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Abstract: A model based, energy focused, quasi-stationary waste heat driven, internal combustion
engine (ICE) centred design methodology for cogeneration (heat and electricity) systems is presented.
The developed parametric model could be used for system sizing, performance evaluation, and
optimization. This paper presents a systematic approach to model the behaviour of the CHP system
using heat recovery prediction methods. The modular, physics based modelling environment shows
the power flow between the system components, with a special emphasis on the ICE subsystems,
parameter identification, and model validation.
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1. Introduction

Combined heat and power (CHP) or cogeneration technology involves the generation of readily
useable heat and power from a single fuel source [1–5]. It most commonly involves the operation of
a prime mover such as an internal (spark ignited & compression ignited reciprocating engines, gas
turbines) or external (Stirling, Rankine) combustion engine, and utilizes the waste heat of the power
producing cycle for heating purposes, thus increasing the overall efficiency of the application.

Due to the potential for resource and environment conservation, as well as the desire for power
autonomy, the combined heat and power (CHP) market is expanding [6] and is starting to penetrate
the small residential sector, for the scale of which (electrical capacity lower than 10 kWe), ICE based
micro-CHP systems are currently the most marketable of the available micro-CHP types due to sharing
an established, mature, highly reliable technology, while at the same time being characterized by
low purchase and maintenance costs [1–3,7–13]. While Compression Ignition (CI) engines enjoy a
widespread proliferation in the role of larger stationary power plants due to their associated advantages,
such as a high fuel conversion efficiency and durability, the fact that Natural Gas (NG) is readily
available to households through transmission pipeline networks, the environmentally friendly nature
of the fuel, as well as the low cost and effort adaptability of Spark Ignited (SI) engines to run on
Natural Gas has made small NG fuelled SI engines the technology of choice for powering the majority
of currently available ICE based micro-CHP units. The above, when combined with the widespread
usage of simulation tools for CHP system research, design, and selection, as well as the special nature
of cogeneration technology, have created the need for fast running mathematical models of spark
ignited internal combustion engines (SI ICE ) that predict both power and waste heat components.
As a response, several researchers have developed a number of quasi-stationary ICE and CHP models.

Voorspools and D’haeseleer [14] have shown that the transient behaviour of engine fuel conversion
efficiency is fast enough to be neglected in micro-CHP simulation applications, and this is reflected
in the observation that the majority of CHP models that are encountered in literature are of the
quasi-stationary type. Caresana et al. [7], made use of a lookup table based ICE modelling layout in
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which, one lookup table returned fuel flow, and another table returned the exhaust heat as fraction
of chemical power inlet for given combinations of engine torque and speed. On the other hand,
the parametric CHP model that is available in the ESP-r building simulation software library, and
that is used in a number of studies on micro-CHP performance [2,15,16], is based on a polynomial
fit. Under this modelling technique, the CHP system is modelled as one single unit and the model
dependent variables, such as the Brake Specific Fuel Consumption, the Electrical Efficiency, and the
Heat to Power Ratio are calculated as polynomial functions of part load ratio. Another encountered
polynomial model was used by Cho et al. [17], who calculated system electrical efficiency as a function
of the electrical output of the generator set, while they assumed coolant and exhaust heat to be constant
fractions of 0.3 of the chemical power inlet.

On the other hand, the engine thermal response is much slower, and for this reason, it is often
included in cogeneration system models. In one study, thermal transient behaviour of the engine is
described by means of polynomial functions of time elapsed after shut down [2]. Kelly et al. [15] used
an engine model with a lumped capacitance transient thermal model with one node representing the
engine and the heat exchanger masses, and another node representing the water mass. In terms of the
transient behaviour of the exhaust temperature, Zavala et al. [18], found in their experimental data
that it can be adequately described by 1st order linear transfer functions, with AFR, spark timing, and
engine speed as their main model inputs.

