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Abstract: This paper investigates the output feedback control problem of a vehicle platoon
with a constant time headway (CTH) policy, where each vehicle can communicate with its
consecutive vehicles. Firstly, based on the integrated-sliding-mode (ISM) technique, a neural adaptive
sliding-mode control algorithm is developed to ensure that the vehicle platoon is moving with the
CTH policy and full state measurement. Then, to further decrease the measurement complexity
and reduce the communication load, an output feedback control protocol is proposed with only
position information, in which a higher order sliding-mode observer is designed to estimate the
other required information (velocities and accelerations). In order to avoid collisions among the
vehicles, the string stability of the whole vehicle platoon is proven through the stability theorem.
Finally, numerical simulation results are provided to verify its effectiveness and advantages over the
traditional sliding-mode control method in vehicle platoons.

Keywords: vehicle platoon; adaptive sliding-mode control; output feedback; string stability; constant
time headway

1. Introduction

Vehicle platoon control has received substantially increasing interest from many institutions,
such as the program of the Partners for Advanced Transit and Highways (PATH) in California [1],
the Grand Cooperative Driving Challenge (GCDC) in Netherlands [2], Safe Road Trains for the
Environment (SARTRE) in Europe [3] and Energy-ITSin Japan [4]. It has many advantages for road
traffic, e.g., reducing fuel consumption (potentially up to 20%), enhancing traffic safety (anticipated 10%
reduction in fatalities), as well as increasing driver convenience (autonomous systems for following
vehicles) [3]. The objective of vehicle platoon control is to design an algorithm such that the vehicles in
the platoon can move with the desired inter-vehicle distance [5].

In recent years, many researchers have focused on the vehicle platoon control from different
perspectives, such as node dynamics (ND) [6–10], information flow topology (IFT) [11–15], formation
geometry (FG) [16,17], control methods (CM) [18–26] and platoon performance (PP) [27–29]. To the
best of our knowledge, many vehicle platoon control algorithms adopt the full state feedback
technique, which means that the designed algorithm needs the position, velocity and acceleration
information for a second-order system, to achieve closed-loop control. For instance, in [7,30],
distributed consensus strategies that need the full state of vehicles are proposed for vehicle platoon.
In [31–33], distributed adaptive sliding-mode algorithms are developed for string stability of the
whole vehicle platoon, while the position, velocity and acceleration information need to be obtained.
However, the acquisition of this information requires many sensors, which would definitely increase
the communication load. To this end, the output feedback techniques can be employed to reduce the
required information of controllers. For instance, in [34], in order to reduce the required information of
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the controller, a non-linear discontinuous output feedback control scheme is synthesized to stabilize
the system uniformly asymptotically by using a sliding-mode observer. In [35,36], by using a higher
order observer, an output feedback controller is proposed for an uncertain dynamic system such that
only the information of the system output is required.

In addition, the FG in previous algorithms is designed with a constant spacing (CS) policy,
which represents that the inter-vehicle distance should be a constant value. Compared with the
constant time headway (CTH) policy, which means that the inter-vehicle distance is influenced by the
velocity with a constant proportionality coefficient, the traffic performance based on the CS policy
seems poor [37]. Meanwhile, the IFT in current studies is complex, because each vehicle in the platoon
needs the information of the leader and even all vehicle’s information in some strategies. Thus,
to reduce the communication load, to simplify IFT and to rationalize FG, it is still a great challenge to
design an efficient control algorithm for a vehicle platoon with the CTH policy.

Motivated by the aforementioned points, a control algorithm is designed such that vehicles
can only communicate with their consecutive vehicles in this paper (namely, the bidirectional
communication strategy), and a neural adaptive integrated-sliding-mode (ISM) output feedback
control algorithm is proposed based on the CTH policy for string stability, which guarantees that the
transient position tracking errors from one vehicle to another vehicle will not be enlarged. The main
features of this paper can be summarized as:

• First, a neural adaptive sliding-mode control algorithm is developed for a vehicle platoon with the
CTH policy by using the ISM technique. Compared with the results in [31], the main advantage of
this paper is that the CTH policy is more flexible than the CS policy [38]. This is because the CTH
policy is related to velocity, not a rigid and constant value. Moreover, the proposed algorithm can
release the acceleration information of followers.

• To further reduce the communication load, we apply a higher order sliding-mode observer to
estimate the information of velocity and acceleration. Based on this observer, a novel output
feedback control algorithm is proposed for the multi-vehicle systems. The string stability of
the whole vehicle platoon is proven by limiting the ratio, which takes into account the Laplace
transform value of the i-th vehicle and its preceding vehicle.

The remainder of this paper is organized as follows. The problem formulation and preliminaries
are described in Section 2. In Section 3, the output feedback control algorithm for the whole vehicle
platoon is proposed. Numerical simulations in Section 4 show the effectiveness and advantages of our
proposed algorithms. The conclusion is given in Section 5.

2. Problems Formulation and Preliminaries

As shown in Figure 1, a string of autonomous vehicles move in a platoon, which includes a leader
vehicle and n followers. Additionally, each follower regulates its motion according to the received
information (e.g., position, velocity, acceleration, etc.) from its neighboring vehicles. The longitudinal
dynamics of the i-th vehicle can be described by:{

ṙi(t) = vi(t)
Mi v̇i(t) = Fi(t)− fi, i = 1, 2, . . . , n

(1)

where Mi is the mass of the i-th vehicle and ri(t) and vi(t) denote the position and velocity of the i-th
vehicle, respectively. Fi(t) denotes the actuator output force of the i-th vehicle. In addition, fi describes
the unknown driving resistance dynamics.
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Figure 1. Topological structure of the vehicle platoon.

Assumption 1. The desired velocity vL and its derivative v̇L are known and bounded.

Assumption 2. The unknown driving resistance dynamics fi is smooth and bounded.

