
Guo-Qiang Zeng 1-*, Xiao-Qing Xie 1 and Min-Rong Chen 2

1 National-Local Joint Engineering Laboratory of Digitalize Electrical Design Technology, Wenzhou University, Wenzhou 325035, China; xiaoqingxie@stu.wzu.edu.cn
2 School of Computer, South China Normal University, Guangzhou 510631, China; mrongchen@126.com
* Correspondence: zenggq@wzu.edu.cn or zeng.guoqiang5@gmail.com; Tel.: +86-15967405738

Received: 15 October 2017; Accepted: 9 November 2017; Published: 11 November 2017

Abstract: As the penetration level of renewable distributed generations such as wind turbine generator and photovoltaic stations increases, the load frequency control issue of a multi-area interconnected power system becomes more challenging. This paper presents an adaptive model predictive load frequency control method for a multi-area interconnected power system with photovoltaic generation by considering some nonlinear features such as a dead band for governor and generation rate constraint for steam turbine. The dynamic characteristic of this system is formulated as a discrete-time state space model firstly. Then, the predictive dynamic model is obtained by introducing an expanded state vector, and rolling optimization of control signal is implemented based on a cost function by minimizing the weighted sum of square predicted errors and square future control values. The simulation results on a typical two-area power system consisting of photovoltaic and thermal generator have demonstrated the superiority of the proposed model predictive control method to these state-of-the-art control techniques such as firefly algorithm, genetic algorithm, and population extremal optimization-based proportional-integral control methods in cases of normal conditions, load disturbance and parameters uncertainty.

Keywords: load frequency control; multi-area interconnected power systems; photovoltaic generation; model predictive control; proportional-integral control

1. Introduction

Load-frequency control (LFC) issue in a multi-area interconnected power system is essentially to design an effective and efficient controller to match the total generations with the total load demand and the corresponding system losses. In other words, the main objective of LFC is to minimize the frequency deviations of each area and tie-line power flows between neighboring control areas subjecting to some pre-specified tolerances when load demands fluctuate or resonance attack [1,2]. Over the past four decades, a variety of great achievements have been made for the LFC issue of traditional power systems. For example, as the most popular control technique, proportional-integral-derivative (PID) controller and its various variations have been widely applied to the LFC issue [3-8]. Moreover, some researchers have paid more attention to the advanced control theories based LFC methods recently, such as robust control theories [9], model predictive control [10-14], sliding mode control [15,16], neural network control [17], internal model control [18], and differential games [19]. It should be noted that there are different evolutionary algorithms based PID or proportional-integral (PI) control methods for the LFC issue of multi-area power systems. For example, genetic algorithm 5,6, hybrid particle swarm optimization [20], differential evolution [21,22], imperial competitive algorithm [23], firefly algorithm [24], non-dominated sorting genetic algorithm-II (NSGA-II) [8], multi-objective optimization
using weighted sum artificial bee colony algorithm [7], and a evolutionary many-objective optimization algorithm with clustering-based selection called EMyO/C [25] have been utilized to tune PID or PI controllers for the LFC issue.

As increased penetration level of renewable distributed generations such as wind turbine generator and photovoltaic stations, these renewable generations affects the LFC problem of multi-area power system tremendously. The effects of wind turbine generators on LFC issues of multi-area power systems have been discussed recently [26–31]. Unfortunately, only few research works contribute to the LFC problem of multi-area power system with photovoltaic (PV) generations. Abd-Elazim and Ali [32] proposed firefly algorithm (FA)-based PI controllers for LFC of a two-area power system composing of a photovoltaic (PV) system and a thermal generator, and its effectiveness is demonstrated by comparing the performance with genetic algorithm (GA)-based PI control method for this system under load disturbance and parameters uncertainty conditions. However, the nonlinear features such as the dead band (DB) for governor and generation rate constraint (GRC) for steam turbine have not been considered in the recently reported work [32]. By taking into account these nonlinear features, how to further improve the LFC performance of a multi-area power system with PV generation especially under dynamical loads fluctuations is still a challenging issue.

On the other hand, model predictive control (MPC) ranks second after PID as the most widely-applied control methods in industry [33,34]. Compared to PID controller, MPC has some significant advantages including fast response and stronger robustness against load disturbance and parameters uncertainty. Especially, one prominent characteristics of MPC is predicting the future behavior of the desired control variables based on a minimization cost function until a predefined horizon in time. With the rapid development of high-speed microprocessors, MPC has been applied increasingly to “fast-process” systems such as power converters and power systems in the past decade [10–14,35–41]. However, to the best of the authors’ knowledge, MPC has never applied to the optimal LFC issue of multi-area power system with PV generations.

Motivated by the above analysis, we propose an adaptive model predictive load frequency control method for a multi-area interconnected power system with PV generation. The key idea behind the proposed method is formulating the dynamic load frequency control issue as a discrete-time state space model, obtaining the predictive dynamic model by introducing an expanded state vector, and rolling optimization of control output signal based on a cost function by minimizing the weighted sum of square predicted errors and square future control values. The simulation results on a typical two-area power system consisting of PV and thermal generator will demonstrate the superiority of the proposed MPC method to these existing evolutionary algorithms-based PI control methods such as FA-PI [32] GA-PI [32], and population extremal optimization-based PI denoted as PEO-PI [42,43] in cases of normal condition, load disturbance and parameters uncertainty.

The main contribution of this work is described as follows:

(1) To the best of the authors’ knowledge, an extended MPC method with an extended state vector is proposed firstly for the optimal LFC issue of a multi-area interconnected power system with PV generation.

(2) Compared with two state-of-the-art control methods reported in [32], this proposed MPC method considers some nonlinear features such as DB and GRC in a thermal system.

(3) In cases of load disturbance and parameters uncertainty, the proposed MPC method can improve the control performance of a multi-area power system with PV generation compared with these state-of-the-art control methods [32,42].

The rest of this paper is organized as follows. Section 2 presents the dynamic model of a two-area power system consisting of PV and thermal generator. In Section 3, an adaptive MPC based LFC method is proposed for a multi-area power system with PV generation. The comparative studies on a typical test system in cases of normal condition, load disturbance and parameters uncertainty are provided in Section 4. Finally, we give the conclusions and open problems in Section 5.
2. System Model

2.1. Small-Signal Model

Figure 1 shows the block diagram of a two-area interconnected power system composed of a PV system (area 1) and a thermal system (area 2) [32]. It should be noted that there are some important nonlinear features in a thermal system such as the dead band (DB) for governor and generation rate constraint (GRC) for steam turbine, but these nonlinear features has never been considered in the recently reported work [32]. In order to make up this defect, this paper introduces these nonlinearities including DB and GRC in a thermal system [44,45].