Since the majority of CHP modelling applications involves the study of a particular CHP system
design, or the use of an averaged map based engine model on a CHP model, the encountered layouts
as described above have been found to be very well suited for most studies. In some cases though,
especially when the model is to be used in heat recovery system design applications, separating the
engine from the heat exchanger performance, while at the same time retaining engine model scalability,
can be a desirable combination of model characteristics.

The main aim of this document is the development of an SI ICE model layout for use in CHP
sizing and design applications whose special nature may require that the engine model incorporates
the behaviour of all of the necessary power components, temperatures, and flow rates for use with a
heat recovery system model, while at the same time being characterized by an increased scalability
and connectivity to heat recovery component models, simplicity, and a low computational load.

The structure of this paper is as follows: First, Section 2 presents the structure of the system model
and the mathematical relationships that are used to describe the flow of power between the model
components. Section 3 describes the procedure that is followed to collect the necessary experimental
data and identify the required model parameters. The developed model is then simulated and validated
in Section 4, while a discussion on simulation results takes place in Section 5. Finally, Section 6 contains
the conclusions of this study.

2. System Model

The communication layout of the developed model will be power based, as in such a configuration;
power can be used to connect individual subsystems and phenomena that handle energy on multiple
domains. In addition, contrary to most existing lookup table based engine models whose main maps
include parameters that are directly linked to mechanical power and fuel consumption, the developed
model will follow a reverse logic—not unlike the general layout presented by Heß et al. [19]—by means
of which, specific sub-models and their respective lookup tables provide the rates of the generated
waste heat components, whose values are then subtracted from the energy input rate

.
Qin to provide

the mechanical power output Pmech.
Heat inlet from the fuel is released in the combustion chamber at a rate

.
Qin, and part of it is

converted to mechanical power output Pmech. Exhaust heat is carried by the high temperature exhaust
gases at a rate

.
QExh. Convective heat flows from the hot cylinder content to the colder engine mass

at a rate
.

Qconv and is finally released into the engine coolant as well as the engine surroundings by
means of conduction, convection, and radiation. Heat that is generated by friction at a rate

.
Q f r is
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dissipated by the engine oil [20,21]. This configuration gives the researcher the ability to fine-tune the
three different waste heat sub-models to better approximate a given engine. A simplified schematic of
the developed model analysing its layout and main constituent subsystems is shown in Figure 1.
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The PI controller uses the set speed Nset and the actual speed N to set the value of the control variable
volumetric efficiency ηvp. The physical limits of the system are defined by a saturation filter. In order for
the engine model to be generally applicable, and for the sake of simplicity, fluid densities and specific
volumes for atmospheric pressure Pamb = 1 atm, rather than for the manifold pressure, are used due to
the fact that the pressure characteristics of the manifold may vary significantly throughout the engine
operating range and from one engine type to another. The following assumptions can be made of the
model and these are generally true for commercially available, calibrated, healthy running SI engines:

• The charge air fuel ratio (AFR) is assumed to always be stoichiometric.
• Spark timing is assumed to occur at maximum brake torque (MBT) for all of the operating points.

In addition, the amount of fuel that is present in the charge is assumed to have completely
evaporated before it enters the cylinder, and thus, in the case of port injected engines, the volumetric
efficiency during the parameter estimation phase is calculated from:

ηvp =

.
Vch
.

Vsw
=

1.2 × 108(
.

V f _vap +
.

Va)

Vd × N
=

.
m f × 1.2 × 108(υ f _vap + υa × AFRst)

Vd × N
(1)

where
.

Vch, the volumetric flow rate of the experimentally acquired charge,
.

Vsw the theoretical swept
volumetric flow rate,

.
Va, and

.
V f _vap the volumetric flow rates of the air charge and the evaporated

fuel, respectively, all under atmospheric conditions in m3/s, Vd the engine displacement in cm3,
.

m f
the mass flow of fuel, υ f _vap, and υa the specific volumes of the fuel vapour and air, respectively, at
atmospheric conditions.

