recovering the sensor data x by using Equation (4). However, we must
verify that Ψ satisfies the sparse basis representation in RN and the matrix Z̄ = B̂Ψ obeys the RIP
condition to guarantee successful recovery via `1-minimization.

To analyze the feasibility of the measurement matrix and the sparse basis design, we have to
answer the following two questions:

(1) Is it reasonable to select Ψ obtained from Section 3.2 as an orthogonal basis for x?
(2) For the matrix A obtained from Section 3.3, does Z̄ = B̂Ψ obey the RIP condition?

First, as we demonstrated in Section 3.2, the matrix Ψ is obviously an orthogonal basis in CN from
an appropriate transformation. Otherwise, it can be an overcomplete dictionary from data learning
approach, which promised to represent a wider range of signal phenomena [16].

Second, in order to show that the random variable ||Zα||2 is highly concentrated about ||α||2,
we can assume that the row of B̂ is independent of Ψ. Fixing ε ∈ (0, 1), and with each row of Z̄
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satisfying the sub-Gaussian distribution, we prove that Z = [zi]
M
i=1 = 1√

M
[z̄1, · · · , z̄M]T will satisfy the

RIP with high probability, i.e.,

(1− ε) ≤ |
||Zα||22
||α||22

≤ (1 + ε), ∀α ∈ Σk. (29)

To do that, we prove that each part of the matrix Z = ZR + jZI satisfies the RIP for complex
data α, i.e.,

1
2
(1− ε) ≤ |

||ZRα||22
||α||22

≤ 1
2
(1 + ε), (30)

and
1
2
(1− ε) ≤ |

||ZIα||22
||α||22

≤ 1
2
(1 + ε), ∀α ∈ Σk. (31)

First, in order to to prove Equation (30), by letting ZR = [zR
ij ], we have

E(zR
i · α) = E

(
N

∑
j=1

zR
ij αj

)
=

N

∑
j=1

E(zij)
Rαj = 0,

Var(zR
i · α) = Var

(
N

∑
j=1

zR
ij αj

)
=

N

∑
j=1

Var(zR
ij )α

2
j =
||α||22

M
,

E(||ZRα||22) = E
[

M

∑
i=1

(zR
i · α)2

]
=

M

∑
i=1

E(zR
i · α)2

=
M

∑
i=1

Var(zR
i · α) =

M

∑
i=1

||α||22
M

= ||α||22.

Then, following Theorem 4.2 of [18], we obtain P
[
||ZRα||22
||α||22

≤ 1
2 (1− ε)

]
= e−Mε2/4c2

and

P
[
||ZRα||22
||α||22

≥ 1
2 (1 + ε)

]
= e−Mε2/4c2

. Thus,

P

(∣∣∣∣∣ ||ZRα||22
||α||22

≤ 1
2

∣∣∣∣∣ ≥ ε

2

)
≤ 2e−Mε2/4c2

. (32)

Fixing an index set I ⊂ {1, · · · , N} with |I| = k, there are

(
N
k

)
possible k-dimensional

subspaces of ZR and the probability of a k-sparse vector α satisfying
(∣∣∣∣ ||Zα||22
||α||22

≤ 1
2

∣∣∣∣ ≥ ε
2

)
is given

by 2(eN/k)ke−M2ε2/4c2
= O(k log(N/k)). Here, we use the Sterling’s approximation, which states

that k! ≥ (k/e)k. Thus, it leads to

(
N
k

)
≤ (eN/k)k. Finally, we conclude that the probability of ZR

satisfying the RIP for all k-sparse vector α approaches 1
2 . Similarly, we obtain the same result for ZI .

Remark 2 (trade-off between the MSE and the system delay). There exists a trade-off between the system
delay and the approximation error, which is described as follows. For an allowable mean-square error (MSE)
ξ > 0, the achievable system delay D(ξ) is defined as

D(ξ) , min
M

M s.t. E(||α̂− α||22) ≤ ξ, (33)

where ξ relates to the bounded error in Equation (6).
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Thus, the total energy consumption for all sensors is D(ξ)×∑N
j=1

√
N

ρij
. In order to minimize the

total network energy consumption, ρij should be chosen to be as large as possible, or maximizing popt
ij

as shown in Equation (15), which leads to the following problem.

Remark 3 (throughput maximum problem). The optimal power allocation popt
ij in Equation (15) can be

obtained by solving the maximum output problem [19], which is given by

max
pij

M

∑
i=1

Cij

s.t.
i

∑
k=1

pkj ≤
i−1

∑
k=1

Ekj, k = 1, · · · , M,

i

∑
k=0

Ekj −
i

∑
k=1

pkj ≤ Pmax, k = 1, · · · , M− 1,

pij ≥ 0.

(34)

Here, Cij = ∑M
i=1 log2

[
1 +

pij |hij |2

∑n
l=1,l 6=j |hi l|2Eil+σ2

w

]
and the value Pmax is a constant that depends on the

hardware limitations. The above problem can be efficiently solved by using the iterative resource allocation
algorithm method [19].