For area 1, the equivalent transfer function of the PV system consisting of the PV panel, maximum power point tracking (MPPT), inverter and filter is described by the following equation [32]:

\[G_{PV}(s) = \frac{K_1}{s + a_2}, \]

(1)

where \(K_1 \) is the gain of PV system, \(a_1 \) and \(a_3 \) are the negative values of poles, and \(a_2 \) is the negative value of zero in transfer function.

The area control error (ACE) of area 1 is defined as follows [32]:

\[ACE_1(s) = \Delta P_{tie}(s) = \frac{2\pi T_{12} (\Delta f_1(s) - \Delta f_2(s))}{s}, \]

(2)

where \(\Delta P_{tie}(s) \) is the change of tie line power (p.u.), \(\Delta f_1 \) and \(\Delta f_2 \) are the frequency deviation of area 1 and area 2, respectively, \(T_{12} \) is the synchronizing coefficient of tie line between area 1 and area 2.

Area 2 is a thermal system that consists of a governor, steam turbine, re-heater, and generator. The transfer function of governor \(G_{go}(s) \) is as follows [32]:

\[G_{go}(s) = \frac{K_g}{T_g s + 1}, \]

(3)

where \(K_g \) is the gain of governor, and \(T_g \) is the first order inertial time constant of governor.
The transfer function of steam turbine $G_t(s)$ is as follows [32]:

$$G_t(s) = \frac{K_t}{T_ts + 1},$$ \hspace{1cm} (4)

where K_t is the gain of governor, and T_t is the first order inertial time constant of steam turbine.

The transfer function of re-heater $G_r(s)$ is as follows [32]:

$$G_r(s) = \frac{K_r T_r s + 1}{T_rs + 1},$$ \hspace{1cm} (5)

where K_r is the p.u. megawatt rating of high pressure stage, and T_r is the time constant of re-heater.

The transfer function of generator $G_{ge}(s)$ is as follows [32]:

$$G_{ge}(s) = \frac{K_p}{T_ps + 1},$$ \hspace{1cm} (6)

where K_p is the gain of generator, and T_p is the first order inertial time constant of generator.

For area 2, the ACE is defined as follows [32]:

$$ACE_2(s) = -\Delta P_{tie}(s) + B\Delta f_2(s),$$ \hspace{1cm} (7)

where B is the biasing factor in p.u. MW/Hz.

The dynamic characteristics of the power and frequency changes in this two-area power system is reformulated as the following equations:

$$\Delta P_1(t) = -a_1 \Delta P_1(t) + K_1 \Delta P_{c1}(t),$$ \hspace{1cm} (8)

$$\Delta P_{pv}(t) = (a_2 - a_1) \Delta P_1(t) - a_3 \Delta P_{pv}(t) + K_1 \Delta P_{c1}(t),$$ \hspace{1cm} (9)

$$\Delta P_{tie}(t) = 2\pi T_{12} (\Delta P_{pv}(t) - \Delta P_{tie}(t) - \Delta f_2(t) - \Delta P_{L1}(t)),\hspace{1cm} (10)$$

$$\Delta f_2(t) = \frac{K_p}{T_p} \Delta P_{tie}(t) - \frac{1}{T_p} \Delta f_2(t) + \frac{K_p}{T_p} \Delta P_3(t) - \frac{K_p}{T_p} \Delta P_{L2}(t),$$ \hspace{1cm} (11)

$$\Delta P_3(t) = -\frac{R}{T_g} \Delta f_2(t) - \frac{1}{T_g} \Delta P_3(t) + \frac{1}{T_g} \Delta P_{c2}(t) + \frac{1}{T_g} \Delta P_{L3}(t),$$ \hspace{1cm} (12)

$$\Delta P_4(t) = \frac{1}{T_t} \Delta P_5(t) - \frac{1}{T_t} \Delta P_4(t),$$ \hspace{1cm} (13)

$$\Delta P_5(t) = \frac{K_r T_r}{T_{12} T_r} \Delta P_3(t) + \frac{1}{T_r} - \frac{K_r T_r}{T_{12} T_r} \Delta P_4(t) - \frac{1}{T_r} \Delta P_5(t),$$ \hspace{1cm} (14)

$$ACE_1(t) = \Delta P_{tie}(t),$$ \hspace{1cm} (15)

$$ACE_2(t) = -\Delta P_{tie}(t) + B\Delta f_2(t),$$ \hspace{1cm} (16)

where $\Delta P_1(t)$ is the intermediate power change of PV, $\Delta P_{pv}(t)$ is power change of PV, $\Delta P_{tie}(t)$ is the total tie-line power change in this system, $\Delta f_1(t)$ and $\Delta f_2(t)$ are the frequency deviations of area1 and area2, respectively, $\Delta P_3(t)$, $\Delta P_4(t)$, and $\Delta P_5(t)$ are the power change of governor, steam turbine, and re-heater, respectively, $\Delta P_{c1}(t)$ and $\Delta P_{c2}(t)$ are the control action of area1 and area2, respectively. $\Delta P_{L1}(t)$, $\Delta P_{L2}(t)$, and $\Delta P_{L3}(t)$ are the load changes, B is frequency bias factor, and R is the regulation constant (Hz/p.u.MW).
2.2. State-Space Model

Define the state vector \(x(t) \), the control vector \(u(t) \), the disturbance vector \(u_1(t) \) and system output vector \(y(t) \) as: \(x(t) = [\Delta P_1(t) \Delta P_{pv}(t) \Delta P_{ue}(t) \Delta f_2(t) \Delta P_3(t) \Delta P_4(t) \Delta P_5(t)]^T \), \(u(t) = [\Delta P_{c1}(t) \Delta P_{c2}(t)]^T \), \(u_1(t) = [\Delta P_{i1}(t) \Delta P_{i2}(t) \Delta P_{i3}(t)]^T \), and \(y(t) = [ACE_1(t) ACE_2(t)]^T \).

