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Abstract: The present paper is focused on short-term prediction of air-conditioning (AC) load of
residential buildings using the data obtained from a conventional smart meter. The AC load, at each
time step, is separated from smart meter’s aggregate consumption through energy disaggregation
methodology. The obtained air-conditioning load and the corresponding historical weather data are
then employed as input features for the prediction procedure. In the prediction step, different machine
learning algorithms, including Artificial Neural Networks, Support Vector Machines, and Random
Forests, are used in order to conduct hour-ahead and day-ahead predictions. The predictions obtained
using Random Forests have been demonstrated to be the most accurate ones leading to hour-ahead
and day-ahead prediction with R2 scores of 87.3% and 83.2%, respectively. The main advantage of the
present methodology is separating the AC consumption from the consumptions of other residential
appliances, which can then be predicted employing short-term weather forecasts. The other devices’
consumptions are largely dependent upon the occupant’s behaviour and are thus more difficult to
predict. Therefore, the harsh alterations in the consumption of AC equipment, due to variations in
the weather conditions, can be predicted with a higher accuracy; which in turn enhances the overall
load prediction accuracy.

Keywords: residential buildings; air-conditioning; smart meter analytics; machine learning; short-term
load prediction

1. Introduction

A significant portion of the global energy consumption is due to the consumption of buildings
and thus the corresponding share of the building sector in the total energy consumption in India,
Europe and USA is around 40% [1,2]. Previous studies have demonstrated that around half of the
energy demand of buildings can be attributed to their heating, ventilation and air-conditioning
(HVAC) systems [3]. Accordingly, the consumption of air-conditioning systems has a significant
impact on the electrical grid and the precise prediction of its variations can provide the grid
management with notable benefits such as competitiveness in the day-ahead market, dispatch
management, demand-side management and control optimization. Apparently, a straightforward
solution in order to simulate the behaviour of buildings, and thus predicting the variations in their
HVAC consumption, is developing physical models employing their geometrical and construction
characteristics [4], infiltration properties, required ventilation rate, occupancy profiles and other details.
However, grid management firms and utilities do not commonly have access to such details about the
characteristics of their consumers’ buildings.

One potential solution to deal with the mentioned issue is the development of data-driven
models, which correlate the consumed power of air conditioners in the individual buildings with the
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corresponding ambient and temporal conditions and can thus estimate harsh variations in HVAC
consumption due to changes in the ambient conditions. Nevertheless, the latter approach requires
installing dedicated meters permanently connected to the HVAC equipment in each individual building
and consequently results in additional costs for the user or the utility firm.

Another alternative approach, which is implemented in the present study, is to utilize the
aggregate consumed power of individual buildings, which is obtained from smart meters. Once the
aggregate consumed power at each time step is obtained, energy disaggregation methodologies are
employed in order to determine the corresponding share of air-conditioning consumption. In order to
train the disaggregation algorithm, a very short (one week) measurement period with additional meters
for individual devices, is needed. However, the latter requirement can eventually be evaded once a
database with abundant measured data corresponding to the operation of different combinations of
various residential devices is available. The ubiquitous spread of smart meters throughout the world,
and specifically in industrialized countries, facilitates utilizing the proposed approach.

The disaggregation of aggregate data by non-intrusive method was first proposed by Hart,
Kern and Schweppe at Massachusetts Institute of Technology (MIT) in the 80s and was further
developed by Hart and termed Non-Intrusive Appliance Load Monitoring (NALM), in the 90s [5].
Supervised NALM algorithms utilize a set of the labelled signatures, e.g., voltage and current
waveforms, of electrical devices in order to identify them from the aggregate load. This requires
a one-time intrusion intervention in the household of interest where each device is identified and
labelled based on its unique signature. In unsupervised NALM, the algorithm undergoes training
and the devices are clustered from the aggregate waveform by matching either ON/OFF signals,
voltage or current spikes in the aggregate data. The clustering is a way of labelling the devices and
performing NALM with total non-intrusiveness. For the actual disaggregation, appliance models
such as ON/OFF, Finite State Machine (FSM) and Continuously Variable proposed by Hart [6]
along with Zero-Loop-Sum-Constraint, are utilized owing to their corresponding simplicity and
ease of developing disaggregation algorithms. Combinatorial Optimisation and Factorial Hidden
Markov models, which are elaborated in Section 3, are two widely employed state-of-the-art energy
disaggregation algorithms, which are accordingly employed in the present work.