Since the rate of flow of exhaust heat
.

Qexh is a function of the exhaust temperature Texh and the
exhaust mass flow rate

.
mexh (equal to the charge mass flow rate

.
mch), the calculation of the exhaust mass

flow rate is an important element of the functionality of the model. Under the above assumptions, the
mass flow rate of an air-fuel mixture (charge mass flow rate) of a known ratio for a given combination
of N, ηvp is calculated from:

.
mch =

N × Vd × ηvp

1.2 × 108 × 1 + AFR
υ f _vap + AFR × υa

(2)

Experience has shown that exhaust temperature may vary significantly throughout the operating
range of an internal combustion engine. In the case of spark ignited (SI) engines, exhaust temperature
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for higher loads lies in the region of 600 ◦C, and in some cases, may even reach 900 ◦C, while at
idle, it lies in the region of 300 ◦C, [22], and according Zavala et al. [18], engine speed has a stronger
influence than the air mass inlet rate on exhaust temperature. At the time of this writing, the most
relevant study on the behaviour of the exhaust temperature of SI engines has been found to have been
conducted by Eriksson [23], who based on results from crank angle based combustion models assumed
a linear dependence of the exhaust temperature on the exhaust mass flow rate. As the experiments
of Section 3 indicate a strong correlation between engine speed and engine volumetric efficiency, in
the current document, the exhaust temperature will be calculated as a function of engine speed and
engine volumetric efficiency. The sequence of calculations of the power component calculator of the
developed engine model is illustrated in the diagram of Figure 2. Once the exhaust outlet temperature
Texh is provided from the exhaust temperature map for a given combination of N, ηvp, the specific
enthalpy of the exhaust gas hexh at this temperature is known. Since the specific enthalpy of the exhaust
under ambient temperature hexh_amb is also known, the rate of exhaust heat flow is calculated from:

.
Qexh = (hexh − hexh_amb)×

.
mch (3)

Heat ratio Q.R. is a size-independent representation of the rate of convective heat transfer that is
used by the developed model. The model uses the calculated rate of exhaust heat flow

.
Qexh and the

heat ratio Q.R. map to calculate the rate of convective heat transfer or a given combination of N, ηvp:

.
Qconv =

.
QExh × Q.R. (4)

Q.R. links
.

Qconv to
.

Qexh, which makes model scaling a simple task, since engine displacement
defines the rate of exhaust heat flow

.
Qexh, the heat inlet rate

.
Qin, and the rate of heat generated by

friction
.

Q f r (discussed below). In turn,
.

Qexh defines
.

Qconv for a given operating point.
Using the quadratic fit of f mep as a function of engine speed N from Ferguson et al. [20], the rate

of generation of heat from friction (engine displacement Vd in cm3) is calculated from:

.
Q f r(N) =

Vd ×
(

94.8N + 2.3N2

103 + 4N3

106

)
1.2 × 108 (kW) (5)

For a fuel lower heating value, LHV f , the rate of energy that enters the engine in the form of fuel
chemical power is calculated from:

.
Qin =

.
m f × LHVf =

.
mch × LHVf /(1 + AFR) (6)

The engine mechanical power output is now calculated from:

Pmech =
.

Qin −
.

QExh −
.

Qconv −
.

Q f r (7)
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3. Parameter Identification

The main maps of the model that calculates the exhaust temperature Texh and the heat ratio Q.R.,
both as functions of the engine speed N and the engine load will be constructed. A series of tests
have been performed on an SI direct injection engine using a transient engine test cell. The engine
specifications and Engine Control Unit (ECU) settings used for in the tests are presented in Table 1.

Table 1. Characteristics and settings of the tested engine.