Definition 1. [33] (String stability) Origin er,i = 0 defined in (4) with each vehicle’s dynamics modeled
by (1) is string stable if the error propagation transfer function Gi(s) := Ei+1(s)/Ei(s) satisfies Gi(s) ≤ 1
(i.e., |er,n| ≤ |er,n−1| ≤ · · · ≤ |er,1|) for all i = 1, 2, . . . , n.

The objective of this paper is to design a neural adaptive sliding-mode control algorithm for the
whole vehicle platoon based on the CTH policy such that the following targets can be achieved:

• The position tracking error of each vehicle in the platoon is bounded, i.e., er,i ≤ ρ, where ρ is a
small positive constant and er,i represents the position tracking error defined in (4);

• The string stability of the whole vehicle platoon can be guaranteed, i.e., |er,n| ≤ |er,n−1| ≤ · · · ≤ |er,1|;
• The control algorithm uses few the information of vehicles.

Before proceeding to the design of the neural adaptive sliding-mode control algorithm, we give
the following lemmas that will be used throughout the paper.

Lemma 1. [39] There is a continuous function V(t) ≥ 0, and V(0) is bounded. Then, V(t) is bounded if the
following inequality holds:

V̇(t) ≤ −p1V(t) + p2 (2)

where p1 > 0 and p2 is a constant.

Lemma 2. [40] RBF NNs can approximate online an unknown smooth function Q(z) in the form of Q(z) =
WTΨ(z), where z ∈ Rq denotes the inputs of the neural network and q represents the dimension of neural
network input. W = [w1, w2, . . . , wm]T; wl is the parameter vector and can be adjusted; m indicates the number
of neurons. Ψ(z) = [ϕ1(z) · · · ϕm(z)]T , where ϕl(z) is the Gaussian function:

ϕl(z) = exp
(−(z− µl)

T(z− µl)

η2
l

)
, l = 1, 2, . . . , m

where µl and ηl are the centers and widths of the Gaussian functions, respectively. RBF NNs can approximate
Q(z) to arbitrary accuracy by setting numerous hidden neurons:

Q(z) = W∗TΨ(z) + ε(z)

the approximation error ε(z) can be adjusted to be arbitrarily small by choosing ideal bounded weight vector.
Additionally, |ε(z)| ≤ ε̄ ≤ ∞ is a small positive constant:

W∗ := arg min
W⊂Rq

{
sup
z∈Ωz

∣∣∣Q(z)−WTΨ(z)
∣∣∣ }

3. Main Results

In this section, two algorithms are developed, with the first algorithm in Section 3.1 requiring the
information (position, velocity, acceleration) of neighboring vehicles, while the second algorithm in
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Section 3.2 requires only the position information of neighboring vehicles. In order to better present the
control structure and the signal flow, a block diagram is provided for our proposed system in Figure 2.

Controller òi i iv u f= -i i iu
iu ivi iv ir+

-

Lr
ò

+

Observer
ˆ ,ir ˆ ,ir̂ ,iri

ˆ
ir̂ii

State feedback

Output feedback

Figure 2. The control system architecture and the signal flow in the control system.

3.1. Neural Adaptive Control Algorithm Using State Feedback

Firstly, RBF NNs are adopted to approximate online the fi/Mi and further construct the model:

v̇i(t) = ui(t)−W∗i Ψ(z)− εi(z) (3)

where ui(t) := Fi(t)/Mi.
Then, the position tracking error for the i-th vehicle is defined as:

er,i = (ri−1 − ri)− di − hivi (4)

where di > 0 is the standstill spacing and hi represents the constant time headway.
To overcome the degradation of system transient performance caused by large nonzero initial

position tracking error, a modified position tracking error is defined as:

ēr,i(t) = er,i(t)− χi(t) (5)

with:

χi(t) = [er,i(0) + (ζier,i(0) + ėr,i(0))t]e−ζit

where er,i(0) = er,i(t)|t=0, ėr,i(0) = ėr,i(t)|t=0 and ζi is a positive constant. Thus, we have:

ēr,i(t)|t=0 = 0, ˙̄er,i(t)|t=0 = 0

The importance of χi(t) is that it can transform the nonzero initial position tracking error
problem to a zero initial position tracking error problem. It is clear that ēr,i(t) converges to
er,i(t) when χi(t) converges to zero, where the rate of convergence can be determined by ζi.
Then, an integrated-sliding-mode surface is constructed as:

si(t) = ēr,i(t) +
∫ t

0
λi ēr,i(τ)dτ (6)

where λi is a positive parameter. It is clear that the convergence of the ISM surface si can make ēr,i(t)
be zero.
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In order to guarantee the string stability of the whole vehicle platoon, the coupled sliding surface
(CSS) is adopted to establish the relationship between the i-th and the (i + 1)-th vehicle:

Si = βisi − si+1 (7)

where βi > 0 is a weighting factor.
It should be pointed out that sn+1 is a nonexistent signal, so we set sn+1 = 0. Furthermore, we define

the matrices S1 = [s1, s2, . . . , sn] and S2 = [S1, S2, . . . , Sn] to depict the whole vehicle platoon.
The relationship between S1 and S2 can be described as:

S2 = BS1 (8)

where:

B =


β1 −1 0 · · · 0
0 β2 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1
0 0 0 · · · βn


The following lemma illustrates the same convergence of si and Si.

Lemma 3. [33] (Equivalence of the convergence of the CSS and each sliding surface toward zero): When Si
converges to zero, si also converges to zero at the same time.