The second step of the present work is focused on utilizing machine-learning algorithms
to conduct short-term prediction of air-conditioning load employing the data obtained from the
disaggregation step. Many previous studies had investigated the possibility of using machine-learning
algorithms for predicting the energy demand of buildings. Anstett and Kreider [7] employed
artificial neural networks to predict the daily energy consumption in a complex institutional building.
Jain et al. [8] developed a similar approach using Support Vector Machine (SVM), based on an empirical
dataset from a multi-family residential building, aimed at predicting the overall energy consumption.
They also examined the effect of temporal granularity on the resulting prediction and their results
demonstrated an overall coefficient of variation (CV) of 11.4, 0.54 and 0.08 on a daily, hourly and
10 min data granularity respectively. In the latter study, the CV metric was defined as the square root
of squares of deviations of the predicted and the actual values divided by the number of samples
multiplied by the mean. Chen et al. [9] performed a short-term prediction of electric demand in the
building sector via hybrid SVM and compared it with pure SVM. A relative improvement in mean
absolute error of 6% was achieved. Artificial neural networks were utilized by Karatasou et al. [10] to
predict hour-ahead and day-ahead energy consumption in buildings employing two different datasets
from the Energy Predictions Shootout I contest and an office building in Athens. The prediction results
showed a CV of 2.39–5.59 and 2.57–24.35 for hour-ahead and day-ahead prediction applied on the first
and the second datasets respectively. Edwards et al. [11] conducted a study focused on prediction of
residential loads employing various algorithms including regression, Feed Forward Neural Network
(FFNN), Support Vector Machine (SVM), Least-Square Support Vector Machine (LS-SVM), Hierarchical
Mixture of Experts (HME) and Fuzzy C-Means (FCM) on the ASHRAE Great Energy Prediction
Shootout with 15 min granularity and utilizing the Campbell Creek house database. Their results
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demonstrated that an average CV values of 36.38, 31.83, 29.55, 27.62, 35.78, 28.35, 27.94 obtained by
Regression, FFNN, Support Vector Regression (SVR), LS-SVM, HME-Regression, HME-FFNN and
FCM-FFNN respectively. Basu et al. [12] developed a general model using a knowledge driven and
data driven approach. The model was tested over IRISE of REMODECE datasets using different
machine learning algorithms including Neural Networks, Nearest Neighbours and Decision Tree.
Elevated prediction accuracies were obtained and were reported to be around 94.7%, 94.1% and
94.5% for lighting, washing machine and oven consumptions. Dong et al. [13] developed a hybrid
model through data-driven techniques employing ANN, SVM, (LS-SVM), Gaussian process regression
(GPR) and Gaussian mixture model (GMM) on four different residential data for hour ahead and day
ahead forecast of AC load. The hybrid models performed slightly better than those in the works of
Jain et al. [8] and Edwards et al. [11]. Dong et al. [14] discussed a similar approach using SVM and
focused on optimizing the model’s hyper parameters for predicting building energy consumption
in tropical regions. However, in this work each model was built to yield maximum accuracy whilst
predicting hour-ahead and day-ahead AC energy consumption. Kontokosta et al. [15] developed a
predictive model using Linear Regression, SVM and Random Forest approaches to predict city-scale
energy use in buildings in New York. It was shown that SVM performed the best among them.
Owing to the availability of the building area and geo-location, the energy consumptions were
correlated with the building area, occupants and floors. Li et al. [16] performed particle swarm
optimization based LS-SVM for building cooling prediction. They found that the hyper-parameters
of the model could be quickly optimized while attempting to conduct predictions for nonlinear and
time series dataset like energy consumption. Fan et al. [17] developed a method for short-term
cooling load prediction using supervised and unsupervised learning algorithm with deep neural
network. Li et al. [18] used back propagation neural network, radial basis function neural network,
general regression neural network and SVM for predicting the hourly cooling load in office buildings.
Yao et al. [19] developed a combined forecast model based on analytic hierarchy process for day-ahead
prediction. Analytic hierarchy process is a simple decision making procedure based on setting priorities.
González et al. [20] modelled a feedback artificial neural network for hourly energy consumption in
buildings. The model was not optimized based on the number of neurons, however they seemed
to perform well on predicting the energy consumption. Ben-Nakhi et al. [21] developed a general
regression neural network (GRNN) to predict cooling loads in buildings in Kuwait using a dataset
from 1997–2001. The prediction model also used temperature forecast to aid in day-ahead predictions.
Apart from machine-learning, genetic algorithms are also a promising method of analysing building
energy performance. Castelli et al. [22] developed a model using genetic programming approach with
geometric semantic genetic programming (GSGP). The model predicted both heating and cooling load
of a set of residential buildings.

As previously pointed out, the present study involves two main steps. The first step is focused on
extracting the air-conditioning consumption from the aggregate smart meter data of a building.
The second step is dedicated to building a machine-learning model to predict hour-ahead and
day-ahead consumption of air conditioner units from the obtained data. Yearly consumption data of
a residential building, provided by Pecan Street Inc.’s Dataport™ [23] was utilized. Combinatorial
Optimisation (CO) and Factorial Hidden Markov Model (FHMM) algorithms, which are implemented
in the open source Non-Intrusive Load Monitoring Toolkit (NILMTK) [24], have been utilized
to conduct the disaggregation step. The obtained air-conditioning load and the corresponding
historical weather and time-related features are then employed as input features of the prediction
procedure. The time-related data includes the hour, the day of the week, the weekday/weekend,
and day/night, while the temperature and the irradiance constitute the employed weather data.
The ambient temperature is provided within the dataset and, in order to include the effect of irradiance,
the time-stamped generation of a nearby photovoltaic plant, is utilized. The use of Photovoltaics
(PV) generation as an indication of irradiance will increase the general applicability of the proposed
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method, as the grid managers have access to PV production at various locations, while the irradiance
measurement devices are not ubiquitous.