The state space model of the aforementioned two-area interconnected power system with PV generation is described as the following equations:

\[
\frac{dx(t)}{dt} = Ax(t) + Bu(t) + B_1u_1(t) \tag{17}
\]

where \(A \), \(B \), \(B_1 \) and \(C \) are parameter matrices of \(x(t) \), \(u(t) \), \(u_1(t) \), and \(y(t) \), respectively.

\[
A = \begin{bmatrix}
-a_1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -a_2 & -a_3 & 0 & 0 & 0 & 0 \\
0 & T_{12} & -2\pi T_{12} & -2\pi T_{12} & 0 & 0 & 0 \\
0 & 0 & K_p & 0 & -\frac{1}{T_p} & 0 & 0 \\
0 & 0 & 0 & -K_p & 0 & -\frac{1}{T_g} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{T_e} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{K_p T_e}{T_p} & \frac{1}{T_e} - \frac{1}{T_p} - \frac{1}{T_f}
\end{bmatrix},
\]

\[
B = \begin{bmatrix}
K_1 \\
K_1 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix},
\]

\[
B_1 = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
-2\pi T_{12} & 0 & 0 \\
0 & 0 & -K_p & 0 \\
0 & 0 & 0 & -\frac{1}{T_g} \\
0 & 0 & 0 & 0 \\
\end{bmatrix},
\]

\[
C = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}.
\]

By discretization with sampling time \(T_s \), the discrete-time state space model of (17) is obtained by the following equation:

\[
x(k + 1) = A_dx(k) + B_du(k) + B_{1d}u_1(k) \tag{18}
\]

\[
y(k) = Cx(k)
\]

where \(x(k+1), x(k), u(k), u_1(k), \) and \(y(k) \) are the discrete-time forms of \(dx(t)/dt, x(t), u(t), u_1(t), \) and \(y(t), \) respectively, \(A_d = e^{AT_s}, B_d = \int_0^{T_s} e^{AT}Bdt, B_{1d} = \int_0^{T_s} e^{AT}B_1dt. \)

The incremental form of Equation (18) is defined as follows:

\[
\Delta x(k + 1) = A_d \Delta x(k) + B_d \Delta u(k) + B_{1d} \Delta u_1(k) \tag{19}
\]

\[
\Delta y(k) = C \Delta x(k)
\]

where \(\Delta x(k+1), \Delta x(k), \Delta u(k), \Delta u_1(k), \) and \(\Delta y(k) \) are the incremental forms of \(x(k+1), x(k), u(k), u_1(k), \) and \(y(k), \) respectively.

3. The Proposed Method

In this section, we present an adaptive model predictive load frequency control method for a multi-area interconnected power system with PV generation. The key idea behind the proposed method is obtaining the dynamic predictive model by introducing an expanded state vector, and rolling optimization of control signal vectors based on a cost function by minimizing the weighted sum of square predicted errors and square future control values.
By defining an extend state vector \(Z(k) = (Δx(k) \ y(k - 1))^T \), the following expanded discrete-time state space model is reformulated according to the Equations (18) and (19):

\[
Z(k + 1) = GZ(k) + HA(k) + H_1Δu_1(k)
\]

\[
y(k) = C_2Z(k)
\]

where \(G = \begin{pmatrix} A_d & 0_{N_x \times N_y} \\ C & E_{N_y} \end{pmatrix} \), \(H = \begin{pmatrix} B_d \\ 0_{N_y} \end{pmatrix} \), \(H_1 = C_2 \)

\[
G = \begin{pmatrix} B_{ld} \\ 0_{N_y \times N_{ud}} \end{pmatrix} \)

\(C_z = \begin{pmatrix} C \\ E_{N_y} \end{pmatrix} \) \(N_y \times N_y \), \(E_{N_y} \) is an identity matrix with \(N_y \) rows and \(N_y \) columns, \(0_{N_x \times N_y} \) is a zero matrix with \(N_x \) rows and \(N_y \) columns, \(N_x, N_y, N_d \) and \(N_{ud} \) are the states number of \(x(t), y(t), u(t) \) and \(u_1(t) \), respectively.

The predictive output value \(y(k+p | k) \) at \(k \)-th sample time is calculated as follows:

\[
y(k + p | k) = C_2G^PZ(k) + \sum_{j=1}^{P} C_2G^{P-j}HA(k + j - 1) + \sum_{j=1}^{P} C_2G^{P-j}H_1Δu_1(k + j - 1), p = 1, 2, \ldots, P
\]

where \(P \) is prediction horizon, and \(M \) is the control horizon.

The predictive output vector \(Y_P(k) \) is evaluated as follows:

\[
Y_P(k) = φZ(k) + ψΔU(k) + ψ_1ΔU_1(k),
\]

where each vector is defined as follows:

\[
Y_P(k) = \begin{pmatrix} y(k+1 | k) \\ \vdots \\ y(k+P | k) \end{pmatrix} \]

\(ΔU(k) = \begin{pmatrix} Δu(k) \\ \vdots \\ Δu(k+P-1) \end{pmatrix} \)

\(ΔU_1(k) = \begin{pmatrix} Δu_1(k) \\ \vdots \\ Δu_1(k+P-1) \end{pmatrix} \)

\(φ = \begin{pmatrix} C_dG \\ C_dG^2 \\ \vdots \\ C_dG^P \end{pmatrix} \)

\(ψ = \begin{pmatrix} C_dH & 0_{N_x} & \cdots & 0_{N_x} \\ C_dGH & C_dH & \cdots & 0_{N_x} \\ \vdots & \vdots & \ddots & \vdots \\ C_dG^{P-1}H & C_dG^{P-2}H & \cdots & C_dH \end{pmatrix} \)

\(ψ_1 = \begin{pmatrix} C_dH_1 & 0_{N_d} & \cdots & 0_{N_d} \\ C_dGH_1 & C_dH_1 & \cdots & 0_{N_d} \\ \vdots & \vdots & \ddots & \vdots \\ C_dG^{P-1}H_1 & C_dG^{P-2}H_1 & \cdots & C_dH_1 \end{pmatrix} \)

Based on the research results [33], the reference trajectory \(y_r(k+p | k) \) is defined as follows:

\[
y_r(k + p | k) = λ^p y(k) + (1 - λ^p)c(k), \quad p = 1, \ldots, P
\]

where \(λ \) is a soften factor, and \(c(k) \) is the set value of system output. The vector form of Equation (23) is redefined as follows:

\[
Y_r(k) = \begin{pmatrix} y_r(k+1 | k) \\ \vdots \\ y_r(k+P | k) \end{pmatrix} \)

The optimal load-frequency control issue of a multi-area power system with PV generation is formulated as a typical constrained MPC problem:

\[
\min J(k) = \min \left\{ (Y_P(k) - Y_r(k))^TQ(Y_P(k) - Y_r(k)) + (ΔU(k))^TR(ΔU(k)) \right\}
\]
where \(\mathbf{Q} \) and \(\mathbf{R} \) are the weighting vectors to balance the performance of square predicted errors and square future control values, \(\mathbf{u}_{\min} \) and \(\mathbf{u}_{\max} \) are the lower and upper limits of the control signal vector \(\mathbf{u}(k) \), respectively, \(\Delta \mathbf{u}_{\min} \) and \(\Delta \mathbf{u}_{\max} \) are the lower and upper limits of the increment of the control signal vector \(\Delta \mathbf{u}(k) \), respectively, \(\mathbf{y}_{\min} \) and \(\mathbf{y}_{\max} \) are the lower and upper limits of the system output \(\mathbf{y}(k) \), respectively. In general, \(\mathbf{Q} \) and \(\mathbf{R} \) can be determined by some empirical rules, and trial and error [33].