Therefore, taking the time derivative of Si in (7), it yields:

Ṡi = βi ṡi − ṡi+1

= βi( ˙̄er,i + λi ēr,i)− ( ˙̄er,i+1 + λi+1 ēr,i+1)

= −βihi(ui −W∗i Ψ(z)− εi) + ( ˙̄er,i+1 + λi+1 ēr,i+1) + βi(vi−1 − vi − χ̇i + λi ēr,i) (9)

= −βihi(ui(t)−W∗i Ψ(z)− εi(z)) + Di

where Di = ( ˙̄er,i+1 + λi+1 ēr,i+1) + βi(vi−1 − vi − χ̇i + λi ēr,i).
Particularly, we know that Sn = βnsn when i = n. The time derivative of Sn can be written as:

Ṡn = βn ṡn = βn( ˙̄er,n + λn ēr,n)

= −βnhn(un −W∗n Ψ(z)− εn) + βn(vn−1 − vn − χ̇n + λn ēr,n) (10)

= −βnhn(un(t)−W∗n Ψ(z)− εn(z)) + Dn

where Dn = βn(vn−1 − vn − χ̇n + λn ēr,n).
In Figure 3, the differences between traditional sliding-mode and integrated sliding-mode are

shown to illustrate the advantages of the technique used in this paper.
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Figure 3. The difference between traditional sliding mode and integrated sliding mode.

Remark 1. Comparing with the traditional sliding-mode approaches, the acceleration information of the
followers is not needed using the ISM technique.

Remark 2. The ISM technique can be employed to avoid the second-order differential of velocity vi caused by
adopting the CTH policy.

Accordingly, the designed neural adaptive sliding-mode control algorithm for the whole vehicle
platoon is given in the following theorem.

Theorem 1. Consider the whole vehicle platoon described by (3) satisfying Assumptions 1 and 2. By using the
following controller and adaptive estimation laws,

ui =
k1

βihi
Si +

1
βihi

Di + Ŵ∗i Ψi(z) + ˆ̄εi

un =
k2

βnhn
Sn +

1
βnhn

Dn + Ŵ∗n Ψn(z) + ˆ̄εn

˙̂W∗i = ν1i(βihiΨi(z)Si − δ11Ŵ∗i ) (11)
˙̂W∗n = ν1n(βnhnΨn(z)Sn − δ12Ŵ∗n )
˙̄̂εi = ν2i(βihiSi − δ21 ˆ̄εi)

˙̄̂εn = ν2n(βnhnSn − δ22 ˆ̄εn)

where k1 and k2 are control gains. Ŵ∗i and ˆ̄εi are the estimated values of W∗i and ε̄i, respectively. ν1i and ν2i are
small constants. δ11, δ21, δ12 and δ22 are small constants introduced in [40], which can prevent W∗i and ε̄i from
drifting to become very large. The following statements hold:
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• The coefficients’ estimation error W̃∗i , ˜̄εi and the signal Si are bounded, as well as converging to the
following compact regions, respectively.

|Si| ≤
√

2V(0) +
2ϕ

w
= B+, |Sn| ≤

√
2V(0) +

2ϕ

w

|W̃∗i | ≤
√

2ν1iV(0) +
2ν1i ϕ

w
, |W̃∗n | ≤

√
2ν1nV(0) +

2ν1n ϕ

w
(12)

| ˜̄εi| ≤
√

2ν2iV(0) +
2ν2i ϕ

w
, | ˜̄εn| ≤

√
2ν2nV(0) +

2ν2n ϕ

w

where the detailed definition of ϕ and w is given later.
• The string stability of the whole vehicle platoon is guaranteed, i.e., |er,7| ≤ |er,6| ≤ · · · ≤ |er,1|.

Proof. Consider the closed-loop dynamics of vehicles as:

Ṡi = −βihi
( k1

βihi
Si +

1
βihi

Di + Ŵ∗i Ψi(z) + ˆ̄εi −W∗i Ψi(z)− εi(z)
)
+ Di (13a)

Ṡn = −βnhn
( k2

βnhn
Sn +

1
βnhn

Dn + Ŵ∗n Ψn(z) + ˆ̄εn −W∗n Ψn(z)− εn(z)
)
+ Dn (13b)

where (Ŵ∗i Ψi(z) + ˆ̄εi) is used to approximate the unknown driving resistance fi. Ŵ∗i and ˆ̄εi represent
the estimated values of the optimal weight vector W∗i and estimation error ε̄i, respectively.

Then, consider the following Lyapunov function candidate:

V =
n−1

∑
i=1

(
1
2

S2
i +

1
2ν1i

W̃∗i
2 +

1
2ν2i

˜̄ε2
i

)
+

1
2

S2
n +

1
2ν1n

W̃∗n
2 +

1
2ν2n

˜̄ε2
n (14)

Taking the time derivative of (14), it yields:

V̇ =
n−1

∑
i=1

(
Si
(
− βihi

( k1
βihi

Si +
1

βihi
Di + Ŵ∗i Ψi(z) + ˆ̄εi −W∗i Ψi(z)−

εi(z)
)
+ Di

)
+

1
ν1i

W̃∗i
˙̃W∗i +

1
ν2i

˜̄εi
˙̄̃εi

)
+

Sn
(
− βnhn

( k2
βnhn

Sn +
1

βnhn
Dn + Ŵ∗n Ψn(z) + ˆ̄εn −W∗n Ψn(z)−

εn(z)
)
+ Dn

)
+

1
ν1n

W̃∗n
˙̃W∗n +

1
ν2n

˜̄εn ˙̄̃εn

=
n−1

∑
i=1

(
− k1S2

i −βihi
(
SiŴ∗i Ψi(z) + Si ˆ̄εi − SiW∗i Ψi(z)− Si ε̄i

)
+

1
ν1i

W̃∗i
˙̃W∗i +

1
ν2i

˜̄εi
˙̄̃εi

)
− (15)

k2S2
n − βnhn

(
SnŴ∗n Ψn(z) + Sn ˆ̄εn − SnW∗n Ψn(z)− Sn ε̄n

)
+

1
ν1n

W̃∗n
˙̃W∗n +

1
ν2n

˜̄εn ˙̄̃εn

=
n−1

∑
i=1

(
− k1S2

i −βihi
(
SiW̃∗i Ψi(z) + Si ˜̄εi

)
+ βihiSiW̃∗i Ψi(z)−

δ11W̃∗i Ŵ∗i + βihiSi ˜̄εi − δ21 ˜̄εi ˆ̄εi

)
−

k2S2
n − βnhn

(
SnW̃∗n Ψn(z) + Sn ˜̄εn

)
+ βnhnSnW̃∗n Ψn(z)−

δ12W̃∗n Ŵ∗n + βnhnSn ˜̄εn − δ22 ˜̄εn ˆ̄εn)