Test Engine Characteristics and Settings

Engine type SI, Naturally Aspirated, direct injection
Displacement 1.6 L

Number of Cylinders 4
Engine Control Unit (ECU) settings Constant stoich. AFR, Spark at MBT

Set speed was varied from 1500 rpm to 4000 rpm in 500 rpm increments. For each set speed
value, α was varied from 20% to 100% of maximum throttle angle in increments of 10%. The exhaust
temperature, the fuel mass flow rate, and the engine torque were directly measured. All of the tests
were carried out on the same day in order to reduce the potential for introduction of error due to
inconsistent conditions to the set of recorded data.

The coefficients of 5th order polynomial fits performed on the acquired datasets of Texh(N, ηvp)

and Q.R.(N, ηvp) of the tested engine, whose surface plots are shown in Figures 3 and 4, are provided
in Appendix A Table A1 to be used in a polynomial of the general form Equation (8).

f (N, ηvp) = p00 + p10 × N + p01 × ηvp + p20 × N2 + p11 × N × ηvp + p02 × ηvp
2

+p30 × N3 + p21 × N2 × ηvp + p12 × N × ηvp
2 + p03 × ηvp

3 + p40 × N4

+p31 × N3 × ηvp + p22 × N2 × ηvp
2 + p13 × N × ηvp

3 + p04 × ηvp
4 + p50 × N5

+p41 × N4 × ηvp + p32 × N3 × ηvp
2 + p23 × N2 × ηvp

3 + p14 × N × ηvp
4 + p05 × ηvp

5

(8)



Energies 2017, 10, 1948 6 of 14

Energies 2017, 10, 1948 5 of 14 

 

3. Parameter Identification 

The main maps of the model that calculates the exhaust temperature 𝑇𝑒𝑥ℎ and the heat ratio 

𝑄. 𝑅., both as functions of the engine speed 𝑁 and the engine load will be constructed. A series of 

tests have been performed on an SI direct injection engine using a transient engine test cell. The 

engine specifications and Engine Control Unit (ECU) settings used for in the tests are presented in 

Table 1. 

Table 1. Characteristics and settings of the tested engine. 

Test Engine Characteristics and Settings 

Engine type SI, Naturally Aspirated, direct injection 

Displacement 1.6 L 

Number of Cylinders 4 

Engine Control Unit (ECU) settings Constant stoich. AFR, Spark at MBT 

Set speed was varied from 1500 rpm to 4000 rpm in 500 rpm increments. For each set speed 

value, α was varied from 20% to 100% of maximum throttle angle in increments of 10%. The exhaust 

temperature, the fuel mass flow rate, and the engine torque were directly measured. All of the tests 

were carried out on the same day in order to reduce the potential for introduction of error due to 

inconsistent conditions to the set of recorded data. 

The coefficients of 5th order polynomial fits performed on the acquired datasets of 𝑇𝑒𝑥ℎ(𝑁, 𝜂𝑣𝑝) 

and 𝑄. 𝑅. (𝑁, 𝜂𝑣𝑝) of the tested engine, whose surface plots are shown in Figures 3 and 4, are 

provided in Appendix A Table A1 to be used in a polynomial of the general form Equation (8). 

𝑓(𝑁, 𝜂𝑣𝑝) =  𝑝00 + 𝑝10 × 𝑁 + 𝑝01 × 𝜂𝑣𝑝 + 𝑝20 × 𝑁2 + 𝑝11 × 𝑁 × 𝜂𝑣𝑝 + 𝑝02 × 𝜂𝑣𝑝
2 

+𝑝30 × 𝑁3 + 𝑝21 × 𝑁2 × 𝜂𝑣𝑝 + 𝑝12 × 𝑁 × 𝜂𝑣𝑝
2  + 𝑝03 × 𝜂𝑣𝑝

3 + 𝑝40 × 𝑁4 

+𝑝31 × 𝑁3 × 𝜂𝑣𝑝 + 𝑝22 × 𝑁2 × 𝜂𝑣𝑝
2 + 𝑝13 × 𝑁 × 𝜂𝑣𝑝

3 + 𝑝04 × 𝜂𝑣𝑝
4 + 𝑝50 × 𝑁5 

+𝑝41 × 𝑁4 × 𝜂𝑣𝑝 + 𝑝32 × 𝑁3 × 𝜂𝑣𝑝
2 + 𝑝23 × 𝑁2 × 𝜂𝑣𝑝

3 + 𝑝14 × 𝑁 × 𝜂𝑣𝑝
4 + 𝑝05 × 𝜂𝑣𝑝

5 

(8) 