Hour-ahead and day-ahead predictions are finally performed using several machine-learning
algorithms such as Linear Regression, Random Forest Decision Tree, Support Vector Machines,
and Multi-Layer Perceptron Neural Networks and their corresponding results are compared.

It is worth mentioning that the principal objective of the present work is performing short-term
prediction of AC loads while only employing the aggregate data obtained from a conventional smart
meter and in the absence of other detailed information about the building including the construction
characteristics, occupancy, the ventilation rate, technical details of the air-conditioning unit, and other
details. The latter situation is a problem that the utility companies and grid management units are
commonly facing as they attempt to predict the aggregate power consumption of users (out of which a
notable share is related to AC consumption) only employing the total consumed power communicated
by the smart meter. However, they do not have access to any other information regarding the details
of the building construction or the behaviour of the occupants. Hence, the main novelty of the present
work, compared to previously conducted data-driven residential load prediction studies, is attempting
to obtain increased accuracy while not having access to the mentioned detailed information about the
building and its occupants.

2. Employed Dataset

The dataset used in the present work is the yearly consumption data of a residential building,
located in Austin (TX, USA), which is measured in the year 2014, and is publicly accessible via
Dataport™ (provided by Pecan Street Inc., Austin, TX, USA). This dataset includes the total consumed
power of the house along with the power consumed by individual devices recorded with 1-min
sampling rate. The devices include a split air conditioner, dish washer, washing machine, electric oven,
water pumps, electric heater, fridge, fans, electric water heater, micro wave oven, toaster, television,
miscellaneous electronic devices (laptops, tablets) and light bulbs of different types (fluorescent,
incandescent, and light-emitting diodes (LED).

The database also contains ambient temperature with 1-hour sampling rate which was added
as a feature to the machine-learning model. As previously mentioned, in order to take into account,
the effect of irradiance, time-stamped power generation of a photovoltaic unit installed on a nearby
building has also been employed. Although detailed information regarding the model and the
orientation of the PV panels, utilized in the unit, is not accessible, the corresponding power generation
at any specific hour is proportional to the irradiance in that hour.

3. Energy Disaggregation Methodology

Energy disaggregation estimates appliance-by-appliance electricity consumption from a single
meter that measures the total household’s electrical consumption. First step in disaggregation is
to establish appliance models, which describe the behaviour and electrical signature of appliance.
There are several device models but the most simple and common models are the ON/OFF, Finite State
Machines (FSM) and Continuously Variable [25]. The ON/OFF model considers that an appliance may
be either ON or OFF at any given point in time. While it is ON there is no other state that the appliance
may take (e.g., toaster, lights vacuum cleaners). FSM model considers appliances, which have several
distinct switching states during ON mode. The appliance passes through different states every time the
devices is used (e.g., washing machines, electric rice cooker, clothes dryer). The Continuously Variable
model includes appliances like light dimmers, and variable-speed hand tools. These devices are very
difficult to identify and disaggregate from the whole home energy data. It relies on high frequency
harmonics to identify such devices. Appliance signatures like voltage, real and reactive power, current,
root mean square (RMS) current, steady state harmonics and phase shifts are the electrical marks on the
aggregate data from which appliances can be identified. The methods under the steady state make use
of appliance signatures when the load is in steady state operation [26]. Appliances, whenever switched
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ON, have a transient state momentarily before reaching a steady state which is caused by the sudden
change in the circuit [27]. Transient behavior of most electrical appliances is unique, which makes
it convenient for identification and disaggregation. The drawback, however, is the need for high
sampling rate which may increase the cost of measurement and computation. Hybrid signatures are
combination of steady-state signatures and transient signatures. H. H. Chang et al. [28,29] combined
steady-state real power, reactive power and total transient energy to disaggregate different appliances
with the same real and reactive power. Apart from steady-state and transient signatures, there are other
methods of using features as signatures which need not be extracted from the measured appliance
data. Hour of the day, frequency of appliance usage, usage duration and distribution over the day
and the correlation between the usage of other appliances are some features which can be used to
increase accuracy of identification and disaggregation [30]. Energy disaggregation, ultimately is to
provide estimates [24], yt̂

(n), of the actual power demand, yt
(n), of each appliance n at time t, from the

household’s aggregate power readings, yt. Generally, NALM algorithms are developed over the
appliance models mentioned above. The NILMTK toolkit [24] uses xt