=
n−1

∑
i=1

(
− k1S2

i −δ11W̃∗i Ŵ∗i − δ21 ˜̄εi ˆ̄εi

)
− k2S2

n − δ12W̃∗n Ŵ∗n − δ22 ˜̄εn ˆ̄εn
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Based on the Young’s inequality:

−δ11W̃∗i Ŵ∗i = −δ11W̃∗i (W̃
∗
i + W∗i ) ≤

δ11
∥∥W∗i

∥∥2

2
−

δ11
∥∥W̃∗i

∥∥2

2
(16a)

−δ21 ˜̄εi ˆ̄εi = −δ21 ˜̄εi(ε̄i + ˜̄εi) ≤
δ21‖ε̄i‖2

2
− δ21‖ ˜̄εi‖2

2
(16b)

Then, Equation (15) can be written as:

V̇ ≤
n−1

∑
i=1

(
− k1S2

i +
δ11
∥∥W∗i

∥∥2

2
−

δ11
∥∥W̃∗i

∥∥2

2
+

δ21‖ε̄i‖2

2
− δ21‖ ˜̄εi‖2

2

)

−k2S2
n +

δ12‖W∗n‖
2

2
−

δ12
∥∥W̃∗n

∥∥2

2
+

δ22‖ε̄n‖2

2
− δ22‖ ˜̄εn‖2

2
(17)

Meanwhile, we define:

ϕii =
δ11
∥∥W∗i

∥∥2

2
+

δ21‖ε̄i‖2

2
, ϕin =

δ12‖W∗n‖
2

2
+

δ22‖ε̄n‖2

2
(18a)

γ1i =min
{

k1,
δ11

2
,

δ21

2

}
, γ1n = min

{
k1,

δ12

2
,

δ22

2

}
(18b)

Then:

V̇ ≤
n−1

∑
i=1

[
− γ1i

2
(S2

i +
∥∥W̃∗i

∥∥2
+ ‖ ˜̄εi‖2) + ϕii

]
+

[
− γ1n

2
(S2

n +
∥∥W̃∗n

∥∥2
+ ‖ ˜̄εn‖2) + ϕin

]
(19)

≤ −ωV + ϕ

where ω = min{γ1i, γ1n} and ϕ = min{ϕii, ϕin}.
According to Lemma 1, we know that V is bounded. Additionally, V ≤ V(0) + ϕ

ω with V(0)
being the initial value of V when t→ ∞. Furthermore, we can know that the coefficients’ estimation
error W̃∗i , ˜̄εi and the signal Si converge to the following compact regions, respectively.

|Si| ≤
√

2V(0) +
2ϕ

w
= B+, |Sn| ≤

√
2V(0) +

2ϕ

w

|W̃∗i | ≤
√

2ν1iV(0) +
2ν1i ϕ

w
, |W̃∗n | ≤

√
2ν1nV(0) +

2ν1n ϕ

w
(20)

| ˜̄εi| ≤
√

2ν2iV(0) +
2ν2i ϕ

w
, | ˜̄εn| ≤

√
2ν2nV(0) +

2ν2n ϕ

w

It is clear that the signal Si will be limited in a bounded compact region, and the bounds can be
adjusted to an arbitrary small value by designing the ideal parameter ω. Furthermore, the position
tracking error will be limited in a bounded region.

In addition, the string stability of the whole vehicle platoon can be proven by limiting the ratio,
which takes into account the Laplace transform value of the i-th vehicle and its preceding vehicle.
Since Si = βisi − si+1 = B+, we have:

βi(ēr,i(t) +
∫ t

0
λi ēr,i(τ)dτ) = ēr,i+1(t) +

∫ t

0
λi ēr,i+1(τ)dτ + B+ (21)
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Taking the Laplace transform of (21), it yields:

βi(Er,i(s) +
λi
s

Er,i(s)) = Er,i+1(s) +
λi+1

s
Er,i+1(s) + B+ (22)

Let λi = λi+1. We have:

Gi(s) =
Er,i+1(s) +

λi+1
s Er,i+1(s) + B+

Er,i(s) +
λi
s Er,i(s)

≤ Er,i+1(s)
Er,i(s)

= βi (23)

Thus, if βi satisfies 0 < |βi| < 1; the transient position tracking errors from one vehicle to another
vehicle cannot be enlarged, and the string stability of the whole vehicle platoon is guaranteed.

3.2. Neural Adaptive Control Algorithm Using Output Feedback

In this section, an output feedback algorithm based on the higher order sliding-mode observer is
presented to regulate the motion of vehicles.

Lemma 4. [35] The velocity vi and acceleration ai of the i-th vehicle can be extracted from position ri based on
the high-order sliding-mode observer:

˙̂ri = wi1

wi1 = −ηi1|r̂i − ri|
2
3 sign(r̂i − ri) + v̂i

˙̂vi = wi2

wi2 = −ηi2|v̂i − wi1|
1
2 sign(v̂i − wi1) + âi

˙̂ai = −ηi3 sign(âi − wi2)

(24)

where ηi1, ηi2 and ηi3 are parameters of the observer.

