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Abstract: Accurate electricity forecasting is still the critical issue in many energy management
fields. The applications of hybrid novel algorithms with support vector regression (SVR) models to
overcome the premature convergence problem and improve forecasting accuracy levels also deserve
to be widely explored. This paper applies chaotic function and quantum computing concepts to
address the embedded drawbacks including crossover and mutation operations of genetic algorithms.
Then, this paper proposes a novel electricity load forecasting model by hybridizing chaotic function
and quantum computing with GA in an SVR model (named SVRCQGA) to achieve more satisfactory
forecasting accuracy levels. Experimental examples demonstrate that the proposed SVRCQGA model
is superior to other competitive models.

Keywords: chaotic mapping function; support vector regression (SVR); quantum genetic algorithm
(QGA); electricity demand forecasting

1. Introduction

With rapid economic development, accurate electricity load forecasting has become essential for
many energy applications, such as energy generation, power system operation security, load unit
commitment, and energy marketing. For example, power system decision makers can optimize load
dispatch and adjust the electricity supply/price based on the forecasted loads, i.e., improve the power
system management efficiency. As indicated in Xiao et al. [1], in China, there would be a year-long
operational benefit with a 1% increase in the forecasting accuracy level. In addition, accurate load
forecasting could also help managers set up well electrical power scheduling and successfully reduce
system management risks. On the customer side, accurate load forecasting also facilitates the power
usage decisions of customers to avoid load usage during the peak times and paying higher electricity
prices. This usage balance between peak and bottom periods would lead to reliable power system
operation of a utility. On the contrary, inaccurate forecast results would lead to inefficient power
system operations and increased operating costs. As mentioned in the literature, a 1% increase in load
forecasting error can lead to a loss of millions of dollars [2]. Therefore, as electricity prices also play
a critical role in electricity production decisions, there are also several scholars who have proposed
electricity price forecasting models in the literature [3,4]. Readers may refer to Weron [5] for more
comprehensive overviews.

The electricity load data are influenced by lots of factors, such as socio-economical activities,
population, weather conditions, holidays, policy, and so on [6]. Therefore, the electric load data reveal
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nonlinearity, seasonality, and chaos in nature, so finding a robust load forecasting model with superior
performance would be an important issue in the power load management field.

Researchers have developed and proposed lots of electricity load forecasting models.
These forecasting models are often classified into two categories: traditional statistical models and
artificial intelligence models. The first one are also called stochastic time series approach models, i.e.,
only historical data is used, which is easily to apply. These various famous time series models include
the well-known Box–Jenkins’ ARIMA models [7], regression models [8], exponential smoothing
models [9], Kalman filtering models [10], Bayesian estimation models [11], and so on. However,
the embedded drawbacks of those models are that they are defined theoretically to deal with
linear relationships among electricity load and other stochastic factors such as socio-economical
activities and policy effects, thus, they have difficulties to effectively capture the complicate nonlinear
relationships among load data and these factors, eventually, producing high unpredictable load
forecasting performance errors [12].

The artificial intelligence models such as artificial neural networks (ANNs) [12], expert system
models [13], and fuzzy methodologies [14] have been well explored to improve the accuracy of load
forecasting since the 1980s. In recent years, the development of artificial intelligence approaches has
focused on novel hybrid or combined models, obtained by hybridizing or combining these models with
each other [15], with traditional statistical tools [16], and with superior evolutionary algorithms [17].
However, similarly, these artificial intelligence models also suffer from some shortcomings during
the modeling processes, such as the fact they are very dependent on the collected data, and often
are unstable. Thus, it is difficult to determine the network structural parameters [18]. It is also time
consuming to extract knowledge from data sets [19], and they are easily trapped in local minima [20],
for more insightful discussions of AI approaches in load forecasting readers may refer to [21].

Due to the superiority in modeling nonlinear data by mapping into the high dimensional feature
space, support vector regression (SVR) [22] has been applied to solve forecasting issues many research
fields in the late 1990s. For load forecasting problems, Hong [23,24] proposed a valuable series
exploration by integrating advanced algorithms and chaotic function with an SVR-based model to
determine its three parameters, and thus achieved satisfactory forecasting performance. According to
Hong’s series research conclusions, good determination of parameters for the SVR model is important
to achieve high forecasting accuracy levels and overcome the drawbacks of the hybrid evolutionary
algorithms, such as becoming trapped in local optima, and this will ensure achieving more suitable
parameter combinations. In the meanwhile, Bhunia [25] indicated that quantum computing principles
can be embedded in intelligent systems to improve their performance; moreover, Dey et al. [26] also
concluded that the use of both of quantum approaches and soft computing techniques in a combined
form can provide a new computer science and engineering paradigm. Huang [27] proposed a novel
forecasting model by hybridizing a chaotic function and a quantum PSO algorithm to receive higher
forecast accuracy levels. Recently, Lee and Lin [28] also applied quantum concepts to propose the
hybrid tabu search algorithm with the SVR model to adjust the three parameters and eventually obtain
more accurate load forecasting performances.