(n) ∈ Z > 0 to represent the ground
truth state, and xt̂

(n) to represent the appliance state estimated by the disaggregation algorithm.
The basic process of disaggregation can be divided into seven steps. Firstly, the whole house

aggregate electricity data is collected through sensors or smart meters at the utility interface which
measures the average power and the RMS voltage on the mains with a standard sampling interval (kHz,
1 s, 1 min, 15 min). Step 2 is to normalize the total load power or the measured signature with respect
to the fluctuation in the mains. Supply voltage to consumers may have plodding or discrete changes
due to factors like load-dependent voltage drops in transmission lines and transformers. This may
lead to detecting step changes that may interfere with our appliance signature and ultimately with
the disaggregation. The toolkit implements Hart’s method based on linear model where admittance
is preferred over power and current as a signature. The admittance Y(t) is given by Equation (1),
where P(t) and V(t) are the measured power and RMS voltage. The normalized power is then expressed
as in Equation (2), which is admittance corrected by a constant value, resulting in a power normalized
to 120 V. Step 3 involves passing the normalized power of the aggregate data through the edge
detector, which evaluates time and size of all the step changes. It involves signal processing techniques
like filtering, differentiating to detect peaks and to capture the step changes caused by appliance
state changes. For an unsupervised learning algorithm, where the appliance labels are unavailable,
more electrical signatures, such as reactive power, are considered when evaluating the step changes of
unique devices. The detected step changes (e.g., ON/OFF) when mapped on the real-complex ∆P-∆Q
space, could be grouped into clusters based on equal and opposite components. Finally, each step
changes are matched with the corresponding cluster in case of unsupervised learning or to appliances
in case of supervised learning [24].

Y(t) =
P(t)

V2(t)
, (1)

PNorm(t) = 1202Y(t) =
(

120
V(t)

)2
P(t). (2)

3.1. Combinatorial Optimization

The total load depends on which appliance are switched on at any given moment, so a switching
process, vector a(t) is defined. The vector a(t) is an n component Boolean vector defining the state of n
appliances at time t:

ai(t) =

{
1, i f appliance i is ON at t

0, i f appliance i is OFF at t
, (3)

For i = 1, . . . , n, the switch process modulates the power consumption of the individual appliances.
A multiphase load with p phases can be modelled as a p-vector in which each component is the load
on one phase. Then we model the measured power given by Equation (4). Where P(t) is the p-vector as
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seen at the utility at time t, and e(t) is a small noise or error term. Equation (4) suggests a straightforward
criterion for estimating the state of the individual appliances. If all n of the P; are known and the
measured power P(t) is given, at each t choose the n vector a(t) which minimizes |e(t)|, under the
constraint that a is an n-dimensional Boolean vector [5]:

P(t) =
n

∑
i=1

ai(t)Pi + e(t) , (4)

â(t) = arg min
a

∣∣∣∣∣P(t)− n

∑
i=1

aiPi

∣∣∣∣∣, (5)

This is a familiar combinatorial optimization problem. Each time instant is a separate optimization
problem and each time instant is independent. Combinatorial optimization is a subset sum problem
and even with scalar P variables it’s an NP complete “weighted set” problem. The computation
becomes taxing as it is exponential with the number of appliances [5].

3.2. Factorial Hidden Markov Model

Hidden Markov Models (HMM) are temporal graphical models which are probabilistic methods.
A simple representation of HMM is show in Figure 1 [31]. Several machine learning and artificial
intelligence models implement Markov models. A well-known example is in the area of speech
recognition [32] and word prediction. The HMM is sequence of discrete variables in which each
variable emits a single continuous variable, which is dependent upon the value of the discrete variable.
The discrete variables (sequence z = z1, . . . , zT) are not observed whereas the continuous variables
(sequence x = x1, . . . , xT) are observed. T is the length of the sequence or the time step of each discrete
variable. Each discrete variable zT can correspond to one of K states, while each continuous variable
can take on any real number. The three mains parameters describing a HMM are initial probability,
transition probability and emission probability.
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Factorial Hidden Markov Models (FHMM) are a type of HMM wherein there are several
independent Markov chains of hidden variables, z(1), . . . , z(N), in which N is the number of
chains. Therefore, each continuous observed variable is dependent on multiple hidden variables [33].
The Figure 2 is a representation of a Factorial Hidden Markov model. Similar to a HMM, the joint
likelihood of a FHMM is given by Equation (6), where 1: N represents a sequence of appliances 1 . . . , N.
The complexity of both learning and inference is greater for FHMMs than HMMs. The computational
cost is exponential in the number of chains, N, the model will therefore become computationally
intractable for large N [31]:

p
(

x(1:N), z
∣∣∣θ) =

N

∏
n=1

p(z1
(n)

∣∣∣∣∣π)
T

∏
t=2

N

∏
n=1

p(zt
(n)

∣∣∣∣∣zt−1
(n), A)

T

∏
t=1

p(xt

∣∣∣∣∣zt
(1:N), φ), (6)
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In the FHMM, each of the n devices in a building is considered as a Hidden Markov Model.
Each device has a discrete hidden state, denoted xt

(i) ∈ {1, . . . , Ni} for any given time t for device i,
which corresponds approximately to the internal state of the device (ON/OFF or one of intermediate
states if it were an FSM). At each time t, given the internal state, the ith device produces a Gaussian
distributed power, represented xt

(i), with state-specific mean and variance parameters.
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Since, we only observe the sum of all the power outputs at each time as in Equation (7) [31]:

xt =
n

∑
i=1

x(i)t (7)

With a smart meter, in a practical scenario, the disaggregation task can then be framed as an
inference problem. Given an observed sequence of aggregate energy x1, . . . , xT, we aim to compute the
posterior probability of the individual device consumptions xt

(i) for i = 1, . . . , n and t = 1, . . . , T [34].