We assume that the velocity and acceleration of the i-th vehicle can be estimated from the position
information with small observation errors:

|ṽi| = | ˜̇ri| = |v̂i − vi| ≤ εi1; |ãi| = | ˜̈ri| = |âi − ai| ≤ εi2 (25)

where v̂i and âi represent the observed value of vi and ai, respectively. ṽi and ãi denote the observation
error with small positive constants εi1 and εi2. Furthermore, we redefine the notations based
on Section 3.1:

ŝi(t) = ˆ̄er,i(t) +
∫ t

0
λi ˆ̄er,i(τ)dτ, Ŝi = βi ŝi − ŝi+1 (26a)

D̂i = ( ˙̄̂er,i+1 + λi+1 ˆ̄er,i+1) + βi(v̂i−1 − v̂i − ˙̂χi + λi ˆ̄er,i) (26b)

ŝn(t) = ˆ̄er,n(t) +
∫ t

0
λn ˆ̄er,n(τ)dτ, Ŝn = βn ŝn (26c)

D̂n = βn(v̂n−1 − v̂n − ˙̂χn + λn ˆ̄er,n) (26d)

Accordingly, we further have the following theorem.

Theorem 2. Consider the whole vehicle platoon described by (3). With the application of the controller and the
adaptive update laws of the weight parameters of RBF NNs:
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ui =
k1 + 0.5

βihi
Ŝi +

1
βihi

D̂i + Ŵ∗i Ψi(z) + ˆ̄εi

un =
k2 + 0.5

βnhn
Ŝn +

1
βnhn

D̂n + Ŵ∗n Ψn(z) + ˆ̄εn

˙̂W∗i = ν1i(βihiΨi(z)Ŝi − δ11Ŵ∗i ) (27)
˙̂W∗n = ν1n(βnhnΨn(z)Ŝn − δ12Ŵ∗n )
˙̄̂εi = ν2i(βihiŜi − δ21 ˆ̄εi)

˙̄̂εn = ν2n(βnhnŜn − δ22 ˆ̄εn)

We have the following statements:

• The coefficients’ estimation error W̃∗i , ˜̄εi and the signal Si are bounded and converge to the following
compact sets:

|Si| ≤

√
2V(0) +

2ϕ1

w1
= B+, |Sn| ≤

√
2V(0) +

2ϕ1

w1

|W̃∗i | ≤

√
2ν1iV(0) +

2ν1i ϕ1

w1
, |W̃∗n | ≤

√
2ν1nV(0) +

2ν1n ϕ1

w1
(28)

| ˜̄εi| ≤

√
2ν2iV(0) +

2ν2i ϕ1

w1
, | ˜̄εn| ≤

√
2ν2nV(0) +

2ν2n ϕ1

w1

where the detailed definition of ϕ1 and w1 is shown later.
• The string stability of the whole vehicle platoon is guaranteed, i.e., |er,7| ≤ |er,6| ≤ · · · ≤ |er,1|.

Proof. The closed-loop dynamics of the vehicle platoon can be formulated as:

Ṡi = −βihi

(
k1 + 0.5

βihi
Ŝi +

1
βihi

D̂i + Ŵ∗i Ψi(z) + ˆ̄εi −W∗i Ψi(z)− εi(z)
)
+ Di (29a)

Ṡn = −βnhn

(
k2 + 0.5

βnhn
Ŝn +

1
βnhn

D̂n + Ŵ∗n Ψn(z) + ˆ̄εn −W∗n Ψn(z)− εn(z)
)
+ Dn (29b)

Consider the following Lyapunov function candidate:

V =
n−1

∑
i=1

(
1
2

S2
i +

1
2ν1i

W̃∗i
2 +

1
2ν2i

˜̄ε2
i

)
+

1
2

S2
n +

1
2ν1n

W̃∗n
2 +

1
2ν2n

˜̄ε2
n (30)

Taking the time derivative of (30), it yields:

V̇ =
n−1

∑
i=1

(
Si
(
− βihi

( k1 + 0.5
βihi

Ŝi +
1

βihi
D̂i + Ŵ∗i Ψi(z) + ˆ̄εi −W∗i Ψi(z)−

εi(z)
)
+ Di

)
+

1
ν1i

W̃∗i
˙̃W∗i +

1
ν2i

˜̄εi
˙̄̃εi

)
+

Sn
(
− βnhn

( k2 + 0.5
βnhn

Ŝn +
1

βnhn
D̂n + Ŵ∗n Ψn(z) + ˆ̄εn −W∗n Ψn(z)− (31)

εn(z)
)
+ Dn

)
+

1
ν1n

W̃∗n
˙̃W∗n +

1
ν2n

˜̄εn ˙̄̃εn
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Next, we have:

V̇ =
n−1

∑
i=1

(
−(k1 + 0.5)SiŜi − SiD̃i − δ11W̃∗i Ŵ∗i − δ21 ˜̄εi ˆ̄εi

)
−(k2 + 0.5)SnŜn − SnD̃n − δ11W̃∗n Ŵ∗n − δ21 ˜̄εn ˆ̄εn

=
n−1

∑
i=1

(
−(k1 + 0.5)S2

i − Si
(
(k1 + 0.5)S̃i + D̃i

)
− δ11W̃∗i Ŵ∗i − δ21 ˜̄εi ˆ̄εi

)
(32)

−(k2 + 0.5)S2
n − Sn

(
(k2 + 0.5)S̃n + D̃n

)
− δ11W̃∗n Ŵ∗n − δ21 ˜̄εn ˆ̄εn

Consider Young’s inequality in (16) and the facts that:

S̃i = βi( ˆ̄er,i − ēr,i)− ( ˆ̄er,i+1 − ēr,i+1) ≤ βihiεi1 + hiε(i+1)1 (33a)

D̃i = ( ˆ̄̇er,i+1 − ˙̄er,i+1) + βi(v̂i−1 − vi−1 + v̂i − vi)