The genetic algorithm (GA) is a famous algorithm which generates new offspring by finite iterative
operations, including selection, crossover, mutation, and so on. It has attracted lots of attention to
find satisfactory solutions and is applied in many fields. However, along with the increase of the data
scale and more complicated problem, it often suffers from similar problem of becoming trapped in
local optima and slow convergence to the global optimum. Dey et al. [26] claimed that an efficient
quantum-based GA can be modeled to solve NP-hard problems and others. To continue exploring the
feasibility of hybrid quantum-behaved approaches with advanced algorithms, and to overcome the
embedded drawbacks of genetic algorithm mentioned above, this paper would like to apply quantum
computing concepts to propose hybridizing chaotic function and quantum GA (namely CQGA) with
the SVR model, creating the so-called SVRCQGA model to achieve more satisfactory load forecasting
accuracy levels, by comparing the forecasts with other alternative models proposed in Huang [27] and



Energies 2017, 10, 1832 3 of 18

Lee and Lin [28]. The main innovative contribution of this paper is hybridizing the chaotic mapping
function and quantum computing technique with GA into a SVR model, to improve the problems as
mentioned above, and thus achieve improved forecasting accuracy levels.

The remainder of this paper is organized as follows: the implementation details of the proposed
SVRCQGA model are demonstrated in Section 2. Brief illustrations of the SVR model and the proposed
CQGA are also clearly addressed. Section 3 demonstrates an experimental example and provides a
statistical comparison among other benchmarking models proposed in existing papers. Conclusions
are provided in Section 4.

2. The Proposed SVRCQGA Model

2.1. Brief Description of the SVR Model

The principal modeling processes of the SVR model are briefly summarized as follows: the training
data set, {(xi, yi)}N

i=1, is mapped to a feature space, <nh , by the defined function, ϕ(x) : <n → <nh .
The SVR function, f, is employed to linearly formulate the relationship between feature values
(i.e., training data, xi) and forecast values (yi), and it is shown as Equation (1):

f (x) = wT ϕ(x) + b (1)

where, f (x) is the forecasted values; the weight, w (w ∈ <nh ) and coefficient, b (b ∈ <), could be
determined during the minimization process of the empirical risk function, Equation (2):

R( f ) = C
1
N

N

∑
i=1
Lε(yi, wT ϕ(xi) + b) +

1
2

wTw (2)

Lε(yi, f (x)) =

{
0, i f | f (x)− yi| ≤ ε

| f (x)− yi| − ε, otherwise
(3)

where, Lε(yi, f (x)) represents the main empirical risk, it is also the so-called ε-insensitive loss function;
C and ε are the essential parameters. When the forecasting error is smaller than ε, the loss would be
zero (refer to Equation (3)). The second term, 1

2 wTw, is the weight of the SVR function as mentioned,
it determines the steepness. Therefore, C represents a trade-off role to balance the empirical risk and
the steepness. For quadratic programming, two slack variables, ξ and ξ∗, are introduced to measure
the length between the actual values and the edge values of ε-tube. Then, Equation (2) could be
transformed to the standard programming form with constraints, as shown in Equation (4):

Min R(w, ξ, ξ∗) = 1
2 wTw + C

N
∑

i=1
(ξi + ξ∗i )

yi −wT ϕ(xi)− b ≤ ε + ξ∗i ,
−yi + wT ϕ(xi) + b ≤ ε + ξi,

ξ∗i ≥ 0,
ξi ≥ 0,

i = 1, 2, . . . , N

(4)

The solution weight vector, w, in the quadratic programming problem (Equation (4) is optimized
by using the Lagrange multipliers method, as shown in Equation (5):

w∗ =
N

∑
i=1

(γ∗i − γi)ϕ(xi) (5)

where γ∗i and γi are the Lagrangian multipliers and satisfy the equality γ∗i × γi = 0. Eventually,
the SVR function is formulated as Equation (6):

f (x) =
N

∑
i=1

(γ∗i − γi)K(xi, xj) + b (6)
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where, K(xi, xj) is the so-called kernel function, its value could be calculated by the inner product
of ϕ(xi) and ϕ(xj), i.e., K(xi, xj) = ϕ(xi) · ϕ(xj). There are several kinds of kernel function, the most
widely used kernel function is Gaussian function, K(xi, xj) = exp (−0.5‖xi − xj‖2/σ2), due to its
excellence in complex nonlinear relationships mapping capability. Therefore, this paper employs a
Gaussian function as the kernel function.

The most important job for improving the performance of an SVR model is adjusting well the
parameter values, i.e., the three parameters, C, ε, and σ. However, there are no structural methods to
efficiently set up the SVR parameters. This paper will continue exploring the feasibility of a chaotic
quantum-behaved approach to overcome the disadvantages of genetic algorithms, namely CQGA;
and, hybridizing CQGA with the SVR model, producing the SVRCQGA model, to determine the three
parameters to improve the forecasting accuracy level.