4. Short-Term Prediction Methodology

4.1. Machine Learning Models

In the present study, several machine-learning models including Linear Regression, Support
Vector Machines, Random Forests Decision Trees, Neural Networks (Multi-Layer Perceptron) have
been employed to conduct the predictions. Linear regression is a linear model that assumes a
linear relationship between the input variables (x1, x2, . . . , xn) and the single output variable (y).
More specifically, that y can be calculated from a linear combination of the input variables (x1, x2, . . . ,
xn). Therefore, a linear model can be represented as an equation that combines a specific set of input
values (x) by a weight, the solution to which is the output variable (y). The weights are optimized by
methods such as Ordinary Least Squares and Gradient Descent.

Support Vector Regression is a regression model from the Support Vector Machines, which is
similar to the SVM classification. For a set of input variables (x) and single set of output variable
(y), the goal is to find a function f(x) that has the least deviation from the actual obtained targets (y).
The problem can be solved as a convex optimization problem minimizing an error function.

Random Decision forests is an ensemble approach that is similar to a form of nearest neighbour
predictor and can be applied for both classification and regression. A Random forest is a predictor
consisting of a collection of randomized base regression trees by bootstrap aggregating or bagging.
Random forest works by averaging multiple deep decision trees, trained on various parts of the same
training set with the goal of reducing the variance [35].

Multi-Layer Perceptron (MLP) is a Feed Forward Artificial Neural Network, a universal
function approximator which can learn complex mapping functions. MLP is made of several
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interconnected layers and nodes in its hidden layer, apart from its input and output layer. Using error
back-propagation as a gradient descent, an MLP estimates the weight of each node to map the set of
inputs to the output. Back propagation keeps updating the weights by minimizing the mean squared
error (MSE) with the addition of regularization term to decay the weights, which makes sure not to
overfit the data that we are trying to map.

4.2. Accuracy Metrics

The model’s performances are measured on the basis of two accuracy metrics, namely coefficient
of determination (R2) and root mean squared error (RMSE). R2 is a general metric used in regression
analysis, which is simply the square of sample correlation coefficient between the observed values
to the predicted values. It gives a measure of how well the observed values are represented by the
model, based on the proportion of total variation of values predicted by the model. If we consider the
observed values to be y1, . . . , yn, and the corresponding predicted values to be f1, . . . , fn The residuals
are defined as e = yi − fi and the mean of the observed data is given by Equation (8). The total sum
of squares, which is proportional to the variance of the data, is given in Equation (9). The regression
sum of squares and residual sum of squares are then defined as Equations (10) and (11), respectively.
Finally, the definition of coefficient determination is given by Equation (12). This leads to a simple
model interpretation where R2 = 1 means that the model predicts exactly the observed values:

y =
1
n

n

∑
i=1

yi, (8)

SStot = ∑
i
(yi − y)2 (9)

SSreg = ∑
i
( fi − y)2 (10)

SSres = ∑
i
(yi − fi)

2 = ∑
i

e2
i (11)

R2 = 1− SSres

SStot
(12)

The root mean squared error or root mean squared deviation is synonymous with the previous
mentioned accuracy metric. It directly estimated the difference in predicted values to the corresponding
observed values. The root mean squared deviation of predicted values for time t of a regression’s
dependent variable is computed for n different predictions as the square root of the mean of the squares
of deviations, as expressed in Equation (13):

RMSE =

√
∑n

t=1(ŷt − yt)

n
, (13)

These two metrics are the most common metrics to evaluate a regression model.

5. Results

5.1. Disaggregation

Combinatorial Optimisation (CO) and Factorial Hidden Markov Model (FHMM) algorithms,
which are conventional disaggregation methods implemented in the open source toolkit NILMTK [24],
have been utilized to conduct the disaggregation of the considered building’s aggregate load (measured
in the year 2014). Similar to a machine learning approach, the disaggregation requires two datasets,
one for training and another for testing. The training was conducted using a dataset of 28 days
period from the chosen building of the year 2013 and the disaggregation using a dataset of 364 days
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period from the same building of the year 2014. Furthermore, in order to evaluate the possibility of
employing shorter training periods, disaggregation using a 7 day training dataset was also performed.
The corresponding obtained R2 score and RMSE of the algorithms along with the corresponding
computational cost are provided in Table 1. The cost of computation is represented as training and
disaggregation time, each of which is the time (in seconds) that the computer (equipped with an i5
Intel processor running at 2.2 GHz and 8 GB of memory) needed in order to perform the corresponding
operation (training or disaggregating) and write the results to the hard drive.

Table 1. Comparison of CO and FHMM algorithms’ accuracy and computational cost (for a PC
equipped with an i5 Intel processor running at 2.2 GHz and 8 GB of memory).