≤ hiεi2 + βiε(i−1)1 + (βi + 1)εi1 + ε(i+1)1 (33b)

Thus, we have:

V̇ ≤
n−1

∑
i=1

(
−(k1 + 0.5)S2

i − |Si|
(
(k1 + 0.5)(βihiεi1 + hiε(i+1)1) +

(hiεi2 + βiε(i−1)1 + (βi + 1)εi1 + ε(i+1)1)
)
+

δ11
∥∥W∗i

∥∥2

2
−

δ11
∥∥W̃∗i

∥∥2

2
+

δ21‖ε̄i‖2

2
− δ21‖ ˜̄εi‖2

2

)
−(k2 + 0.5)S2

n − |Sn|
(
(k2 + 0.5)βnhnεn1 +

(hnεn2 + βnε(n−1)1 + (βn + 1)εn1)
)
+ (34)

δ12‖W∗n‖
2

2
−

δ12
∥∥W̃∗n

∥∥2

2
+

δ22‖ε̄n‖2

2
− δ22‖ ˜̄εn‖2

2

≤
n−1

∑
i=1

(
− k1S2

i −
δ11
∥∥W̃∗i

∥∥2

2
− δ21‖ ˜̄εi‖2

2
+ ϕi1

)
+

−k2S2
n −

δ12
∥∥W̃∗n

∥∥2

2
− δ22‖ ˜̄εn‖2

2
+ ϕn1

where:

ϕi1 =
1
2
(
(k1 + 0.5)(βihiεi1 + hiε(i+1)1) + (hiεi2 + βiε(i−1)1+

(βi + 1)εi1 + ε(i+1)1)
)2

+
δ11
∥∥W∗i

∥∥2

2
+

δ21‖ε̄i‖2

2
(35a)

ϕn1 =
1
2
(
(k2 + 0.5)βnhnεn1 + (hnεn2 + βnε(n−1)1+

(βn + 1)εn1)
)2

+
δ12‖W∗n‖

2

2
+

δ22‖ε̄n‖2

2
(35b)

Furthermore, we define:

γ2i = min
{

k1,
δ11

2
,

δ21

2

}
, γ2n = min

{
k1,

δ12

2
,

δ22

2

}
(36)

Thus, it yields:

V̇ = −ω1V + ϕ1 (37)
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where ω1 = min{γ2i, γ2n} and ϕ1 = min{ϕi1, ϕn1}.
Using the same analysis as in Theorem 1, we can know that the signal Si and the coefficients’

estimation error W̃∗i and ˜̄εi converge to the following compact sets:

|Si| ≤

√
2V(0) +

2ϕ1

w1
, |Sn| ≤

√
2V(0) +

2ϕ1

w1

|W̃∗i | ≤

√
2ν1iV(0) +

2ν1i ϕ1

w1
, |W̃∗n | ≤

√
2ν1nV(0) +

2ν1n ϕ1

w1
(38)

| ˜̄εi| ≤

√
2ν2iV(0) +

2ν2i ϕ1

w1
, | ˜̄εn| ≤

√
2ν2nV(0) +

2ν2n ϕ1

w1

Additionally, the string stability of the vehicle platoon is guaranteed by choosing 0 < |βi| < 1.

Remark 3. By using the high-order sliding-mode observer, the velocity and acceleration are effectively obtained.
The control objective for the vehicle platoon with only output feedback can be achieved, and the string stability
can be guaranteed by the stability theorem.

Remark 4. Both algorithms can guarantee the boundedness of the tracking error Si, er,i and the coefficients’
estimation error W̃∗i , ˜̄εi. However, the full state information (position, velocity and acceleration) is required in
the first algorithm, while only position information is needed in the second algorithm.

4. Numerical Simulations

To evaluate the effectiveness and feasibility of the proposed platoon control approaches,
numerical simulations are performed in this section. We apply the results to a seven-vehicle platoon.

4.1. Simulation Setup

The desired velocity curve is described as:

vL(t) =



t if t ≤ 10
10 if 10 < t ≤ 100
t− 90 if 100 < t ≤ 110
20 if 110 < t ≤ 150
−t + 170 if 150 < t ≤ 160
10 if 160 < t ≤ 200
−t + 210 if 200 < t ≤ 210
0 if 210 < t ≤ 250

(39)

Actually, it has been pointed that the reasonable coefficients of spacing policy have significant
effects on string stability for the whole vehicle platoon in [41]. We choose the coefficients in (4) with
di = 0.5 and hi = 1 according to the results in [41]. In addition, the initial positions and velocities of the
vehicles in the platoon are designed as rL(0) = 12, ri(0) = [11, 9, 7, 6, 4, 2, 0] and vL(0) = 0, vi(0) = 0.

The control parameters of the whole vehicle platoon are listed in Table 1:

Table 1. Control parameters.

ςi λi βi k1 k2 ν1i ν2i δ11 δ21

10 1 0.9999 10 10 5 5 0.1 0.1
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4.2. Simulation Results

• Case 1: Vehicle platoon control using state feedback:

In this case, the algorithm in Section 3.1 is applied to control the vehicles such that the vehicles
can move with the desired inter-vehicle distance.

The simulation results are shown in Figure 4. The tracking performances of velocities and
velocity tracking errors are shown in Figure 4a,b, respectively. The position curves of vehicles and
the inter-vehicle distance curves are shown in Figure 4c,d, which demonstrate that the vehicles in
the platoon can move with safe inter-vehicle distance and avoid collisions. In addition, we can see
that the inter-vehicle distance between two vehicles is related to the velocity of the vehicle from
Figure 4d. It can be seen from Figure 4e that the string stability of the vehicle platoon is achieved, i.e.,
|er,7| ≤ |er,6| ≤ · · · ≤ |er,1|. The control input curves are shown in Figure 4f.
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ṽ2
ṽ3
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Figure 4. Vehicles’ performance using full state information: (a) Velocity of each vehicle; (b) Velocity
tracking error; (c) Position curves; (d) Inter-vehicle distance between two consecutive vehicles;
(e) Position tracking error; (f) Control input of each vehicle.
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• Case 2: Vehicle platoon control using output feedback:

In this case, the algorithm in Theorem 2 is applied, and the parameters of the higher order
sliding-mode observer are designed as ηi1 = 30, ηi2 = 2, ηi3 = 0.5.