2.2. Chaotic Quantum Genetic Algorithm (CQGA)

2.2.1. Introduction of QGA

GA generates new individuals by its advanced operations, including selection, crossover,
and mutation operations. Particularly, the mutation operation is effective for making individuals
have more satisfactory fitness values, and plays a critical role in maintaining the evolution quality for
the population. Therefore, it has been applied to deal with many optimization problems. However,
the population diversity would be reduced after repeated iterative computations and this leads to
several major drawbacks, such as being time consuming, slow convergence, and becoming trapped in
local optima.

Recently, quantum computing techniques have been hybridized with genetic algorithms, i.e.,
QGA [29]. By applying the main computing techniques of quantum computing, including qubit,
quantum superposition, and quantum entanglement, the chromosomes in QGA have been presented
by qubit coding. In addition, quantum rotation gate operation for the chromosomes is employed
during the whole evolutionary process. Therefore, it has lots of superior advantages during searching,
such as speedy convergence, time saving, little population scale, and robustness. The applications
of QGA also receive attentions in recent years, including traveling salesmen problems, personal
scheduling problems, and dynamic economic dispatch problems, as well as improvements [30].
For more application details of QGA, readers should refer to Lahoz-Beltra [31].

2.2.2. Quantum Computing Concepts

The quantum computing concepts are briefly described as follows: a quantum bit, abbreviated as
qubit, is defined as the smallest information unit. In the quantum system, a qubit may be in the state
“0”, in the state “1”, or in any superposition of these two states. The state of a qubit can be shown as
Equation (7):

|ψ〉 = α1|0〉+ α2|1〉 (7)

where |0〉 and |1〉 are the values of traditional bits 0 and 1, respectively; α1 and α2 are the probability of
their associate states and meet the normalization condition, as illustrated in Equation (8):

|α1|2 + |α2|2 = 1 (8)

where |α1|2 is the probability that the qubit is in “0” state, and |α2|2 is the probability that the qubit is in
“1” state. For generalization, if a system has n qubits and totally 2n states, then, the linear superposition
of all states can be presented as shown in Equation (9):

|ψi〉 =
2n

∑
k=1

pk|Sk〉 (9)



Energies 2017, 10, 1832 5 of 18

where pk is the probability of its associate state, Sk, and meets the normalization condition,
|p1|2 + |p2|2 + . . . + |p2n |2 = 1.

The probability of a qubit individual as a string with n qubits is presented as Equation (10):

q =

[
α1

β1

∣∣∣∣∣ α2

β2

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ αi

βi

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ αn

βn

]
(10)

where |αi|2 + |βi|2 = 1, i = 1, 2, . . . , n.
Therefore, in QGA, the chromosome, with n qubits, could be presented as, P = (q1, q2, . . . , qn),

where qj (j = 1, 2, . . . , n) is an individual qubit of population as shown in Equation (10).
The quantum gate is an operator for qubits to implement unitary transformations, in which,

the operation is represented by matrices. The basic quantum gates with a single qubit are the identity
gate I and Pauli gates X, Y, and Z, as shown in Equation (11):

I =

[
1 0
0 1

]
; X =

[
0 1
1 0

]
; Y =

[
0 −i
i 0

]
; Z =

[
1 0
0 −1

]
(11)

The identity gate I keeps a qubit unchanged, i.e., I·|0〉 = |0〉 and I·|1〉 = |1〉 (Equation (12)); Pauli X
gate performs a Boolean NOT operation, i.e., X·|0〉 = |1〉 and X·|1〉 = |0〉 (Equation (13)); Pauli Y gate
maps |0〉 → i·|1〉 and |1〉 → −i·|0〉 (Equation (14)); and Pauli Z gate changes the phase of a qubit, i.e.,
|0〉 → |0〉 and |1〉 → −1·|1〉 (Equation (15)):

I·|0〉 =
[

1 0
0 1

][
1
0

]
=

[
1
0

]
= |0〉 ; I·|1〉 =

[
1 0
0 1

][
0
1

]
=

[
0
1

]
= |1〉 (12)

X·|0〉 =
[

0 1
1 0

][
1
0

]
=

[
0
1

]
= |1〉; X·|1〉 =

[
0 1
1 0

][
0
1

]
=

[
1
0

]
= |0〉 (13)

Y·|0〉 =
[

0 −i
i 0

][
1
0

]
=

[
0
i

]
= i·|1〉; Y·|1〉 =

[
0 −i
i 0

][
0
1

]
=

[
−i
0

]
= −i·|0〉 (14)

Z·|0〉 =
[

1 0
0 −1

][
1
0

]
=

[
1
0

]
= |0〉; Z·|1〉 =

[
1 0
0 −1

][
0
1

]
=

[
0
−1

]
= −1·|1〉 (15)

To obtain more results, it is feasible to use the trigonometric function with a phase angle θ, i.e.,
the so-called quantum rotation gate. The quantum rotation gate (cf. Equation (16)), is employed to
update as the better solution in its current state:

P′ =

[
cos θ − sin θ

sin θ cos θ

]
P (16)

where P′ is the updated chromosome; θ is the designate angle to be used in the quantum rotation gate.