Disaggregation
Method

Training Period
(Days)

Training Time
(Seconds)

Disaggregation
Period (Days)

Disaggregation
Time (Seconds) RMSE R2 Score (%)

Combinatorial
Optimization

28 45 364 76 114.76 99.01

7 14 364 77 121.80 98.67

FHMM
28 353 364 2800 284.49 92.07

7 92 364 2780 295.67 91.82

As can be observed in this table, Combinatorial Optimization shows a notably superior
performance compared to FHMM as it leads to higher accuracy while requiring even lower
computational cost. It can also be concluded that utilizing a training period of 7 days instead of
28 days, does not result in a notable decrement in the disaggregation accuracy. Thus, a training period
of 7 days will be enough in order to reach an acceptable accuracy. It is also noteworthy that, although
one-week period of training with dedicated sensors is still needed in the methodology presented in
this paper, this necessity can clearly be evaded once the utility or grid manager has access to a large
database, which includes labelled electrical signature data of different combination of commercial
domestic devices operating at the same time.

Figure 3 shows the results of disaggregation using Combinatorial Optimization (CO) and FHMM
along with actual AC consumption of the considered building for a short interval (Aug 10th, 2014).
As can be seen in this figure, an acceptable agreement between the AC consumption obtained through
CO algorithm and the real data is observed.
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5.2. Correlation Study

Before building a machine-learning model, the correlation between the AC consumed power and
the ambient conditions, including the temperature and the irradiance (presented as PV generation),
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should be investigated. Figure 4 demonstrates the correlation between the power consumed by the
air-conditioner and the ambient temperature. A lag between a rise in the ambient temperature and
the resulting increment in the air conditioner’s consumed power can be clearly noticed. Therefore,
while attempting to predict the AC consumption of the next hour, apart from the predicted ambient
temperature of the next hour, the values corresponding to the previous hours should also be provided
as inputs. The correlation investigation demonstrated that, in order to take into account the mentioned
delay, the ambient temperature value in the next hours and the last 5 h should be utilized as inputs.
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Figure 5 shows the correlation between the AC consumed power and the PV generation (which
represent the solar irradiation in the considered location) in which a notably larger lag between the
mentioned values can be observed. The conducted correlation tests demonstrated that, considering the
mentioned remarkable lag, the PV generation values with the time lags of 5 and 6 h should be chosen
as input features.
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It is noteworthy that an investigation was also conducted to evaluate the effect of relative humidity
and a correlation was observed. However, it was demonstrated in the prediction step that including
relative humidity as an input feature does not improve the accuracy of the developed prediction
model. Hence, the relative humidity is not considered in the present work as one of the input features,
which are provided to the machine-learning based models.
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5.3. Considered Input Features and Employed Algorithms for Prediction

As previously mentioned, the power consumed by an AC unit at each time step is dependent on
several variables which include the physical characteristics of the buildings, the occupancy profiles,
the ventilation rate, and several other features. However, in the framework of the present work, the only
accessible features are the AC consumption in the present and previous time steps, which are obtained
through disaggregation of the smart meter’s aggregate load, along with the ambient temperature
and PV generation of the nearby plant (which represents solar irradiation). Considering the fact that
the air-conditioner’s consumed power profile is a time-series, in order to capture the consumption
behaviour of the occupants, the corresponding values in the last hours should clearly be employed.
Accordingly, the consumed power of AC in the last 24 h along with the corresponding value in the same
hour (as the one, which is going to be predicted) in the previous week (lag of 168 h: 7 days × 24 h)
are considered as inputs. Furthermore, based on the results of the previous section, the ambient
temperature in the next hour and the last 5 h along with the PV generation values (representing solar
irradiation) with the time lags of 5 and 6 h are taken into account as weather related input features.
Moreover, in an attempt to predict the occupancy profile in an indirect way, the parameters that
represent the seasonality including the hour of day, day of the week, weekday/weekend are also
utilized as inputs. Table 2 summarises the above-mentioned parameters which are considered as input
features for the hour-ahead prediction. The given parameters with some minor differences (explained
in Section 5.5) are also employed as input features for the day-ahead prediction.

Table 2. Features and target columns for the machine-learning model.

Input Description N◦ of Inputs

AC consumed power in the last 24 h and 168 h (24 × 7 days) before the hour which is predicted 25
Temperature in the next hour and last 5 h 6

PV production with time lags of 5th and 6th h 2
Hour of day 1

Weekend or Weekday (0 or 1) 1
Day or Night (0 or 1) 1

In order to carry out the prediction, various algorithms including Linear Regression, Support
Vector Machine, Random Forest Decision Tree and MLP Neural Networks are employed. Hence,
the implementation of these algorithms in Scikit-Learn [36], an open-source Python™-based dedicated
machine learning package, are utilized.

5.4. Hour-Ahead Predictions

Employing the above-mentioned input features and utilizing the described machine-learning
algorithms, the AC consumption in the next hour is estimated. The latter prediction is carried out for
the months in which AC consumption exists which corresponds to May 1st 2014 until September 31st
2014 (except the first week in which one of the input features is missing) in the employed dataset.

The R2 score and root mean squared errors (RMSE), which are achieved by utilizing the mentioned
algorithms, are demonstrated in Table 3. The latter accuracy indices are determined by conducting
cross validation on the whole dataset. It can be observed that Random Forest Decision Tree and MLP
Neural Networks performed equally well on hour-ahead predictions leading to an R2 score of 87.3%.

Table 3. Accuracy comparison of hour-ahead predictions conducted by various algorithms.