 

Figure 3. Map of the exhaust temperature vs. engine speed and volumetric efficiency. Figure 3. Map of the exhaust temperature vs. engine speed and volumetric efficiency.Energies 2017, 10, 1948 6 of 14 

 

 

Figure 4. Map of calculated Heat Ratio Q.R. vs. engine speed and volumetric efficiency. 

4. Simulation and Validation 

In order to showcase the operation of the engine model that was developed in the previous 

sections within a CHP application, the engine model is connected to a higher level cogeneration 

model whose block diagram is shown in Figure 5. A simple four-dimensional (4-D) map based heat 

exchanger model is connected to and receives input signals from the engine model, as well as from 

the primary circuit of a thermal storage tank model. The heat exchanger model input signals are the 

exhaust mass flow rate 𝑚̇𝑒𝑥ℎ and temperature 𝑇𝑒𝑥ℎ from the engine model, and the water mass 

flow rate 𝑚̇𝑤𝑎𝑡𝑒𝑟 and inlet temperature from the thermal storage tank primary circuit 𝑇𝑤𝑎𝑡𝑒𝑟. The 

heat exchanger output signals are the two outlet temperatures. 

 

Figure 5. Block diagram of the use of the engine model with a simple exhaust heat recovery system. 

In the simulation study, the engine speed was kept constant with varying electrical load 

demand for the duration of a day (24 h) at a simulation step of 1 s. The electrical load profile of a 

mid-terraced house during a typical January day, as found in [24], is used as the system electrical 

load. Following the simulation, the plots of the different estimated power components flowing 

through the engine model and the system electrical load profile can be seen in Figure 6. The time 

intervals during which all of the components equal 0, correspond to the system that is being 

Controller
vp

N

loadP

mechP
setN

exhm

Shaft 

Dynamics

Saturation 

Limits

exhT

Engine 

Model

Exh, Heat 

Exchanger 

Model
Electrical 

Load 

Profile

Electric 

Machine 

Model

elP

outexhT _

waterm
waterT

outwaterT _

Primary Circuit of 

Heat Storage Tank

-

Figure 4. Map of calculated Heat Ratio Q.R. vs. engine speed and volumetric efficiency.

4. Simulation and Validation

In order to showcase the operation of the engine model that was developed in the previous
sections within a CHP application, the engine model is connected to a higher level cogeneration model
whose block diagram is shown in Figure 5. A simple four-dimensional (4-D) map based heat exchanger
model is connected to and receives input signals from the engine model, as well as from the primary
circuit of a thermal storage tank model. The heat exchanger model input signals are the exhaust mass
flow rate

.
mexh and temperature Texh from the engine model, and the water mass flow rate

.
mwater and

inlet temperature from the thermal storage tank primary circuit Twater. The heat exchanger output
signals are the two outlet temperatures.
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Figure 5. Block diagram of the use of the engine model with a simple exhaust heat recovery system.