2.2.3. Implementation Steps of CQGA

The outstanding property of QGA is using quantum mechanics, such as qubits and their state
superposition as mentioned above to represent the chromosomes (instead of traditional binary strings).
The chromosome is represented as the superposition of all possible states. In the meanwhile, to keep
the diversity of the population to avoid premature convergence is also an important issue. Chaos has
two advantages: (1) it is sensitive to the initial conditions, i.e., minute changes in initial conditions
steer subsequent simulations towards radically different final states; and (2) any variable in the
chaotic space can travel ergodically over the whole space of interest, i.e., the so-called ergodicity
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property. Therefore, employing chaotic sequences to keep the diversity of population in the whole
optimization procedures, will lead to very different future solution-finding behaviors, due to the
ergodicity property. Eventually, chaotic sequences can help to enrich the search behavior and to avoid
premature convergence. Considering the above mentioned statements, this paper also applies the
chaotic variable to be hybridized with QGA (namely CQGA) to prevent the premature convergence
problem. Furthermore, for the better chaotic distribution characteristics of cat function, it is used
to generate the chaotic sequence. The two-dimensional cat function [32] is commonly used and is
employed in this paper, as shown in Equation (17):{

xn+1 = f rac(xn + yn)

yn+1 = f rac(xn + 2yn)
(17)

where frac function is used to keep the decimal parts of a real number x by reducing an approximate
integer. The complete processes of the proposed CQGA model is demonstrated in what follows and a
brief flowchart is shown in Figure 1.
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Step 1. Set up quantum chromosomes. In this paper, the quantum chromosome is composed
of a string of m qubits (superposition of all possible states), as shown in Figure 2. These SVR’s
three parameters, C, ε, and σ, are presented into the quantum qubit superposition format, i.e., each
chromosome has three genes to represent it. Based on the authors’ practical trials and experience,
choosing a gene with 40 bits could produce more satisfactory results, thus, a chromosome in total
contains 120 qubits (i.e., m = 120). A gene that contains more qubits would be associated with better
partitioning around the space.
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Step 2. Initialize population. The population of the quantum chromosome is initialized by setting
all the amplitudes of qubits as 1√

2
[30], i.e., all superposition states has equal probability in the

initial population.
Step 3. Evaluate fitness (forecasting errors). Evaluate the objective fitness (forecasting errors) by using

the values of each quantum chromosome. The mean absolute percentage error (MAPE), illustrated in
Equation (18), is employed to measure the forecasting errors:

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − fi
yi

∣∣∣∣× 100% (18)

where N is the total number of forecasting results; yi is the actual value at each forecasting point i; fi is
the forecasted value at each forecasting point i.

Step 4. Selection. In each generation, an elitist selection mechanism is used to select the best
chromosome (with smallest MAPE value), i.e., the competition strategy is applied and as mentioned
the best chromosome with the smallest MAPE value is recorded as the elitist and is reproduced as the
initial chromosome for the next generation.

Step 5. Quantum crossover. To keep the population diversity, a quantum crossover operation is
employed. Based on predefined crossover probability, Pcr (set as 0.9 [26]), the single-point-crossover
principle is applied to randomly select two chromosomes to conduct crossover operation at any
random position. For each generation, a new chromosomes pool would be generated after the
quantum crossover operation is finished. Figure 3 illustrates the processed results of the quantum
crossover operation.

Step 6. Quantum mutation. This is a useful approach to ensure population diversity. In this
operation, each selected position of the participated quantum chromosome would be mutated with
other real numbers according to the designate mutation probability, Pm (set as 0.1 [26]). Figure 4 shows
an example of the quantum mutation operation.
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Step 7. Quantum rotation gate. This operation modifies the oscillation ranges of individuals to
improve the performance by changing the state of each qubit. It is performed by using a quantum
rotation gate (as shown in Equation (16)), in which the rotation angle θ is a function of the oscillation
amplitudes (αi,βi), and the value of the individual qubit located at the position i would also be modified
accordingly [33]. The rotation angle θ is updated by Equation (19):

θ = 0.005π+ (0.1π− 0.005π)

∣∣ fi − favg
∣∣

max
{

fi, favg
} (19)

where fi is the current forecasting error; favg is the average value of all previous forecasting errors.
Based on quantum genetic algorithm performance, a general criterion to set θ values between 0.1π and
0.005π [31].
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Step 8. Premature convergence test. Compute the mean square error (MSE), given by Equation (20),
to test the level of premature convergence [34], and set up the criterion value, δ:

MSE =
1
S

S

∑
i=1

(
fi − favg

f

)2

(20)

where f is given by Equation (21):

f = max
{

1, max
∀i∈S

{∣∣ fi − favg
∣∣}} (21)

If the value of the calculated MSE is less than δ, it implies premature convergence occurs. Hence,
the chaotic cat function (Equation (17)) is employed to escape the local optimum, i.e., finding out new
optimum, and set the new optimum as the best solution.