5. Simulation Results

We now present the results of a number of numerical simulations that illustrate the effectiveness
of our approach. All simulations are performed in MATLAB R2015a (version 8.5.0.197613 (R2015a),
The MathWorks Inc., Seoul, Korea) on a 3.60 GHz Intel Core i7 machine with 8 GB of RAM. We use
MATLAB codes of the competing algorithms for our numerical studies. The vector x was assumed
to be uniformly distributed in the interval [1, 10]. In our work, we used the basis pursuit de-noising
algorithm [20] to compute the sparse solution in Equation (4). We evaluate the performance based on
the MSE, which is given by

MSE = E
{
||x̂− x||2
||x||2

}
. (35)

Figure 1 plots the MSE versus the compression ratio M/N for support cardinality k and fading
channels plotted for N = 100, σ2

w = 1, and Eij is uniformly distributed in the interval [0 dB, Emax],
where Emax = 2 dB and M ≥ O(k log N) to guarantee a stable recovery [6]. When Eij = 0 dB, ρij was
set at 0.25 as the conventional baseline. In order to minimize the total energy consumption, we can
perform the power allocation among different transmission time slots subject to the causality of the
harvested energy, which refers to the resource allocation problem with energy constraint. Note that
the sparsity level in Equation (15) is still adaptive since the optimal power allocations popt

ij obtained
by solving the maximum output problem [1] are dynamic. The MSE values decrease as k decreases,
as expected. We observed that the proposed scheme performs well compared to the conventional ones
with AWGN and Rayleigh fading channels. The performance gap between those schemes is getting
smaller when the ratio M/N increases. This is because when M is large enough, the MSE may not
achieve any improvements. We notice that the sparsity level of the random projection determines the
amount of communication. Increasing the sparsity level yields to decrease the preprocessing cost but
unfortunately increase the latency to recover a CS approximation. We will show this trade-off in the
simulation results.
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Figure 1. MSE versus different compressed ratios with fading channels.

Figure 2 shows the outage probability with several ρij intervals when k = 5 and N = 100.
The outage probability is defined as the probability that the matrix Z does not satisfy the RIP, which
scales as exp{−Mε2/4c2} as shown in Equation (32). For sufficiently large number M, we observe
that the optimal compressed rate M/N decreases as the sparsity level ρij increases. This means the
number of measurements M must approximately obey O(klog(N/k)) for effective CS recovery, while
it is large enough for minimizing the outage probability. Moreover, from the result in Section 4.2, since
M is proportional to ρij, the larger value of ρij leads to a smaller compressed ratio M/N for a fixed N.
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Figure 2. Outage probability with different sparsity levels.

Figure 3 illustrates a trade-off between the system delay and the MSE threshold ξ for the proposed
approach as we have discussed in Remark 2 when k = 5 and N = 100. We observed that the proposed
scheme achieves a better trade-off when either SNR or ξ increases as expected. This is because
higher SNR means the signal is more clearly readable, the CS recovery procedure will be much easier.
Moreover, for a tight MSE threshold, the procedure of choosing the estimate to minimize the expected
MSE will take longer, since the best MSE scaling depends on the value of M.

Allowable MSE ξ
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Figure 3. System delay for several allowable MSE thresholds.

Remark 4 (sparsity level option). This scheme is developed for transformative sensing mechanisms, which
can be used in conjunction with current or upcoming EH capabilities in order to enable the deployment of
energy neutral EH WSNs with practical network lifetime and improve data gathering rates. However, the
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sparsity level in Equation (15) should be carefully chosen to maintain a good trade-off between the MSE and the
system complexity. For example, when the channel condition is not good, we should select ρij large enough (e.g.,
ρij ≥ 1/4) to guarantee an acceptable MSE.

6. Conclusions

In this paper, we have aimed to address the problem of recovering a sparse signal observed by a
resource constrained in EH-WSNs for optimal data transmission strategy. By exploiting sparse random
projections, there are significant reductions of the data measurements to be made. First, we studied
a basis representation that can make the measurement matrix sufficiently sparse. The EH sensors
store the sparse random projections of data, and thus the FC can estimate using compressive sensing
with a sufficient number of measurements of sensors. Due to fading channels, the sparsity level can
be adaptively chosen according to the available harvested energy at each EH sensor. This approach
provides a better trade-off of the query latency and the desired approximation error, and also speeds
up the processing time. We plan to generalize this concept in future work to incorporate sparsity of
user activity and imperfect channel information as well. In addition, we would to like to emphasize
that there are many ideas in the literature that would certainly enhanced our proposed scheme.
We mentioned a few such possibilities as the following. First, we limited our analysis on AF protocol
while different approach such as applying channel coding, and then using a modulation scheme for
data transmission can be a huge open field. Second, approximation recovery for imperfect data via
different norm, e.g., `q-norm (0 < q ≤ 1), can be promising due to its high quality of solutions and
various types of sensing matrices that can be used in the CS reconstruction algorithms. Third, it needs
to further discuss how to design the sparsity parameter of the random projection matrix based on
different channel fading statistics so that the number of measurements required for signal recovery at
the FC is minimized. Finally, for many application of interests, we often have prior information on
addition constraints, e.g., rate-energy trade-off for simultaneous information and power transfer in
EH-WSNs. Thus, other sparse random projections can be provided according to those constraints.
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The following abbreviations are used in this manuscript:

AWGN Additive white Gaussian noise
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MAC multiple-access channel
MSE Mean-square error
JL Johnson–Lindenstrauss
RIP Restricted isometry property
SNR Signal-to-noise ratio
s.t. Subject to
WSN Wireless sensor network
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Appendix A. Proofs of Equations (21)–(25)

First, the mean and the variance of u(`)
i0

are calculated as follows:

E[u(`)
i0

] = E
[

2N

∑
j=1

(b̂(`)i0 j )
2ψjxj + ∑

j 6=j0

b̂(`)i0 j b̂(`)i0 j0
ψjxj0

]

=
2N

∑
j=1

E
[
(b̂(`)i0 j )

2
]

ψjxj + ∑
j 6=j0

E
[
b̂(`)i0 j

]
E
[
b̂(`)i0 j0

]
ψjxj0

= ψTx;

(A1)

E
[
(u(`)

i0
)2
]
= E

( 2N

∑
j=1

(b̂(`)i0 j )
2ψjxj

)2

+

(
∑
j 6=j0

b̂(`)i0 j b̂(`)i0 j0
ψjxj0

)2

+ 2

(
2N

∑
j=1

(b̂(`)i0 j )
2ψjxj

)(
∑
j 6=j0

b̂(`)i0 j b̂(`)i0 j0
ψjxj0

)
=

2N

∑
j=1

E
[
(b̂(`)i0 j )

4
]

ψ2
j x2

j + 2 ∑
j<j0

ψjxjψj0 xj0E[(b̂
(`)
i0 j )

2]E[(b̂(`)i0 j0
)2] + ∑

j 6=j0

ψ2
j x2

j0E[(b̂
(`)
i0 j )

2]E[(b̂(`)i0 j0
)2]

+ 2 ∑
j<j0

ψjxj0 ψj0 xjE[(b̂
(`)
i0 j )

2]E[(b̂(`)i0 j0
)2]

=
2N

∑
j=1

3
√

N
ρi0 j(`)

ψ2
j x2

j + 2 ∑
j 6=j0

ψjxjψj0 xj0 + ∑
j 6=j0

ψ2
j x2

j0

= 2

(
2N

∑
j=1

ψ2
j x2

j + ∑
j 6=j0

ψjxjψj0 xj0

)
+

(
2N

∑
j=1

ψ2
j x2

j + ∑
j 6=j0

ψ2
j x2

j0

)
+

2N

∑
j=1

(
3
√

N
ρi0 j(`)

− 3

)
ψ2

j x2
j

= 2(ψTx)2 + ||ψ||22||x||22 +
2N

∑
j=1

3
√

N

ρ
(`)
i0 j

− 3

 x2
j ψ2

j .

(A2)

Var[u(`)
i0

] = E
[
(u(`)

i0
)2
]
−
(
E[u(`)

i0
]
)2

= (ψTx)2 + ||ψ||22||x||22 +
2N

∑
j=1

3
√

N

ρ
(`)
i0 j

− 3

 x2
j ψ2

j .
(A3)

Similarly, we have

E[v(`)i0
] =

(
2N

∑
j=1

E[b̂(`)i0 j ]ψj

)
E[wi0 ] = 0, (A4)

E[(v(`)i0
)2] = E

( 2N

∑
j=1

b̂(`)i0 j ψj

)2

w2
i0

 =

(
2N

∑
j=1

E[(b̂(`)i0 j )
2]ψ2

j + 2 ∑
j 6=j0

E[b̂(`)i0 j ]E[b̂
(`)
i0 j0

]ψjψj0

)
σ2

w

=

(
2N

∑
j=1

ψ2
j

)
σ2

w = σ2
w||ψ||2,

(A5)

Var[v(`)i0
] = E[(v(`)i0

)2]−
(
E[v(`)i0

]
)2

= σ2
w||ψ||2. (A6)

The covariance of u(`)
i0

and v(`)ī0
is obtained as

Cov[u(`)
i0

, v(`)ī0
] = E

[
u(`)

i0
v(`)ī0

]
−E[u(`)

i0
]E[v(`)ī0

]

= E
[(

2N

∑
j=1

b̂(`)i0 j ψj

)(
2N

∑
j=1

b̂(`)i0 j xj

)(
2N

∑
j=1

b̂(`)ī0 j ψj

)]
E[wī0 ]−E[u(`)

i0
]E[v(`)ī0

]

= 0 since E[wī0 ] = 0 and E[v(`)ī0
] = 0.

(A7)
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