According to the gradient descent method, i.e., \(\frac{\partial J(k)}{\partial \mathbf{U}(k)} = 0 \), the control law \(\mathbf{u}(k) \) is obtained by the following equations:

\[
\Delta \mathbf{U}(k) = (\psi^T \mathbf{Q} \psi + \mathbf{R})^{-1} \psi^T \mathbf{Q} (\mathbf{Y}_c(k) - \mathbf{y}_c(k) - \psi_1 \Delta \mathbf{U}_1(k)),
\]

\[
\Delta \mathbf{u}(k) = \left(E_{N_u} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \right) \Delta \mathbf{U}(k),
\]

\[
\mathbf{u}(k) = \Delta \mathbf{u}(k) + \mathbf{u}(k-1).
\]

Based on the above analysis, Figure 2 presents the detailed structure of the proposed MPC method for LFC of a multi-area interconnected power system with PV generation. The flowchart of MPC is shown in Figure 3, and the detailed steps are summarized as follows:

Step 1: Import the discrete time state space model of a multi-area interconnected power system with PV generation described as Equations (18) and (19).

Step 2: Obtain the expanded state space model described as Equation (20) by introducing an expanded state vector.

Step 3: Initialize the parameters of predictive control model including maximum number of sampling \(T_{\text{max}} \), prediction domain \(P \), control domain \(M \), weighting vectors \(\mathbf{Q} \) and \(\mathbf{R} \), and set \(k = 1 \);

Step 4: For the current time \(k \), obtain the past values of the output vector \(\mathbf{y}(k-1) = [ACE_1(k-1), ACE_2(k-1)]^T \), control vector \(\mathbf{u}(k-1) = [\Delta \mathbf{P}_{c1}(k-1), \Delta \mathbf{P}_{c2}(k-1)]^T \), state vector \(\mathbf{x}(k-1) = [\Delta \mathbf{P}_1(k-1), \Delta \mathbf{P}_{\text{pv}}(k-1), \Delta \mathbf{P}_{\text{tie}}(k-1), \Delta \mathbf{P}_2(k-1), \Delta \mathbf{P}_3(k-1), \Delta \mathbf{P}_4(k-1), \Delta \mathbf{P}_5(k-1)]^T \), and disturbance vector \(\mathbf{u}_d(k-1) = [\Delta \mathbf{P}_{11}(k-1), \Delta \mathbf{P}_{12}(k-1), \Delta \mathbf{P}_{13}(k-1)]^T \).

Step 5: Obtain the predictive vector \(\mathbf{Y}_p(k) \) by Equation (22) and the rolling optimization model consisting of cost function (25) and constraints (26).

Step 6: Obtain the optimal control vector \(\mathbf{u}(k) \) according to Equations (27)–(29) by gradient descent method.

Step 7: Compute the optimal system output \(\mathbf{y}(k) \) and state vector \(\mathbf{x}(k) \) under \(\mathbf{u}(k) \).

Step 8: Set \(k = k + 1 \), and return step 4 until \(k = T_{\text{max}} \).

Step 9: Obtain the system output \(\{\mathbf{y}(k), k = 1, 2, \ldots, T_{\text{max}}\} \), frequency deviation \(\{\Delta f_1(k), \Delta f_2(k), k = 1, 2, \ldots, T_{\text{max}}\} \), and tie line power \(\{\Delta \mathbf{P}_{\text{tie}}(k), k = 1, 2, \ldots, T_{\text{max}}\} \) of a multi-area interconnected power system with PV generation.
Obtain the system output \(y(k) \) and state vector \(x(k+1) \) under \(u(k) \)

Obtain the system output \(\{y(k), k=1, 2, \ldots, T_{\text{max}}\} \), frequency deviations \(\{\Delta f_i(k), k=1, 2, \ldots, T_{\text{max}}\} \), and tie line power deviation \(\{\Delta P_{\text{tie}}(k), k=1, 2, \ldots, T_{\text{max}}\} \)

Figure 3. The flowchart of MPC for LFC of a multi-area interconnected power system with PV generation.

4. Simulation Results

In order to demonstrate the effectiveness of the proposed MPC method, this section presents the simulation results on a two-area interconnected power system with PV generation. The system parameters are set as: \(T_p = 20 \) s, \(T_I = 0.3 \) s, \(T_r = 10 \) s, \(T_{12} = 0.545 \) p.u., \(T_g = 0.08 \) s, \(K_p = 120 \) Hz/p.u. MW, \(K_g = K_i = 1 \) Hz/p.u.MW, \(K_r = 3.3 \) Hz/p.u MW, \(B = 0.8 \) p.u.MW/Hz, \(R = 0.4 \) Hz/p.u.MW, \(K_{r1} = 0.33 \) p.u. MW, \(a_1 = 99.5, a_2 = 0.5, a_2 = -50 \), \(K_1 = -18 \). According to the previous research work [44,45], the maximum value of DB for governor is set as 0.05 p.u., and the GRV value is specified as 10% per minute.

The comparative methods include firefly algorithm (FA)-based PI controller abbreviated as FA-PI [32], genetic algorithm (GA)-based PI controller abbreviated as GA-PI [32], and our recently reported population extremal optimization (PEO)-based PI controller abbreviated as PEO-PI [42,43].
For fair comparison, the lower and upper limits of the optimized PI controllers’ parameters are set as -2 and 2 for FA-PI, GA-PI and PEO-PI, respectively [32]. The parameters setting of MPC and three mentioned evolutionary algorithms based PI methods are shown in Table 1. Table 2 presents four experimental conditions and all the following simulations is implemented on by MATLAB 2012b software on a 2.50 GHz PC with i7-3537U processor and 4 GB RAM.

Table 1. The parameters setting of MPC, PEO-PI, GA-PI and FA-PI.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Parameters Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA-PI [32]</td>
<td>Number of fireflies = 50, maximum number of generations = 100, the contrast of the</td>
</tr>
<tr>
<td></td>
<td>attractiveness =1.0, the attractiveness = 0.1 at $r = 0$, randomization = 0.1.</td>
</tr>
<tr>
<td>GA-PI [32]</td>
<td>Population size = 50, maximum number of generations = 100, the crossover probability</td>
</tr>
<tr>
<td></td>
<td>$p_c = 0.75$, the mutation probability $p_m = 0.1$.</td>
</tr>
<tr>
<td>PEO-PI [43]</td>
<td>Population size = 30, maximum number of generations = 100, shape parameter of MNUM</td>
</tr>
<tr>
<td></td>
<td>mutation $b = 2$.</td>
</tr>
<tr>
<td>MPC</td>
<td>Prediction horizon $P = 15$, control horizon $M = 10$, weight vectors $Q = E_{P \times P}$, $R = 0.01E_{M \times M}$.</td>
</tr>
</tbody>
</table>