Step 9. Stop criteria. If the number of generations is greater than a given scale, then, the best
solution could be the presented quantum chromosomes; otherwise, go back to Step 3 and continue
searching the next generation.

3. Experimental Examples

3.1. Data Sets of Experimental Examples

To compare the performances from the hybrid quantum-behaved evolutionary algorithms with
an SVR model, this paper employs the same experimental examples used in Huang [27] and Lee and
Lin [28]. These three experimental examples are: (1) the regional electricity load data in Taiwan from a
published paper [23]; (2) the annual electricity load data in Taiwan from a published paper [23]; and
(3) the electricity load data per hour from the 2014 Global Energy Forecasting Competition [35]. The
data setting details for each examples are summarized in the following. The data characteristics of
these three examples are summarized in Table 1.

Table 1. Data characteristics summary of three examples.

Examples Data Type Data Length Data Size Data Characteristics

Example 1 Regional and
annual From 1981 to 2000 4 regions and

20 years
Increment with fluctuation caused by some

accidental event (921 earthquake)

Example 2 Annual From 1945 to 2003 59 years Increment with the continuous economic
development in Taiwan

Example 3 Hourly From 1 December 2011
to 1 January 2012 744 h Cyclic fluctuation

3.1.1. Regional Electricity Load Data in Taiwan: Example 1

For Example 1, there are in total 20 years of regional electricity load values (from 1981 to 2000)
for four regions in Taiwan. Based on the same forecasting performance comparison conditions,
the modeling sub-data set division is the same as in a previous paper [23]. Thus, three subsets are
obtained: a training subset (12 years of load data in total, from 1981 to 1992), a validation subset (a total
of 4 years of data, from 1993 to 1996), and a testing subset (a total of 4 years of data, from 1997 to
2000). The well-known window-rolling procedure is employed during the whole process including the
electricity load forecasts produced. For details of the window-rolling forecasting procedure readers
should refer to Hong [23] and Lee and Lin [28]. Three parameters are determined by CQGA, while the
validation error is also calculated. The most suitable parameters are finalized only when the smallest
validation errors occur. Finally, the four-step (year) load forecasting for each region in Taiwan is
implemented by the proposed SVRCQGA model.
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3.1.2. Annual Electricity Load Data in Taiwan: Example 2

For Example 2, there are in total 59 annual electricity load values (from 1945 to 2003). Similarly,
to make sure the same forecasting performance comparison conditions are used, the modeling
sub-dataset division is the same as in a previous paper [23], i.e., a training subset (40 years of data, from
1945 to 1984), a validation subset (10 years of data, from 1985 to 1994), and a testing subset (9 years
of data, from 1995 to 2003). The modeling processing details are almost as the same as in Example 1:
the window-rolling procedure is applied, then, three parameters are also selected by CQGA. The most
suitable parameters are finalized only based on the smallest validation errors. Eventually, the one-step
(year) load forecasting in Taiwan is implemented using the proposed model.

3.1.3. 2014 Global Energy Forecasting Competition (GEFCOM 2014) Electricity Load Data: Example 3

For Example 3, there are a total of 744 h of electricity load data (from 00:00 1 December 2011 to 00:00
1 January 2012). Similarly, to be based on the same forecasting performance comparison conditions,
the modeling sub-data set division is the same as in a previous paper [27,28]. Thus, we have a training
subset (552 h of load data, from 01:00 1 December 2011 to 00:00 24 December 2011), a validation subset
(96 h of load data, from 01:00 24 December 2011 to 00:00 28 December 2011), and a testing subset (96 h
of load data, from 01:00 28 December 2011 to 00:00 1 January 2012). The modeling processing details
are almost as the same as in the two previous examples: a window-rolling procedure is still used,
and the most suitable three parameters must be finalized based only on the smallest validation errors.
Finally, the one-step (hour) load forecasting results are obtained using the proposed model.

3.2. Parameters Setting & Forecasting Results and Analysis

3.2.1. Setting the CQGA Parameters

The parameters of CQGA for the three experimental examples are set practically: the population
scale (Pscale) is set to be 200; the generations of the population (qmax) are no larger than 500; the qubit
string length of a quantum chromosome (m) is set as 120; the probabilities of quantum crossover (Pcr)
and quantum mutation (Pm) are set as 0.5 and 0.1 [26], respectively. Some controlled parameters during
the modeling procedure are set as follows: the maximal iteration for each example is all set as 10,000 in
each generation; σ ∈ [0, 5], ε ∈ [0, 100] in all examples, C ∈ [0, 20, 000] in Example 1, C ∈ [0, 3× 1010]

in Examples 2 and 3; δ is fixed as 0.001.

3.2.2. Forecasting Accuracy Indexes

To comprehensively compare the forecasting accuracy for each models, the mean absolute
percentage error (MAPE; as shown in Equation (18)), the root mean squared error (RMSE; as shown in
Equation (22)), and the mean absolute error (MAE; as shown in Equation (23)) are employed:

RMSE =

√
∑N

i=1 (yi − fi)
2

N
(22)

MAE =
∑N

i=1|yi − fi|
N

(23)

where N is the total number of forecasting results; yi is the actual value at each forecasting point i; fi is
the forecasted value at each forecasting point i.