From Figure 5a,b, it is clear that the convergence of the tracking performance of velocity is
excellent, and the velocity estimation errors converge to a small region eventually. Meanwhile,
the position curves and inter-vehicle distance curves are shown in Figure 5c,d, which are as good as
those in Figure 4c,d. The position tracking error curves are shown in Figure 5e, and it is clear that
|er,7| ≤ |er,6| ≤ · · · ≤ |er,1|. Meanwhile, it can be seen from Figure 5f that the observation errors of
acceleration are limited to a small region.

It is worth pointing out that the convergence time of two algorithms is similar. From the results
in Figures 4e and 5e, we can see that the time consumptions of the two algorithms for the position
tracking errors reaching the desired region are both about 50 s. However, only the position information
is required in the second algorithm.
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Figure 5. Vehicles’ performance using position information: (a) Velocity of each vehicle; (b) Velocity
estimation error; (c) Position curves; (d) Inter-vehicle distance between two consecutive vehicles;
(e) Position tracking error; (f) Acceleration estimation error.
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• Case 3: Comparative analysis:

In order to illustrate the advantages of the proposed algorithm compared with the method in [31],
the algorithm in [31] is adopted to track the same desired velocity curve in (39).

Figure 6a,b shows the tracking performance of the control algorithm in [31]. It should be noted
that the inter-vehicle distance converges to a constant value (10 m) in Figure 6b. Compared with
the results in Figures 4d and 5d (the inter-vehicle distance is related to the velocity of the vehicle,
i.e., when vi = 10 m/s and 20 m/s, ri = 10.5 m and 20.5 m, respectively), the control effects using the
protocol in [31] seem too rigid. In addition, it should be pointed out that the algorithm in [31] achieves
the control effects in Figure 6 by using state feedback. Above all, the proposed algorithm in this paper
is more practical and pragmatic.
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Figure 6. Vehicles’ performance using a similar method as in [31]: (a) Velocity of each vehicle;
(b) Inter-vehicle distance between two consecutive vehicles.

5. Conclusions

To simplify IFT, rationalize FG and reduce the communication load, this paper presents a
novel output feedback control algorithm for the whole vehicle platoon based on a bidirectional
communication strategy and the CTH policy. By using the ISM technique, a neural adaptive
sliding-mode control algorithm is designed to ensure the desired inter-vehicle space. In order to
decrease the communication load, a higher order sliding-mode observer is employed to estimate the
information of velocity and acceleration, and an improved control protocol is further proposed for
the vehicle platoon using only position information. The string stability of the vehicle platoon is
proven through the stability theorem. Numerical simulations are provided to verify the feasibility and
effectiveness of the proposed control methods.
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6. Lin, F.; Fardad, M.; Jovanović, M.R. Algorithms for leader selection in stochastically forced consensus
networks. IEEE Trans. Autom. Control 2014, 59, 1789–1802.

7. Bernardo, M.D.; Salvi, A.; Santini, S. Distributed consensus strategy for platooning of vehicles in the presence
of time-varying heterogeneous communication delays. IEEE Trans. Intell. Transp. Syst. 2015, 16, 102–112.

8. Ali, A.; Garcia, G.; Martinet, P. The flatbed platoon towing model for safe and dense platooning on highways.
IEEE Intell. Transp. Syst. Mag. 2015, 7, 58–68.

9. Herman, I.; Dan, M.; Hurák, Z.; Šebek, M. Nonzero bound on fiedler eigenvalue causes exponential growth
of H-Infinity norm of vehicular platoon. IEEE Trans. Autom. Control 2015, 60, 2248–2253.

10. Wu, Y.; Li, S.E.; Zheng, Y.; Hedrick, J.K. Distributed sliding mode control for multi-vehicle systems with
positive definite topologies. In Proceedings of the IEEE 55th Conference on Decision and Control, Las Vegas,
NV, USA, 12–14 December 2016; pp. 5213–5219.

11. Xiao, L.; Gao, F. Practical string stability of platoon of adaptive cruise control vehicles. IEEE Trans. Intell.
Transp. Syst. 2011, 12, 1184–1194.

12. Dunbar, W.B.; Caveney, D.S. Distributed receding horizon control of vehicle platoons: Stability and string
stability. IEEE Trans. Autom. Control 2012, 57, 620–633.

13. Hao, H.; Barooah, P. On achieving size-independent stability margin of vehicular lattice formations with
distributed control. IEEE Trans. Autom. Control 2011, 57, 2688–2694.

14. Zheng, Y.; Li, S.E.; Wang, J.; Cao, D.; Li, K. Stability and scalability of homogeneous vehicular platoon: Study
on the influence of information flow topologies. IEEE Trans. Intell. Transp. Syst. 2015, 17, 14–26.

15. Zheng, Y.; Li, S.E.; Li, K.; Wang, L.Y. Stability margin improvement of vehicular platoon considering
undirected topology and asymmetric Control. IEEE Trans. Control Syst. Technol. 2016, 24, 1253–1265.

16. Hao, H.; Barooah, P. Stability and robustness of large platoons of vehicles with double-integrator models
and nearest neighbor interaction. Int. J. Robust Nonlinear Control 2013, 23, 2097–2122.

17. Kianfar, R.; Falcone, P.; Fredriksson, J. A receding horizon approach to string stable cooperative adaptive
cruise control. In Proceedings of the International IEEE Conference on Intelligent Transportation Systems,
Washington, DC, USA, 5–7 October 2011; pp. 734–739.