In the simulation study, the engine speed was kept constant with varying electrical load demand
for the duration of a day (24 h) at a simulation step of 1 s. The electrical load profile of a mid-terraced
house during a typical January day, as found in [24], is used as the system electrical load. Following the
simulation, the plots of the different estimated power components flowing through the engine model
and the system electrical load profile can be seen in Figure 6. The time intervals during which all
of the components equal 0, correspond to the system that is being switched off. The distribution of
energy flow rate between the modelled energy components can be observed to vary with load as the
distance between each curve is not proportional to the magnitude of the heat input curve along the
simulation duration. This behaviour is particularly observable when the mechanical power and rate
of the exhaust heat flow plots are compared. While the rate of exhaust heat flow for low electrical
loads has a noticeably higher magnitude than the produced mechanical power, for higher loads the
rate of exhaust heat flow and power output magnitudes are in close proximity. This behaviour is
not surprising as it reflects the higher engine conversion efficiency that is usually observed at higher
engine loads. Due to a constant speed operation, the calculated rate of heat generated from friction
remains constant. Similarly, the effects of load fluctuation on the predicted exhaust temperature can be
observed on the plot of Figure 7 where the exhaust temperature predicted by the system simulation
as discussed above is plotted against time, while the electrical load profile is located on the same
graph and measured by the right y-axis. Again, the model is found to calculate exhaust temperature
values that come to a general agreement with the measured values and whose behaviour follows
the observations that were made on the experimental data showing higher loads leading to higher
predicted temperatures, and vice versa.
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Figure 6. Simulated power component distribution vs. time as predicted by the engine model.
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Figure 7. Simulated system electrical load and engine exhaust temperature plotted against time.

By inspecting the profile of the heat recovery efficiency curve of Figure 8, it can be observed that
the model behaves as expected, being affected by the inlet conditions of the heat exchanger subsystem.
It can be seen that the instantaneous heat recovery efficiency tends to be higher for low load than
for high load conditions. A maximum heat recovery efficiency of 0.95 has been observed for a low
electrical load of 0.3 kW to 0.35 kW. On the other hand, a minimum heat recovery efficiency of 0.89
is observed for a high electrical load of 0.83 kW due to an increase in exhaust temperature and mass
flow rate. Thus, the minimum heat recovery efficiency is 6.3% lower than the observed maximum heat
recovery efficiency. Depending on model specifications, the inclusion of this level of accuracy may
be required by the heat recovery model and under these circumstances; an engine model layout as
developed in the current document can be the solution in supplying a heat exchanger model with the
necessary inputs.
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Figure 8. Plot of combined heat and power (CHP) Electrical Load and Exhaust Heat recovery efficiency
curves vs. time.

The engine model will be validated in terms of the rate of fuel consumption, as well as the
observed exhaust temperature for meeting a certain electrical demand profile. As can be seen in
Figure 9, the plotted line of the simulated chemical power inlet exhibits a shape and magnitude that
is very similar to the experimentally obtained line (scaled down to 80 cc). The plot of the simulated
chemical power inlet remains below the experimental curve for the complete duration of the test.
One may observe in Figure 10 that the relative error of the model is rather low, ranging between −0.8%
and −1.4% with the contour of the line corresponding to changes in engine load.

Similarly, the degree to which the developed model predicts the exhaust temperature may be
observed in Figure 11, where the exhaust temperature profile recorded during the drive cycle phase
of the engine test, and the exhaust temperature predicted by the model for the same load are plotted
against time. The difference between the two lines ranges between 3 ◦C and 5 ◦C, with the simulated
line being above the measured temperature curve throughout the duration of the test. A difference of
5 ◦C for temperatures positioned around the 700 ◦C mark translate to a relative error of less than 1%
when a reference point of 25 ◦C is considered.
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Figure 9. Plots of the simulated and tested heat inlet rate as well as the electrical load vs. time.
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Figure 10. Plot of the relative error of the estimated fuel input by the model vs. time.
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Figure 11. Plots of the simulated and the measured exhaust temperatures vs. time.