3.2.3. Forecasting Performance Superiority Tests

To ensure the forecasting superiority of the proposed model is statistically significant, it is
necessary to conduct some statistical tests to verify the significance of the proposed model. Based on
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Diebold and Mariano’s [36] and Derrac et al.’s [37] suggestions, two tests are conducted in this paper,
they are Wilcoxon signed-rank test [38] and Friedman test [39].

(A) Wilcoxon Signed-rank Test

The Wilcoxon signed-rank test is used to detect the significance of a difference in the central
tendency of two data series when the size of the two data series is equal. The statistic W is represented
as Equation (24):

W = min{S+, S−} (24)

where:

S+ =
N

∑
i=1

I+(di) (25)

S− =
N

∑
i=1

I−(di) (26)

I+(di) =

{
1 i f di > 0
0 otherwise

(27)

I−(di) =

{
1 i f di < 0
0 otherwise

(28)

di = (forecasting series I)i − (forecasting series II)i (29)

where N is the total number of forecasting results.

(B) Friedman test

The Friedman test is used to measure the ANOVA in nonparametric statistical procedures; thus,
it is a multiple comparisons test that aims to detect significant differences between the behaviors of
two or more algorithms. The statistic F is represented as Equation (30):

F =
12N

k(k + 1)

[
k

∑
j=1

R2
j −

k(k + 1)2

4

]
(30)

where N is the total number of forecasting results; k is the number of compared models; Rj is the
average rank sum obtained in each forecasting value for each algorithm as shown in Equation (31):

Rj =
1
N

N

∑
i=1

rj
i (31)

where rj
i is the rank sum from 1 (the smallest forecasting error) to k (the worst forecasting error) for ith

forecasting result, for jth compared model.
The null hypothesis for Friedman’s test is that equality of forecasting errors among compared

models. The alternative hypothesis is defined as the negation of the null hypothesis.

3.2.4. Results and Analysis: Example 1

For Example 1, SVR’s three parameter values determine the most suitable model for each region,
which are computed by the QGA algorithm and CQGA algorithm, respectively, and with the smallest
testing error (MAPE value). These determined parameters for each region are illustrated in Table 2.

For forecasting results comparison details, Table 3 demonstrates the forecasting accuracy indexes
of the proposed SVRCQGA and other competitive models [27,28] for each region. Figure 5 illustrates
the cumulative differences of MAE for each competitive models in four regions. The competitive
models include SVRCQPSO (hybrid SVR with chaotic quantum PSO) [27], SVRQPSO (hybrid SVR
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with quantum PSO) [27], SVRCQTS (hybrid SVR with chaotic quantum tabu search) [28], and SVRQTS
(hybrid SVR with quantum tabu search) [28] models.

Table 2. Determined parameters of SVRCQGA and SVRQGA models (Example 1).

Regions
SVRCQGA Parameters

MAPE of Testing (%)
σ C ε

Northern 4.0000 0.6× 1010 0.6500 1.0760
Central 6.0000 0.9× 1010 0.3500 1.2130

Southern 8.0000 1.2× 1010 0.4800 1.1650
Eastern 12.0000 1.0× 1010 0.2800 1.5180

Regions
SVRQGA Parameters

MAPE of Testing (%)
σ C ε

Northern 3.0000 1.2× 1010 0.3400 1.3150
Central 10.0000 1.8× 1010 0.4800 1.6830

Southern 6.0000 0.9× 1010 0.3500 1.3640
Eastern 4.0000 0.5× 1010 0.6800 1.9680

Table 3. Forecasting indexes of SVRCQGA, SVRQGA, and other models (Example 1).

Indexes SVRCQGA SVRQGA SVRCQTS SVRQTS SVRCQPSO SVRQPSO

Northern region

MAPE (%) 1.0760 1.3150 1.0870 1.3260 1.1070 1.3370
RMSE 131.48 159.26 132.79 159.43 142.62 160.28
MAE 130.00 157.50 141.00 158.50 132.25 159.00

Central region

MAPE (%) 1.2130 1.6830 1.2650 1.6870 1.2840 1.6890
RMSE 64.46 90.18 67.69 90.67 67.70 89.87
MAE 64.00 89.25 67.00 89.75 67.50 89.25

Southern region

MAPE (%) 1.1650 1.3640 1.1720 1.3670 1.1840 1.3590
RMSE 75.44 87.82 75.57 88.84 76.03 88.05
MAE 74.75 87.50 75.25 88.00 75.75 87.25