Table 2. The conditions of experiments.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>Step increase in demand of thermal system, i.e., $\Delta P_{11} = 0.1$</td>
</tr>
<tr>
<td>Case 2</td>
<td>Step increase in demand of thermal system and PV generation, i.e., $\Delta P_{11} = 0.1$ and $\Delta P_{12} = 0.1$</td>
</tr>
<tr>
<td>Case 3</td>
<td>Parameter T_g increases and decreases 40% under $\Delta P_{11} = 0.1$ and $\Delta P_{12} = 0.1$</td>
</tr>
<tr>
<td>Case 4</td>
<td>Parameter T_f increases and decreases 40% under $\Delta P_{11} = 0.1$ and $\Delta P_{12} = 0.1$</td>
</tr>
<tr>
<td>Case 5</td>
<td>Dynamical fluctuations of ΔP_{11}</td>
</tr>
<tr>
<td>Case 6</td>
<td>Dynamical fluctuations of ΔP_{12}</td>
</tr>
</tbody>
</table>

4.1. Case 1: Step Increase in Demand of Thermal System

Table 3 presents the optimized PI parameters including K_{P1}, K_{I1}, K_{P2}, and K_{I2} obtained by PEO-PI, GA-PI and FA-PI for case 1. Frequency deviations Δf_1, Δf_2, and tie line power deviation ΔP_{tie} obtained by MPC, PEO-PI, GA-PI and FA-PI for case 1 are shown in Figure 4 and the corresponding performance of is compared in Table 4. The performance indices include the integral of absolute value of the error (IAE), the integral of time multiplied absolute value of the error ($ITAE$), the integral of square error (ISE), the integral of time multiplied square error ($ITSE$), the overshoot of Δf_1, Δf_2 and ΔP_{tie} denoted as M_{P1}, M_{P2} and M_{P3}, respectively, the rising time of Δf_1, Δf_2 and ΔP_{tie} denoted as t_{r1}, t_{r2} and t_{r3}, respectively, settling time of Δf_1, Δf_2 and ΔP_{tie} denoted as t_{s1}, t_{s2} and t_{s3}, respectively, the steady-state error of Δf_1, Δf_2 and ΔP_{tie} denoted as E_{ss1}, E_{ss2} and E_{ss3}, respectively. More specifically, IAE, $ITAE$, ISE and $ITSE$ are defined as follows [32]:

$$IAE = \int_0^{T_{\text{max}}} (|\Delta f_1| + |\Delta f_2| + |\Delta P_{\text{tie}}|) dt,$$ \hspace{1cm} (30)

$$ITAE = \int_0^{T_{\text{max}}} t(|\Delta f_1| + |\Delta f_2| + |\Delta P_{\text{tie}}|) dt,$$ \hspace{1cm} (31)

$$ISE = \int_0^{T_{\text{max}}} \left((\Delta f_1)^2 + (\Delta f_2)^2 + (\Delta P_{\text{tie}})^2\right) dt,$$ \hspace{1cm} (32)

$$ITSE = \int_0^{T_{\text{max}}} t\left((\Delta f_1)^2 + (\Delta f_2)^2 + (\Delta P_{\text{tie}})^2\right) dt.$$ \hspace{1cm} (33)
Table 3. Optimized PI parameters obtained by PEO-PI, GA-PI and FA-PI.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>K_{P1}</th>
<th>K_{I1}</th>
<th>K_{P2}</th>
<th>K_{I2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA-PI [32]</td>
<td>-0.8811</td>
<td>-0.5765</td>
<td>-0.7626</td>
<td>-0.8307</td>
</tr>
<tr>
<td>GA-PI [32]</td>
<td>-0.5663</td>
<td>-0.4024</td>
<td>-0.5127</td>
<td>-0.7256</td>
</tr>
<tr>
<td>PEO-PI [43]</td>
<td>-0.8749</td>
<td>-0.1373</td>
<td>-1.999</td>
<td>-1.9487</td>
</tr>
</tbody>
</table>

Figure 4. Comparison of frequency deviations Δf_1, Δf_2, and tie line power deviation ΔP_{tie} obtained by different control methods for case 1. (a) frequency deviation Δf_1; (b) frequency deviation Δf_2; (c) tie line power deviation ΔP_{tie}.

From Table 4, it is clear that MPC performs better than FA-PI, GA-PI and PEO-PI in the terms of all of the performance indices.

4.2. Case 2: Step Increase in Demand of Thermal System and PVGeneration

For case 2, the frequency deviations Δf_1, Δf_2, and tie line power deviation ΔP_{tie} obtained by MPC, PEO-PI, GA-PI and FA-PI under $\Delta P_{L1} = 0.1$ and $\Delta P_{L2} = 0.1$ are shown in Figure 5 and the corresponding performance indices of are compared in Table 5. Obviously, all of the indices obtained by MPC are the best among the four methods.
Table 4. Performance comparison of MPC, PEO-PI, GA-PI and FA-PI for case 1.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>IAE</th>
<th>ITAE</th>
<th>ISE</th>
<th>ITSE</th>
<th>$M_p 1$</th>
<th>$t_u 1$</th>
<th>$t_s 1$</th>
<th>$E_{ss 1}$</th>
<th>$M_p 2$</th>
<th>$t_u 2$</th>
<th>$t_s 2$</th>
<th>$E_{ss 2}$</th>
<th>$M_p 3$</th>
<th>$t_u 3$</th>
<th>$t_s 3$</th>
<th>$E_{ss 3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA-PI</td>
<td>41.38</td>
<td>117.76</td>
<td>5.29</td>
<td>8.83</td>
<td>0.07</td>
<td>3.12</td>
<td>11.75</td>
<td>1.89×10^{-5}</td>
<td>0.07</td>
<td>3.15</td>
<td>11.71</td>
<td>2.22×10^{-5}</td>
<td>0.06</td>
<td>3.85</td>
<td>3.85</td>
<td>5.68×10^{-7}</td>
</tr>
<tr>
<td>GA-PI</td>
<td>59.32</td>
<td>227.11</td>
<td>7.60</td>
<td>18.03</td>
<td>0.11</td>
<td>3.61</td>
<td>15.11</td>
<td>1.30×10^{-4}</td>
<td>0.10</td>
<td>3.63</td>
<td>15.11</td>
<td>1.02×10^{-4}</td>
<td>0.07</td>
<td>4.83</td>
<td>8.28</td>
<td>5.87×10^{-6}</td>
</tr>
<tr>
<td>PEO-PI</td>
<td>11.07</td>
<td>19.80</td>
<td>0.63</td>
<td>0.49</td>
<td>0.05</td>
<td>1.73</td>
<td>5.22</td>
<td>1.34×10^{-5}</td>
<td>0.04</td>
<td>1.57</td>
<td>5.92</td>
<td>1.18×10^{-5}</td>
<td>0.06</td>
<td>1.34</td>
<td>3.67</td>
<td>1.09×10^{-5}</td>
</tr>
<tr>
<td>MPC</td>
<td>8.83</td>
<td>6.07</td>
<td>0.39</td>
<td>0.20</td>
<td>0.06</td>
<td>0.67</td>
<td>1.68</td>
<td>3.05×10^{-6}</td>
<td>0.04</td>
<td>0.47</td>
<td>1.73</td>
<td>1.13×10^{-7}</td>
<td>0.05</td>
<td>1.08</td>
<td>1.32</td>
<td>4.63×10^{-8}</td>
</tr>
</tbody>
</table>