The difference between the plots of Figure 11 can be interpreted through the observation of the
relative error surface plot of Figure 12, in which, the relative error of the predicted exhaust temperature
is plotted against engine speed and volumetric efficiency. It can be observed that the relative exhaust
temperature error ranges between −2% and +2% throughout the complete operating range of the
engine. To ensure a fuel efficient operation, the engine was held at a constant synchronous speed of
3000 rpm, and the minimum electrical output of the generator was restricted to 40% of its maximum
electrical output. As the engine model was simulated over a map region that is characterized by a low
and positive relative exhaust temperature error, the relative error of the simulation remained positive
and below 1% throughout the whole duration of the tests.
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5. Design and Analysis

The observations that were made in Section 4 regarding the behaviour of the developed engine
model come to an agreement with generally established knowledge on the behaviour of spark ignited
internal combustion engines, as well as the engine behaviour recorded in the collected engine data, the
collection procedure of which is described in Section 3.

The distribution of the different power components that are calculated by the engine model
exhibits a behaviour that is quantitatively and qualitatively very similar to that encountered in the
tested engine. As expected, the fraction of the inlet chemical power

.
Qin that is converted to mechanical

power output (fuel conversion efficiency) at lower loads is low when compared to the fractions of
.

Qin that end up to become the engine main waste heat components. At higher loads, the mechanical
power accounts for a greater proportion of the inlet chemical power than in the case of low loads, and
this translates to an increase in fuel conversion efficiency. In addition, the proportion each waste heat
component accounts for relative to the chemical power inlet varies with load, and depending on the
waste heat recovery configuration, this may cause a variation in the system overall fuel utilization
efficiency as the engine speed and load varies.

The predicted exhaust temperature exhibits behaviour that is very close to the recorded profile.
As in the case of the tested engine, the predicted exhaust temperature is affected by both engine speed
and load with speed having a considerably stronger influence on the exhaust temperature magnitude
than engine load.

In terms of the degree to which the fitted model of Appendix A Table A1 predicts the magnitude of
engine measured outputs accurately, the model validation phase of Section 4 showed a high proximity
of the simulation results to the measured data. The relative error of the exhaust temperature fit
prediction has been found to be less than 1% when simulated under the engine drive cycle. For the
same tests, the relative error of the required chemical power inlet for the same load profile remained
between −0.7% and 1.4% throughout the whole simulated period. The strong accuracy of the predicted
values can be attributed to the high coefficients of covariance r2 of the 5th order fits of Texh and Q.R.,
which were carried out with the use of Matlab SFTOOL (R2013b, The MathWorks, Natick, MA, USA)
to be 0.9959 and 0.9881, respectively. Another potential factor that may have contributed to such
low relative errors is the fact that all of the tests were carried out on the same day, which assured
that the testing conditions were kept as constant and controlled as possible. While a test performed
during a different day of the year may give relative errors of a higher magnitude, the very low errors
encountered under testing indicate that the fitted model is adequate for the purpose of modelling
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and simulating ICE based cogeneration systems, provided that no dramatic changes are made in the
engine running conditions, such as in the case of operating under a very low barometric pressure due
to high altitude.

6. Conclusions

A method to construct quasi-stationary SI ICE models for use as a subsystem in cogeneration
models is presented. The model includes the mechanical power and conversion efficiency aspect
of the energy flow, but also the various waste heat components and the exhaust mass flow rate
and temperature. Model scalability and connectivity were also considered as characteristics of
great importance.

In order to generate the model maps, a series of engine tests have been carried out. By inspecting
measured exhaust temperature plots for different engine loads and speeds, a strong dependence of the
exhaust temperature, on the engine speed, and the engine volumetric efficiency has been observed.
In addition, it is common knowledge that the heat exchanger waste heat recovery efficiency is heavily
dependent on fluid inlet conditions. For these reasons, an exhaust temperature model as a function of
engine speed and engine volumetric efficiency has been developed. Representing load with volumetric
efficiency and mapping the rate of flow of convective heat as a fraction of the rate of flow of the
exhaust heat ensures the scalability of the model. The rate of flow of convective heat as a fraction of
the rate of flow of the exhaust heat has been named heat ratio (Q.R.) for the ease of documentation.
Polynomial surface fits of the exhaust temperature and heat ratio as functions of engine speed and
volumetric efficiency of 5th order were performed and the resulting coefficients are included in this
document, thus providing the reader with a ready to run engine model. Although quasi-stationary
in nature, this layout, if necessary, allows for the incorporation of dynamic behaviour to some extent
into the various power components by means of using transfer functions with appropriately tuned
coefficients that are dedicated to a respective power component.