Eastern region

MAPE (%) 1.5180 1.9680 1.5430 1.9720 1.5940 1.9830
RMSE 6.12 7.86 6.38 7.95 6.30 7.79
MAE 6.00 7.75 6.00 7.75 6.25 7.75

From Table 3 and Figure 5, it is obvious from the comparison that the proposed SVRCQGA model
outperforms the other quantum-SVR-based models. Thus, it once again demonstrates the superiority
of an SVR model in that it could obtain a more satisfactory forecasting performance by hybridizing
quantum computing mechanics with a genetic algorithm. In the same time, the super capability of the
cat mapping function in looking for a closer solution to the theoretical global optimum while suffering
from premature convergence is noted. The QGA almost has done its best to look for the best solutions
for each region, however, these solutions are still unsatisfactory by comparison with the performances
of other alternatives. These solutions could be improved by employing a chaotic mapping function
(this paper uses the cat mapping function), i.e., the CQGA, to achieve satisfactory solutions.
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Then, two forecasting performance superiority tests are conducted. Table 4 shows the test results
under a one-tail-test at α = 0.05 significance level, which point out that the proposed model achieves
significantly better performance, except versus the SVRCQTS model.

Table 4. Wilcoxon signed-rank test and Friedman test (Example 1).

Compared Models Wilcoxon Signed-Rank Test
α = 0.05; Wilcoxon W Statistic = 0 Friedman Test α = 0.05

Northern region

H0: e1 = e2 = e3 = e4 = e5 = e6
F = 12.46;

p = 0.028 (reject H0)

SVRCQGA vs. SVRQPSO W = 0 *
SVRCQGA vs. SVRCQPSO W = 0 *

SVRCQGA vs. SVRQTS W = 0 *
SVRCQGA vs. SVRCQTS W = 1
SVRCQGA vs. SVRQGA W = 0 *

Central region

H0: e1 = e2 = e3 = e4 = e5 = e6
F = 13.43;

p = 0.021 (reject H0)

SVRCQGA vs. SVRQPSO W = 0 *
SVRCQGA vs. SVRCQPSO W = 0 *

SVRCQGA vs. SVRQTS W = 0 *
SVRCQGA vs. SVRCQTS W = 1
SVRCQGA vs. SVRQGA W = 0 *

Southern region

H0: e1 = e2 = e3 = e4 = e5 = e6
F = 15.57;

p = 0.013 (reject H0)

SVRCQGA vs. SVRQPSO W = 0 *
SVRCQGA vs. SVRCQPSO W = 0 *

SVRCQGA vs. SVRQTS W = 0 *
SVRCQGA vs. SVRCQTS W = 1
SVRCQGA vs. SVRQGA W = 0 *

Eastern region

H0: e1 = e2 = e3 = e4 = e5 = e6
F = 11.34;

p = 0.035 (reject H0)

SVRCQGA vs. SVRQPSO W = 0 *
SVRCQGA vs. SVRCQPSO W = 0 *

SVRCQGA vs. SVRQTS W = 0 *
SVRCQGA vs. SVRCQTS W = 1
SVRCQGA vs. SVRQGA W = 0 *

* Denotes that the SVRCQGA model significantly outperforms other competitive models.
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3.2.5. Results and Analysis: Example 2

For Example 2, similarly, with the smallest MAPE values in the testing set, the SVR’s parameters
are determined by the QGA algorithm and CQGA algorithm, respectively. These most suitable
parameter values for the annual electricity load data are listed in Table 5. To benchmark the results with
other research approaches, Table 5 also provides the forecasting index values from other competitive
models [27,28].

Table 5. Determined parameters of SVRCQGA and SVRQGA models (Example 2).

Optimization Algorithms
Parameters

MAPE of Testing (%)
σ C ε

QPSO algorithm [27] 12.0000 0.8× 1011 0.380 1.3460
CQPSO algorithm [27] 10.0000 1.5× 1011 0.560 1.1850

QTS algorithm [28] 5.0000 1.3× 1011 0.630 1.3210
CQTS algorithm [28] 6.0000 1.8× 1011 0.340 1.1540

QGA algorithm 9.0000 1.4× 1011 0.480 1.3180
CQGA algorithm 12.0000 1.2× 1011 0.650 1.1160

The forecasting accuracy indexes values, MAPE and RMSE, are shown in Table 6. Figure 6
illustrates the cumulative differences of MAE for each competitive model. The competitive
models also include the SVRCQPSO [27], SVRQPSO [27], SVRCQTS [28], and SVRQTS [28] models.
Similarly, the proposed model receives an outstanding performance among other competitive models.
The contributions of the quantum computing concepts and the chaotic cat mapping capability are
again excellent. It is obviously that the CQGA algorithm excels at finding another better solution.

Table 6. Forecasting indexes of SVRCQGA, SVRQGA, and other models (Example 2).

Years SVRCQGA SVRQGA SVRCQTS SVRQTS SVRCQPSO SVRQPSO

MAPE (%) 1.1160 1.3180 1.1540 1.3210 1.1850 1.3460
RMSE 1502.66 1774.62 1631.48 1778.74 1618.34 1812.51
MAE 1466.33 1731.78 1554.89 1735.78 1575.67 1768.78Energies 2017, 10, 1832  15 of 18 
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In Example 2, similarly, a Wilcoxon signed-rank test and Friedman test are also conducted to test
the significance of the proposed model against the other competitive models. Both tests results are
illustrated in Table 7, and demonstrate clearly that the proposed model significantly outperforms the
other quantum-behaved algorithms with SVR-based forecasting models.