Table 5. Performance comparison of MPC, PEO-PI, GA-PI and FA-PI for case 2.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>IAE</th>
<th>ITAE</th>
<th>ISE</th>
<th>ITSE</th>
<th>$M_p 1$</th>
<th>$t_u 1$</th>
<th>$t_s 1$</th>
<th>$E_{ss 1}$</th>
<th>$M_p 2$</th>
<th>$t_u 2$</th>
<th>$t_s 2$</th>
<th>$E_{ss 2}$</th>
<th>$M_p 3$</th>
<th>$t_u 3$</th>
<th>$t_s 3$</th>
<th>$E_{ss 3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA-PI</td>
<td>42.99</td>
<td>114.54</td>
<td>5.77</td>
<td>8.69</td>
<td>0.07</td>
<td>2.94</td>
<td>11.67</td>
<td>1.98×10^{-5}</td>
<td>0.07</td>
<td>3.07</td>
<td>11.64</td>
<td>2.17×10^{-5}</td>
<td>0.06</td>
<td>3.84</td>
<td>3.84</td>
<td>5.08×10^{-7}</td>
</tr>
<tr>
<td>GA-PI</td>
<td>60.80</td>
<td>221.79</td>
<td>8.29</td>
<td>17.81</td>
<td>0.11</td>
<td>3.43</td>
<td>14.95</td>
<td>1.07×10^{-4}</td>
<td>0.11</td>
<td>3.5</td>
<td>14.97</td>
<td>9.82×10^{-5}</td>
<td>0.07</td>
<td>4.63</td>
<td>8.14</td>
<td>7.70×10^{-6}</td>
</tr>
<tr>
<td>PEO-PI</td>
<td>21.27</td>
<td>86.77</td>
<td>1.66</td>
<td>1.21</td>
<td>0.06</td>
<td>1.17</td>
<td>4.91</td>
<td>7.84×10^{-4}</td>
<td>0.05</td>
<td>1.66</td>
<td>5.55</td>
<td>7.89×10^{-4}</td>
<td>0.06</td>
<td>1.53</td>
<td>7.19</td>
<td>6.29×10^{-4}</td>
</tr>
<tr>
<td>MPC</td>
<td>11.25</td>
<td>7.01</td>
<td>0.63</td>
<td>0.27</td>
<td>0.07</td>
<td>0.23</td>
<td>1.75</td>
<td>5.11×10^{-6}</td>
<td>0.05</td>
<td>0.49</td>
<td>1.78</td>
<td>1.13×10^{-7}</td>
<td>0.05</td>
<td>1.10</td>
<td>1.48</td>
<td>4.63×10^{-8}</td>
</tr>
</tbody>
</table>
Energies 2017, 10, 1840 12 of 23

4.3. Case 3: Robustness Test for Perturbed Parameter T_g

In order to demonstrate the robustness of the proposed method against parameters uncertainty, the experiments have been implemented when parameter T_g increases and decreases 40% under $\Delta P_{L1} = 0.1$ and $\Delta P_{L2} = 0.1$. Table 6 presents the performance comparison under two conditions including T_g increasing 40% and decreasing 40%. Clearly, MPC performs the best in terms of IAE, $ITAE$, ISE and $ITSE$ under all of the conditions. Furthermore, the dynamic responses of the frequency deviations Δf_1, Δf_2, and tie line power deviation ΔP_{tie} obtained by MPC, PEO-PI, GA-PI and FA-PI under T_g increasing 40% and decreasing 40% are shown in Figures 6 and 7, respectively. MPC obtained less fluctuations, faster responses and better steady-state performance than PEO-PI, GA-PI and FA-PI when parameter T_g mismatches.

Table 6. Performance comparison of MPC, PEO-PI, GA-PI and FA-PI for case 3.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Condition</th>
<th>IAE</th>
<th>$ITAE$</th>
<th>ISE</th>
<th>$ITSE$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA-PI [32]</td>
<td>T_g increases</td>
<td>43.36</td>
<td>113.56</td>
<td>6.01</td>
<td>9.04</td>
</tr>
<tr>
<td>GA-PI [32]</td>
<td>T_g decreases 40%</td>
<td>62.65</td>
<td>225.38</td>
<td>8.72</td>
<td>18.81</td>
</tr>
<tr>
<td>PEO-PI [43]</td>
<td>T_g decreases 40%</td>
<td>19.93</td>
<td>62.22</td>
<td>1.66</td>
<td>1.24</td>
</tr>
<tr>
<td>MPC</td>
<td></td>
<td>10.97</td>
<td>7.38</td>
<td>0.66</td>
<td>0.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Condition</th>
<th>IAE</th>
<th>$ITAE$</th>
<th>ISE</th>
<th>$ITSE$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA-PI [32]</td>
<td>T_g increases</td>
<td>42.38</td>
<td>112.71</td>
<td>5.65</td>
<td>8.55</td>
</tr>
<tr>
<td>GA-PI [32]</td>
<td>T_g decreases 40%</td>
<td>60.54</td>
<td>213.73</td>
<td>8.22</td>
<td>17.48</td>
</tr>
<tr>
<td>PEO-PI [43]</td>
<td>T_g decreases 40%</td>
<td>19.3</td>
<td>60.93</td>
<td>1.53</td>
<td>1.11</td>
</tr>
<tr>
<td>MPC</td>
<td></td>
<td>10.21</td>
<td>6.60</td>
<td>0.58</td>
<td>10.26</td>
</tr>
</tbody>
</table>
Figure 6. Comparison of frequency deviations Δf_1, Δf_2, and tie line power deviation ΔP_{tie} obtained by different control methods under T_g increasing 40% for case 3. (a) frequency deviation Δf_1; (b) frequency deviation Δf_2; (c) tie line power deviation ΔP_{tie}.

Figure 7. Comparison of frequency deviations Δf_1, Δf_2 and tie line power deviation ΔP_{tie} obtained by different control methods under T_g decreasing 40% for case 3. (a) frequency deviation Δf_1; (b) frequency deviation Δf_2; (c) tie line power deviation ΔP_{tie}.