The resulting engine model was simulated in tandem with a map based heat exchanger model.
The engine model was found to be more than adequate in predicting the measured engine outputs,
and easy to connect to a higher level CHP model, thus proving the usefulness of the concept. It is
therefore safe to conclude that the developed model is successful in predicting the distribution of
all the power components for different speeds and engine loads accurately, while at the same time
being easy to scale, and to connect to peripheral components that operate in different energy domains.
The most important family of components that can easily be connected to the developed engine model
are models of heat recovery equipment whose inlet conditions affect their performance. Due to the
above, the developed engine modelling layout can be characterized as an attractive alternative for use
in cogeneration simulation applications.

Author Contributions: 60% of the work was carried out by Nikolaos Kalantzis, 20% of the work was carried out
by Antonios Pezouvanis, 20% of the work was carried out by Kambiz M. Ebrahimi.
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Nomenclature

Tamb Ambient atmospheric temperature
.

Qin Heat inlet rate from fuel to the engine
Pmech Mechanical power output
.

Qexh Exhaust heat rejection rate
.

Qconv Rate of heat rejection through convection from cylinder content to cylinder walls
.

mexh Exhaust mass flow rate
.

ma Air mass flow rate
.

m f Fuel mass flow rate
Texh Exhaust temperature
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Nset Set engine speed
N Engine speed
Pload Mechanical power load acting on the shaft
ηvp Engine volumetric efficiency
Pamb Ambient pressure
AFRst Stoichiometric air to fuel ratio
.

V f _vap Volumetric flow rate of vaporized fuel at atmospheric conditions
υ f _vap Specific volume of vaporized fuel at atmospheric conditions
.

Va Volumetric flow of air at atmospheric conditions
υa Specific volume of air at atmospheric conditions
.

Vsw Swept volume rate
Vd Engine displacement
.

mch Mass flow rate of charge
hexh Exhaust enthalpy under outlet temperature
hexh_amb Exhaust enthalpy under ambient temperature
Q.R. Heat ratio
LHV f Lower heating value of fuel
Twater Water inlet temperature (Heat exchanger)
.

mwater Water mass flow rate (Heat exchanger)
Twater_out Water outlet temperature (Heat exchanger)
Texh_out Exhaust outlet temperature (Heat exchanger)
Pel Electrical power load placed on the electric machine

Appendix A

Table A1. Coefficients of the 5th order polynomial surface fits on Texh and Q.R.

Texh Q.R.

p00 181 −15.26
p10 −0.01864 0.03765
p01 9717 −62.01
p20 −0.0002382 −2.308 × 10−5

p11 −2.664 −0.01654
p02 −4.732 × 104 359.6
p30 2.091 × 107 4.749 × 109

p21 0.0004299 4.275 × 10−5

p12 9.603 −0.2169
p03 1.034 × 105 −396.1
p40 −5.329 × 10−11 −1.954 × 10−13

p31 −4.319 × 10−8 −1.029 × 10−8

p22 −0.001427 1.043 × 10−6

p13 −8.814 0.3173
p04 −1.131 × 105 −19.82
p50 4.266 × 10−15 −2.644 × 10−17

p41 6.416 × 10−12 7.893 × 10−13

p32 3.797 × 10−8 1.077 × 10−9

p23 0.0008733 −5.83 × 10−6

p14 2.013 −0.1529
p05 4.992 × 104 176
R2 0.9959 0.9881
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