Algorithm R2 Score (%) RMSE

Linear regression 84.7 196.963
Support Vector Machines 85.6 183.548

Random Forest Decision Tree 87.3 179.895
MLP Neural Network 87.3 178.447
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Considering a practical scenario, the training and testing dataset’s selection procedure can be
different from that of cross-validation. The smart meter continuously collects consumption data in
a real-time manner; thus, the available data for training is progressively increasing. Hence, in order
to simulate such procedure, the training data can be considered to be updated month by month and
the testing procedure can be conducted for the upcoming month. Table 4 shows the performance
indices of Random Forest Decision Tree while conducting hour-ahead predictions using the mentioned
method. It can be observed that, considering the notable changes in the ambient conditions in different
months, more available data does not necessarily lead to an increment in the accuracy. Accordingly,
the peak of accuracy (R2 score of 90.1%) is achieved for the months of July for which the available
training duration is 2 months. Such a training may also present real-time on-line prediction model
using sliding window training or accumulative training as demonstrated by Yang et al. [37].

Table 4. Hour-ahead online training using a Random Forest Decision Tree.

Training Start Training End Testing Start Testing End Month R2 Score (%)

01-05-14 31-05-14 01-06-14 30-06-14 June 86.2
01-05-14 01-07-14 02-07-14 31-07-14 July 90.1
01-05-14 01-08-14 02-08-14 31-08-14 August 88.7
01-05-14 31-08-14 01-09-14 30-09-14 September 87.2

Figure 6 shows the comparison of hour-ahead predictions, using Random Forest Decision trees,
and the real data for the interval between August 7th, 2014 and August 18th, 2014. The comparison
shows an acceptable agreement apart from non-repeating peaks (due to the variations in the behaviour
of the occupants during the weekends) which have not been predicted as accurately as other intervals.
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5.5. Day-Ahead Predictions

Since the consumption of air-conditioners, apart from weather conditions, is strongly dependent
on the previous consumption patterns, the accuracy of the predictions models drop down for day-ahead
predictions where the consumption of previous hours is not available. In the present study, it is
assumed that accurate temperature and irradiance forecast data are available for the hours for which
the prediction is performed. As shown in Table 2, the features for the prediction remain the same
except for the lags in the AC consumption. The lagged consumption starts from 48 h to 24 h before
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the current time step. The same machine learning models namely, Linear Regression, Support Vector
Machine, Random Forest Decision Tree and MLP Neural Networks where employed to perform the
day-ahead predictions. Table 5 compares the accuracy indices obtained using different algorithms
while carrying out the day-ahead predictions. The Random Forest Decision Tree, with the R2 score of
83.2%, shows a better accuracy compared to other algorithms. Apparently, the corresponding obtained
accuracy is lower than the one of hour-ahead prediction as it latter lacks the information about the
recent (last 24 h) consumption patterns.

Table 5. Performance metrics of day-ahead predictions.

Algorithm R2 Score (%) RMSE

Linear Regression 74.4 255.011
Support Vector Machines 79.7 220.968

Random Forest Decision Tree 83.2 206.57
MLP Neural Network 80.6 220.282

Similar to hour-ahead predictions, the selection of training and testing datasets can also be
performed in a sequential manner. Table 6 shows the performance of Random Forest Decision Tree on
day-ahead predictions based on expanding training window for different months. A peak R2 score of
85.7% is achieved for the month of July with available training data of 2 months.

Table 6. Day-ahead online training using Random Forest Decision Tree.

Training Start Training End Testing Start Testing End Month R2 Score (%)

01-05-14 31-05-14 01-06-14 30-06-14 June 82.2
01-05-14 01-07-14 02-07-14 31-07-14 July 85.7
01-05-14 01-08-14 02-08-14 31-08-14 August 84.8
01-05-14 31-08-14 01-09-14 30-09-14 September 83.1

A similar window from August 7, 2014 to August 18, 2014 for the day-ahead prediction is shown
in Figure 7. As can be seen in this figure, the deviation of the predicted values from the real ones,
for the intervals with non-repeating peaks (mainly taking place in the weekends), in the day-ahead
predictions is larger than that of hour-ahead predictions.
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5.6. Comparison of Predicting the Aggregate Load with and without Utilizing the Disaggregation Procedure

The results of the proposed methodology can also be employed in order to perform hour-ahead
and day-ahead prediction of the overall aggregate load of the building. Accordingly, the same input
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features, which were employed for predicting the air-conditioning (AC) consumptions, can also
be utilized for predicting the remaining non-AC (aggregate loads subtracted by disaggregated AC)
loads. The obtained predicted values can then be summed up with the predicted values of the AC
consumption, thus predicting the overall aggregate load.

Clearly, a conventional alternative method to estimate the aggregate load is to directly predict the
whole load using the same input features. The accuracy indices of predicting the aggregate load using
these two methods are compared in Table 7 for hour-ahead prediction. It can be observed the former
approach, which involves a disaggregation step, results in a higher accuracy. Thus, the methodology,
which is proposed in the present study, can also enhance the prediction accuracy of the aggregate load.
Table 8 shows a similar comparison for day-ahead predictions.