Energies 2017, 10, 1840
4.4. Case 4: Robustness Test for Perturbed Parameter \(T_t \)

Table 7 presents the performance comparison under two conditions including \(T_t \) increasing 40% and decreasing 40% when \(\Delta P_{t,1} = 0.1 \) and \(\Delta P_{t,2} = 0.1 \). It is obvious that IAE, ITAE, ISE and ITSE obtained by MPC are all better than FA-PI, GA-PI and PEO-PI under all the conditions. The dynamic responses of the frequency deviations \(\Delta f_1, \Delta f_2 \), and tie line power deviation \(\Delta P_{tie} \) obtained by MPC, PEO-PI, GA-PI and FA-PI under \(T_t \) increasing 40% and decreasing 40% are shown in Figures 8 and 9, respectively. Clearly, MPC is still prior to PEO-PI, GA-PI and FA-PI in terms of both transient and steady-state performance under the variations of parameter \(T_t \).

Table 7. Performance comparison of MPC, PEO-PI, GA-PI and FA-PI for case 4.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Condition</th>
<th>(\Delta T_t)</th>
<th>IAE</th>
<th>ITAE</th>
<th>ISE</th>
<th>ITSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA-PI [32]</td>
<td>(T_t) increases</td>
<td>44.68</td>
<td>115.67</td>
<td>6.35</td>
<td>9.69</td>
<td></td>
</tr>
<tr>
<td>GA-PI [32]</td>
<td>(T_t) decreases</td>
<td>64.83</td>
<td>241.76</td>
<td>9.14</td>
<td>20.39</td>
<td></td>
</tr>
<tr>
<td>PEO-PI [43]</td>
<td>40%</td>
<td>22.71</td>
<td>66.65</td>
<td>1.98</td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>MPC</td>
<td></td>
<td>14.83</td>
<td>12.63</td>
<td>1.00</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>FA-PI [32]</td>
<td>(T_t) increases</td>
<td>42.36</td>
<td>112.38</td>
<td>5.57</td>
<td>8.39</td>
<td></td>
</tr>
<tr>
<td>GA-PI [32]</td>
<td>(T_t) decreases</td>
<td>59.21</td>
<td>209.39</td>
<td>8.00</td>
<td>17.02</td>
<td></td>
</tr>
<tr>
<td>PEO-PI [43]</td>
<td>40%</td>
<td>19.32</td>
<td>61.32</td>
<td>1.47</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>MPC</td>
<td></td>
<td>9.04</td>
<td>5.25</td>
<td>0.48</td>
<td>0.18</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8. Comparison of frequency deviations \(\Delta f_1, \Delta f_2 \) and tie line power deviation \(\Delta P_{tie} \) obtained by different control methods under \(T_t \) increasing 40% for case 4. (a) frequency deviation \(\Delta f_1 \); (b) frequency deviation \(\Delta f_2 \); (c) tie line power deviation \(\Delta P_{tie} \).
In this subsection, two experiments have been done to further demonstrate the robustness of the proposed MPC method for the dynamical loads fluctuations of $\Delta P_{L,1}$ and $\Delta P_{L,2}$. More specifically, Figures 10 and 11 show the dynamic responses of frequency deviations Δf_1, Δf_2, and power deviations ΔP_{tie}, ΔP_{pv}, ΔP_5 obtained by different control methods under dynamical fluctuations of $\Delta P_{L,1}$ and $\Delta P_{L,2}$, respectively. It is obvious that the proposed MPC performs better than PEO-PI, GA-PI and FA-PI due to its fast transient responses and less deviations of Δf_1, Δf_2, ΔP_{tie}, ΔP_{pv}, and ΔP_5 under two conditions. Moreover, Table 8 further compares the performance indices such as IAE, $ITAE$, ISE and $ITSE$ obtained by different control methods under two cases of dynamical load fluctuations. Clearly, MPC is superior to FA-PI, GA-PI and PEO-PI in terms of all indices. In other words, the proposed MPC method in this paper also outperforms these state-of-the-art PI control methods [32,43] for the LFC issue of a multi-area interconnected power system with PV generations even under the dynamical loads fluctuations.
Figure 10. Cont.
Figure 10. Comparison of frequency deviations Δf_1, Δf_2, and power deviations ΔP_{tie}, ΔP_{pv}, ΔP_5 obtained by different control methods under dynamical fluctuations of ΔP_{L1} for case 5. (a) ΔP_{L1}; (b) Δf_1; (c) Δf_2; (d) ΔP_{tie}; (e) ΔP_{pv}; (f) ΔP_5.

Figure 11. Cont.
Figure 11. Comparison of frequency deviations Δf_1, Δf_2, and power deviations ΔP_{tie}, ΔP_{pv}, ΔP_5 obtained by different control methods under dynamical fluctuations of ΔP_L for case 6. (a) ΔP_L; (b) Δf_1; (c) Δf_2; (d) ΔP_{tie}; (e) ΔP_{pv}; (f) ΔP_5.
Table 8. Performance comparison of MPC, PEO-PI, GA-PI and FA-PI for dynamical load fluctuations.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Condition</th>
<th>IAE</th>
<th>ITAE</th>
<th>ISE</th>
<th>ITSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA-PI [32]</td>
<td>Case 5: Dynamical</td>
<td>50.18</td>
<td>502.38</td>
<td>5.35</td>
<td>12.58</td>
</tr>
<tr>
<td>GA-PI [32]</td>
<td>Dynamical fluctuations of ΔP_L</td>
<td>71.70</td>
<td>829.83</td>
<td>7.57</td>
<td>22.8</td>
</tr>
<tr>
<td>PEO-PI [43]</td>
<td>ΔP_{L1}</td>
<td>32.60</td>
<td>908.93</td>
<td>0.85</td>
<td>7.12</td>
</tr>
<tr>
<td>MPC</td>
<td>ΔP_{L2}</td>
<td>12.78</td>
<td>161.44</td>
<td>0.42</td>
<td>2.03</td>
</tr>
<tr>
<td>FA-PI [32]</td>
<td>Case 6: Dynamical fluctuations of ΔP_L^2</td>
<td>133.27</td>
<td>6034.24</td>
<td>8.62</td>
<td>341.94</td>
</tr>
<tr>
<td>GA-PI [32]</td>
<td>Dynamical</td>
<td>196.33</td>
<td>9514.9</td>
<td>12.8</td>
<td>541.8</td>
</tr>
<tr>
<td>PEO-PI [43]</td>
<td>ΔP_{L1}^2</td>
<td>39.06</td>
<td>1287.35</td>
<td>1.3</td>
<td>28.93</td>
</tr>
<tr>
<td>MPC</td>
<td>ΔP_{L2}</td>
<td>14.02</td>
<td>468.56</td>
<td>0.32</td>
<td>6.92</td>
</tr>
</tbody>
</table>