18. Qin, J.; Ma, Q.; Shi, Y.; Kang, Y. On group synchronization for interacting clusters of heterogeneous systems.
IEEE Trans. Cybern. 2017, 47, 4122–4133.

19. Mu, J.; Yan, X.G.; Spurgeon, S.K. Decentralised sliding mode control for a class of nonlinear interconnected
systems. In Proceedings of the American Control Conference, Chicago, IL, USA, 1–3 July 2015; pp. 5170–5175.

20. Shi, Y.; Shen, C.; Fang, H.; Li, H. Advanced control in marine mechatronic systems: A survey. IEEE/ASME
Trans. Mechatronics 2017, 22, 1121–1131.

21. Tangerman, F.M.; Veerman, J.J.P.; Stosic, B.D. Asymmetric decentralized flocks. IEEE Trans. Autom. Control
2012, 57, 2844–2853.

22. Mu, B.; Zhang, k.; Shi, Y. Integral sliding mode flight controller design for a quadrotor and the application in
a heterogeneous multi-agent system. IEEE Trans. Ind. Electron. 2017, 64, 9389–9398.

23. Alam, A.; Gattami, A.; Johansson, K.H.; Tomlin, C.J. Guaranteeing safety for heavy duty vehicle platooning:
Safe set computations and experimental evaluations. Control Eng. Pract. 2014, 24, 33–41.

24. Mu, B.; Shi, Y.; Chen, J.; Chang, Y. Design and implementation of non-uniform sampling cooperative control
on a group of two-wheeled mobile robots. IEEE Trans. Ind. Electron. 2017, 64, 5035–5044.

25. Guo, G.; Yue, W. Autonomous platoon control allowing range-limited sensors. IEEE Trans. Veh. Technol.
2012, 61, 2901–2912.

26. Qin, J.; Ma, Q.; Shi, Y.; Wang, L. Recent advances in consensus of multi-agent systems: A brief survey.
IEEE Trans. Ind. Electron. 2017, 64, 4972–4983.



Energies 2017, 10, 1906 17 of 17

27. Ploeg, J.; Wouw, N.V.D.; Nijmeijer, H. Lp string stability of cascaded systems: Application to vehicle
platooning. IEEE Trans. Control Syst. Technol. 2014, 22, 786–793.

28. Milanes, V.; Shladover, S.E.; Spring, J.; Nowakowski, C.; Kawazoe, H.; Nakamura, M. Cooperative adaptive
cruise control in real traffic situations. IEEE Trans. Intell. Transp. Syst. 2014, 15, 296–305.

29. Öncü, S.; Ploeg, J.; Wouw, N.V.D.; Nijmeijer, H. Cooperative adaptive cruise control: Network-aware analysis
of string stability. IEEE Trans. Intell. Transp. Syst. 2014, 15, 1527–1537.

30. Bernardo, M.D.; Falcone, P.; Salvi, A.; Santini, S. Design, analysis, and experimental validation of a
distributed protocol for platooning in the presence of time-varying heterogeneous delays. IEEE Trans.
Control Syst. Technol. 2016, 24, 413–427.

31. Kwon, J.W.; Chwa, D. Adaptive bidirectional platoon control using a coupled sliding mode control method.
IEEE Trans. Intell. Transp. Syst. 2014, 15, 2040–2048.

32. Guo, X.; Wang, J.; Liao, F.; Teo, R.S.H. Distributed adaptive sliding mode control strategy for
vehicle-following systems with nonlinear acceleration uncertainties. IEEE Trans. Veh. Technol. 2017,
66, 981–991.

33. Guo, X.; Wang, J.; Liao, F.; Teo, R.S.H. Distributed adaptive integrated-sliding-mode controller synthesis for
string stability of vehicle platoons. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2419–2429.

34. Yan, X.G.; Spurgeon, S.K.; Orlov, Y. Output feedback control synthesis for non-linear time-delay systems
using a sliding-mode observer. IMA J. Math. Control Inf. 2014, 31, 501–508.

35. Levant, A. Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 2003,
76, 924–941.

36. Levant, A. Universal output-feedback siso controller. IFAC Proc. Vol. 2002, 35, 221–226.
37. Bayar, B.; Sajadi-Alamdari, S.A.; Viti, F.; Voos, H. Impact of different spacing policies for adaptive cruise

control on traffic and energy consumption of electric vehicles. In Proceedings of the 24th Mediterranean
Conference on Control and Automation, Athens, Greece, 21–24 June 2016; pp. 1349–1354.

38. Klinge, S.; Middleton, R.H. Time headway requirements for string stability of homogeneous linear
unidirectionally connected systems. In Proceedings of the IEEE Conference on Decision and Control,
Shanghai, China, 15–18 December 2009; pp. 1992–1997.

39. Gao, S.G.; Dong, H.R.; Ning, B.; Clive, R.; Chen, L.; Sun, X.B. Cooperative adaptive bidirectional control of a
train platoon for efficient utility and string stability. Chin. Phys. B 2015, 24, 161–170.

40. Gao, S.G.; Dong, H.R.; Ning, B.; Chen, Y.; Sun, X. Adaptive fault-tolerant automatic train operation using
RBF neural networks. Neural Comput. Appl. 2015, 26, 141–149.

41. Yanakiev, D.; Kanellakopoulos, I. Nonlinear spacing policies for automated heavy-duty vehicles. IEEE Trans.
Veh. Technol. 1998, 47, 1365–1377.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problems Formulation and Preliminaries
	Main Results
	Neural Adaptive Control Algorithm Using State Feedback
	Neural Adaptive Control Algorithm Using Output Feedback

	Numerical Simulations
	Simulation Setup
	Simulation Results

	Conclusions
	References