Table 7. Comparison of hour-ahead aggregate load prediction through the proposed 2-step method
(which includes disaggregation) and prediction only using the aggregate load.

Model
R2 Score (%) RMSE

Proposed 2-Step
Method

Prediction Using
Aggregate Load

Proposed 2-Step
Method

Prediction Using
Aggregate Load

Linear Regression 86.12 85.23 236.38 243.85

Support Vector
Machines 85.24 84.48 243.78 244.837

Random Forest
Decision Tree 88.67 87.57 213.58 223.649

MLP Neural
Network 87.02 86.36 228.539 233.645

Table 8. Comparison of day-ahead aggregate load prediction through the proposed 2-step method
(which includes disaggregation) method and prediction only using the aggregate load.

Model
R2 Score (%) RMSE

Proposed 2-Step
Method

Prediction Using
Aggregate Load

Proposed 2-Step
Method

Prediction Using
Aggregate Load

Linear Regression 75.98 73.98 310.93 323.65

Support Vector
Machines 78.35 78.00 295.24 288.235

Random Forest
Decision Tree 82.42 81.4 266.02 269.64

MLP Neural
Network 81.60 79.34 272.134 288.37

6. Discussion

The results of the disaggregation step demonstrated that only employing a short training period
(one week) and using combinatorial optimization, which is a simple disaggregation algorithm with
a low computational cost, an elevated yearly disaggregation accuracy (98.67%) can be achieved.
Furthermore, a complete database including electrical signatures obtained from different combinations
of domestic appliances can be employed as a training dataset; thus, the training period, with dedicated
sensors for different devices, can accordingly be avoided. Therefore, it can be concluded the
disaggregation step is not a practical impediment to the proposed method and does neither introduce
a notable error in the prediction procedure, as the disaggregation accuracies are notably high.

The investigation on the correlation between the AC consumption and the ambient condition,
demonstrated the expected lag between an increment in the ambient temperature and the resulting rise
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in the AC consumption. The observed lag is due to the thermal storage of the walls, which results in a
delay in the conversion of temperature increment to an increase in the AC load. Furthermore, an even
larger time lag was observed while investigating the effect of solar irradiation (through generation
profile of a nearby PV plant). The latter lag is due to the delay in the conversion of the radiation
heat transfer into a convective one, as the incident solar irradiation will first heat up the walls and
the objects inside the building (through windows) and they will in turn warm up the internal air
through convection. Accordingly, the predicted ambient temperature of the next hour along with
the corresponding values in the last 5 h were chosen as the inputs while the PV generations with the
lag of 5 and 6 h were taken into account to represent solar irradiation. The latter demonstrates the
importance of having the knowledge and keeping in mind the physical behaviour of buildings even
while employing a purely data-driven approach.

The results of hour-ahead and day-ahead prediction demonstrates the fact that using the proposed
approach elevated accuracies can be obtained while only the aggregate load data and historical weather
data is available and no information regarding the building characteristics or occupants’ behaviour
was given. The latter is owing to the fact that providing the AC consumption for several time
steps and the corresponding ambient temperature and PV generation (representing solar irradiation),
while applying the appropriate time lags, facilitates simulating the physical behaviour of the building
in an implicit way. Furthermore, considering the seasonality related parameters (hour, day of the
week, weekday/weekend), and the consumption profiles in the previous hours, provides information
regarding the occupancy profile in an indirect manner. The fact that outside weather condition are
included can even result in a better prediction of occupancy as the occupants will be more willing to
stay at home and use the air-conditioner at the hours with high ambient temperature and elevated
solar irradiation. The level of the latter willingness is apparently learnt from similar conditions taking
place in the previous measured periods.

However, the latter information is not enough in order to predict the non-repeating alterations
(peaks) in the behaviour of the occupants. These alterations commonly happen in the weekends and
the prediction results demonstrated that the developed models could not anticipate such sudden and
non-repeating variations.

7. Conclusions

A two-step methodology was proposed and implemented in order to perform hour-ahead
and day-ahead prediction of air-conditioning (AC) load in residential buildings. The first step
was separating the AC load from the overall consumption and it was demonstrated that using
Combinatorial Optimization method and with training data of seven days, a disaggregation R2

score 98.67% can be obtained. The second step was focused on performing predictions using
various machine learning algorithms. It was demonstrated that Random Forests Decision Trees
provides the most accurate prediction and leads to R2 scores of 87.3% and 83.2% for hour-ahead and
day-ahead predictions respectively. Hence, it was shown that even without any available information
regarding physical characteristics of the building, using the proposed methodology, elevated prediction
accuracies can be obtained. It was also demonstrated that the same prediction procedure can be
utilized in order to predict the remaining non-AC loads (aggregate load subtracted by disaggregated
AC load) and the latter can then be summed up with the predicted AC consumption in order to
estimate the overall aggregate load. It was demonstrated that, both for hour-ahead and day-ahead
predictions, using the mentioned two-step methodology results in a higher accuracy compared to
directly predicting the aggregate load. Furthermore, the proposed methodology provides the utility
with some additional benefits including the possibility of providing itemized bills, tailor-made energy
saving recommendations for customers and diagnosis of damaged or faulty air-conditioners.
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