5. Conclusions

In this paper, an adaptive model predictive control (MPC) method is proposed for load frequency control (LFC) issue of a multi-area interconnected power system with PV generation. The key operations of this proposed method include formulating the LFC issue as a discrete-time state space model, obtaining the dynamic predictive model by introducing an expanded state vector, and rolling optimization of control output signal by gradient descent method based on a cost function minimizing the weighted sum of square predicted errors and square future control values. The simulation results on a typical two-area power system consisting of photovoltaic and thermal generator have shown that the proposed MPC method is superior to evolutionary algorithms-based PI control methods such as FA-PI [32], GA-PI [32], and PEO-PI [42,43] in terms of dynamic and steady-state performance in cases of normal condition, load disturbance and parameters uncertainty. To the best of the authors’ knowledge, this work can be considered as the first contribution of MPC to the optimal LFC issue of a multi-area interconnected power system with PV generation. However, from the theoretical perspective, the optimal design issue of the weighting vectors, prediction horizon and control horizon in the proposed MPC method is still challenging. From the perspective of engineering practice, the proposed method will be further studied in depth by tuning the weighting vectors, prediction horizon and control horizon based on evolutionary algorithms, such as multi-objective optimization algorithms [46–48]. On the other hand, the extension of MPC to more complex power systems by taking into account the robust control performance indices [45] and real-time predictive power of renewable energy systems [49] is another significant subject of future investigation.

Acknowledgments: This work was partially supported by the National Natural Science Foundation of China (Nos. 51207112 and 61373158), the Zhejiang Provincial Natural Science Foundation of China (Nos. LY16F030011 and LZ16E050002), and the Zhejiang Province Science and Technology Planning Project (Nos.2014C31074, 2014C31093, and 2015C31157).

Author Contributions: Guo-Qiang Zeng proposed the novel idea behind this work, designed the algorithm framework, and prepared manuscript; Xiao-Qing Xie performed the simulations for the multi-area power system with PV generation; Min-Rong Chen analyzed the simulation results and improve the language. All authors approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

- Δf_i: Frequency deviation of area i
- ΔP_1: The intermediate power deviation of PV
- ΔP_2: Power deviation of governor
- ΔP_3: Power deviation of steam turbine
- ΔP_4: Power deviation of and re-heater
- ΔP_{ci}: Control signal of area i
- ΔP_{L1}: Load changes
ΔP_{pv} Power deviation of PV
ΔP_{tie} Power deviation of tie-lines
$a_1 (a_3)$ Negative values of poles
a_2 Negative value of zeros
$t_{r1} (t_{r2})$ Rising time of $\Delta f_1 (\Delta f_2)$
t_{r3} Rising time of ΔP_{tie}
$t_{s1} (t_{s2})$ Settling time of $\Delta f_1 (\Delta f_2)$
t_{s3} Settling time of ΔP_{tie}
ACE_i Area control error of area i
B Frequency bias factor
$E_{ss1} (E_{ss2})$ Steady-state error of $\Delta f_1 (\Delta f_2)$
E_{ss3} Steady-state error of ΔP_{tie}
$G_{ge}(s) (G_{go}(s))$ Transfer function of generator (governor)
$G_{pv}(s)$ Transfer function of PV generation
$G_f(s)$ Transfer function of re-heater
$G_t(s)$ Transfer function of steam turbine
IAE Integral of absolute error
ISE Integral of square error
$ITAE$ Integral of time multiplied absolute error
$ITSE$ Integral of time multiplied square error
$j(k)$ Cost function of predictive model
K_1 Gain of PV generation system
K_g Gain of governor
K_p Gain of generator
K_r The p.u. megawatt rating of high pressure stage
$K_{II1} (K_{II2})$ Integral parameter of PI controller in area 1 (area 2)
$K_{P1} (K_{P2})$ Proportional parameter of PI controller in area 1 (area 2)
M Control horizon
$M_{p1} (M_{p2})$ Overshoot of $\Delta f_1 (\Delta f_2)$
M_{p3} Overshoot of ΔP_{tie}
N_u Number of variables in control vector
N_{ui} Number of variables in disturbance vector
N_x Number of variables in state vector
N_y Number of variables in system output vector
P Prediction horizon
R Regulation constant
T_g Inertial time constant of governor
T_{max} Maximum number of sampling times
T_p Inertial time constant of generator
T_r Time constant of re-heater
T_s Sampling time
T_t Inertial time constant of steam turbine
T_{12} Synchronizing coefficient of tie-line
$c(k)$ The set-point vector of system output
u Control vector
$u_{min} (u_{max})$ Lower (upper) limits of control vector
u_1 Disturbance vector
x State vector
y System output vector
\(y_{\text{min}}(y_{\text{max}}) \) \(\) Lower (upper) limits of \(y \)
\(y(k+p | k) \) \(\) The \((k+p)\)-th predictive output at \(k \)-th time
\(y_r(k+p | k) \) \(\) The \((k+p)\)-th predictive reference
\(\Delta u \) \(\) Incremental form of control vector
\(\Delta u_I \) \(\) Incremental form of disturbance vector
\(\Delta u_{\text{min}}(\Delta u_{\text{max}}) \) \(\) Lower (upper) limits of \(\Delta u \)
\(\Delta x \) \(\) Incremental state vector
\(\Delta y \) \(\) Incremental form of system output vector
\(\Delta U \) \(\) Predictive control vector
\(\Delta U_I \) \(\) Predictive disturbance vector
\(A \) \(\) Continuous-time system matrix
\(A_d \) \(\) Discrete-time system matrix
\(B \) \(\) Continuous-time control matrix
\(B_d \) \(\) Continuous-time control matrix
\(B_I \) \(\) Continuous-time disturbance matrix
\(B_{I_d} \) \(\) Discrete-time disturbance matrix
\(C \) \(\) System output matrix
\(C_z \) \(\) Extended system output matrix
\(E \) \(\) Identity matrix
\(G \) \(\) Extended discrete-time system matrix
\(H \) \(\) Extended discrete-time control matrix
\(H_I \) \(\) Extended discrete-time disturbance matrix
\(Q \) \(\) Weighting vector of square predicted errors
\(R \) \(\) Weighting vector of square future control
\(Y_p(k) \) \(\) Predictive output vector
\(Y_r(k) \) \(\) Reference predictive vector
\(Z(k) \) \(\) Extend state vector
\(\lambda \) \(\) Soften factor
\(\phi \) \(\) Predictive system matrix
\(\phi_I \) \(\) Predictive control matrix

References

2. Wu, Y.; Wei, Z.; Weng, J.; Li, X.; Deng, R.H. Resonance attacks on load frequency control of smart grids. *IEEE Trans. Smart Grid* 2017. [CrossRef]
9. Chuang, N. Robust H∞ load-frequency control in interconnected power systems. *IET Control Theory Appl.* 2016, 10, 67–75. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).