Table 7. Wilcoxon signed-rank test and Friedman test (Example 2).

Compared Models Wilcoxon Signed-Rank Test α =
0.05; Wilcoxon W Statistic = 8 Friedman Test α = 0.05

SVRCQGA vs. SVRQPSO W = 4 *
H0: e1 = e2 = e3 = e4 = e5 = e6

F = 13.35;
p = 0.022 (reject H0)

SVRCQGA vs. SVRCQPSO W = 2 *
SVRCQGA vs. SVRQTS W = 4 *

SVRCQGA vs. SVRCQTS W = 4 *
SVRCQGA vs. SVRQGA W = 4 *

* Denotes that the SVRCQGA model significantly outperforms other competitive models.

3.2.6. Results and Analysis: Example 3

For Example 3, based on the similar modeling processes, the SVR’s three parameters are eventually
selected by the QGA algorithm and CQGA algorithm, respectively. The details of the most suitable
parameters of all employed compared models for GEFCOM 2014 data set are shown in Table 8. Because
references [27,28] also use GEFCOM 2014 load data set for analysis, therefore, those models shown
in [27,28] are also compared with the proposed models.

Table 8. Determined parameters of SVRCQGA, SVRQGA, and other models (Example 3).

Optimization Algorithms
Parameters

MAPE of Testing (%)
σ C ε

QPSO algorithm [27] 9.000 42.000 0.1800 1.9600
CQPSO algorithm [27] 19.000 35.000 0.8200 1.2900

QTS algorithm [28] 25.000 67.000 0.0900 1.8900
CQTS algorithm [28] 12.000 26.000 0.3200 1.3200

QGA algorithm 5.000 79.000 0.3800 1.7500
CQGA algorithm 6.000 54.000 0.6200 1.1700

To achieve a meaningful comparison, the authors only selected three quantum- and SVR-based
forecasting models, i.e., the SVRCQGA, SVRCQTS, and SVRCQPSO models, to compare with each
other. Table 9 provides the forecasting accuracy indexes of the proposed SVRCQGA and other
competitive models [27,28], and clearly illustrates that the proposed SVRCQGA model achieves results
closer to the actual load values than the SVRCQTS and SVRCQPSO models.

Table 9. Forecasting indexes of SVRCQGA, SVRQGA, and other models (Example 3).

Indexes SVRCQGA SVRQGA SVRCQTS SVRQTS SVRCQPSO SVRQPSO

MAPE (%) 1.1700 1.7500 1.3200 1.8900 1.2900 1.9600
RMSE 1.4927 1.6584 1.9909 2.8507 1.9257 2.9358
MAE 1.4522 1.6174 1.8993 2.7181 1.8474 2.8090

Figure 7 also provides a good illustration of the cumulative differences of MAE for each
competitive model. The competitive models also include the SVRCQPSO [27], SVRQPSO [27],
SVRCQTS [28], and SVRQTS [28] models.

Finally, Table 10 illustrates both the Wilcoxon signed-rank test and Friedman test results for
Example 3, which demonstrate that the proposed approach significantly, with a critical p-value,
outperforms the other competitive models proposed in [27,28].
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Table 10. Wilcoxon signed-rank test and Friedman test (Example 3).

Compared Models
Wilcoxon Signed-Rank Test Friedman Test

α = 0.05; Wilcoxon W
Statistic = 2328 p-Value α = 0.05

SVRCQGA vs. SVRQPSO W = 1278.0 * 0.00012
H0: e1 = e2 = e3 = e4 = e5 = e6

F = 71.266;
p = 0.000 (reject H0)

SVRCQGA vs. SVRCQPSO W = 1152.5 * 0.00000
SVRCQGA vs. SVRQTS W = 1256.0 * 0.00000

SVRCQGA vs. SVRCQTS W = 1263.0 * 0.00010
SVRCQGA vs. SVRQGA W = 2134.5 * 0.00720

* Denotes that the SVRCQGA model significantly outperforms the other competitive models.

4. Conclusions

This paper proposes a novel electricity load forecasting model created by hybridizing a
quantum-behaved algorithm with an SVR-based model. The results have completely shown that
the proposed CQGA has superiority to address the embedded drawbacks of the original GA and
quantum GA algorithms that suffer from getting trapped into local optima. This paper uses quantum
computing mechanics to enrich the diversity of the population during the GA modeling processes,
which eventually improves the forecasting accuracy level. The cat function is employed to avoid
premature convergence while the QGA algorithm is processing. This paper provides support to
continue the exploration of integrating quantum computing concepts and chaotic mapping techniques
to enrich the search space with the limitations from conventional Newtonian dynamics, and a more
effective approach to solve the trapping in local optima problem.
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