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Abstract: Since a smart distribution grid has a diversity of components and complicated topology;
it is very hard to achieve fault early warning for each part. A fault early warning model for smart
distribution grid combining a back propagation (BP) neural network with a gene sequence alignment
algorithm is proposed. Firstly; the operational state of smart distribution grid is divided into four
states; and a BP neural network is adopted to explore the operational state from the historical fault
data of the smart distribution grid. This obtains the relationship between each state transition time
sequence and corresponding fault, and is used to construct the fault gene table. Then; a state transition
time sequence is obtained online periodically, which is matched with each gene in fault gene table by
an improved Smith–Waterman algorithm. If the maximum match score exceeds the given threshold,
the relevant fault will be detected early. Finally, plenty of time domain simulation is performed on the
proposed fault early warning model to IEEE-14 bus. The simulation results show that the proposed
model can achieve efficient early fault warning of smart distribution grids.

Keywords: fault gene table; smart distribution grid; fault early warning; gene sequence alignment;
Smith-Waterman algorithm

1. Introduction

In recent years, the smart grid has become a major concern of the international community [1–7].
Smart distribution grids are the main connection between the main grid and power supply to users and
are important parts of the smart grid [8]. Whether its operational state is normal or not directly affects
the power supply to thousands of users. Meanwhile, with the access of distributed generation, the
popularization of electric vehicles, and the increase of user interaction, the dynamic behavior of smart
distribution grid becomes complicated, and the operational risk increases greatly [9]. In the event of
power outage, there will be a great influence on social life and economic losses [10,11]. With the help of
condition monitoring and fault early warning techniques, predictive maintenance and condition-based
maintenance have become increasingly adopted [12]. Therefore, it is necessary to carry out more
in-depth research on the condition monitoring and the fault early warning of the smart distribution
grid so as to provide guidance and help for relevant management staff to predictive maintenance of
smart distribution grids.

At present, many domestic and foreign scholars have put forward various solutions for the fault
early warning of smart distribution grid from different angles. In [13], a fault early warning method
suitable for the active distribution grid based on harmonic current is proposed. Firstly, a cloud model
of harmonic current is designed and the entropy based on cloud model is used to measure the range of
harmonic current during normal operation, so as to determine the anomaly threshold of harmonic
current before and after the interconnection of intermittent energy. Then, comparison between the
measured data with the harmonic anomaly threshold is used to determine whether the harmonic
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current is unusual or not. In [14], it is pointed out that the weather factor is one of the main reasons for
the outage of distribution grids, and a fuzzy logic system to alleviate the impact of weather factors on
distribution grids is put forward, which make relevant operators obtain more accurate fault prediction.
In [15], the Bayesian network is adopted to mine the real historical faults of an electricity distribution
company from the south of Sweden to obtain the relationship between the fault of the distribution grid
and the affected components. In [16], it is pointed out that the short circuit current has become the most
common and most destructive power system fault. The accurate prediction of short circuit fault and the
size of the short circuit current is becoming more and more important. An artificial neural network is
introduced to predict the size of the short circuit current of distribution grid. In [17], a model combined
fuzzy comprehensive evaluation and a Bayesian approach is established to predict the operational
state and warning of power transformer. In [18], a better coordination between dynamic lightning
protection and state estimation of the smart grid is proposed to ensure reasonable dynamic actions
and improve the lightning performance. In [19], a whole function and architecture of an early warning
system, and its specific design scheme are put forward, which effectively improved the scientific
approach and predictability of operation decision-making for power systems. In [20], a data-driven
computational method has been proposed to address fault detection, identification, and location in
smart grids. Firstly, two detection hidden Markov models (HMMs) are trained for fault detection
to distinguish between normal and abnormal smart grid (SG) operation conditions. Then, if a fault
occurs, the trained identification HMMs are used to identify different fault types. In [21], an approach
to efficiently identify the most probable failure modes in static load distribution for a given power
network is developed. This technique can help discover weak links which are saturated at the failure
modes, thus providing predictive capability for improving the reliability of any power system. In [22],
a method is proposed to utilize phasor measurement unit (PMU) data to compute the region of stability
existence and operational margins. An automated process continuously monitors voltage constraints,
thermal limits, and steady-state stability simultaneously. This approach can be used to improve the
reliability of the transmission grid and to prevent major blackouts.

There are some particularly studies implementing hardware techniques for predictive
maintenance and diagnostics which are worthy of our study and research. In [23], the design of
an intelligent power switch (IPS) in high-voltage (HV)-CMOS technology with single chip integrated
protection and self-diagnostic capabilities has been proposed. In [24], a method networking vibration
measuring nodes with integrated signal processing has been proposed to address the problem of
predictive diagnostics in three-phase high-power transformers.

In this paper, a novel model based on fault gene tables is proposed to achieve fault early warning
for smart distribution grids. The smart distribution grid as a dynamic balance system analogous to a
biological system. In analogy to the human gene bank, which aims to identify and map all human
genes [25], the fault gene table is constructed to show the fault information of smart distribution
grids, and then the improved Smith–Waterman is adopted to realize the fault early warning for smart
distribution grids so as to provide the monitoring of system operational state for power operation and
management unit scientifically and effectively based on the constructed fault gene table.

2. Design of the Fault Gene Table

The fault of smart distribution grids has a certain mapping relationship with the operation data
before the fault, therefore operation data can be represented as the gene of fault. In analogy to the
human gene composed of four canonical bases, the operational state of smart distribution grid can
be divided into four states: excellent, good, middle and bad. Then the BP neural network evaluation
model is adopted to transform the operation data of the smart distribution grid into an ordered state
transition time series, namely a gene. In addition, the inputs of the BP neural network are the state goal
of each bus of smart distribution grid. Thus, the mapping relationship between each state transition
time series and related fault can be obtain from historical fault data sources of smart distribution grids
so as to construct the fault gene table.
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2.1. State Division of Smart Distribution Grids

The state division of a distribution grid is hard to have a unified standard, and many studies have
different points of view. In [26], it is divided into six kinds of state: fault, early warning, over-threshold,
incomplete operation, safety and optimal. In [27], it is divided into six states: normal, early warning,
threshold, emergency and recovery.

In this paper, in analogy to the human gene composed of the four canonical bases, the operational
state of a smart distribution grid can be divided into four states: excellent, good, middle and bad
labeled as E, G, M and B, which are shown as Table 1.

Table 1. State division of smart distribution grid.

Operational State Excellent Good Middle Bad

Label E G M B

2.2. Operational State Evaluation of Each Bus

The operational state goal of each bus is determined by its voltage, active power and reactive
power, as shown in Equation (1). {

Gb = λV gV + λPgP + λQgQ
λV + λP + λQ = 1

(1)

In which, Gb as the operational state goal of each bus ranges from 0 to 1, which is better closer to
1, otherwise is worse. λV is the weight of voltage, gV is the voltage goal of each bus, λP is the weight
of active power, gP is the active power of each bus, λQ is the weight of reactive power, and gQ is the
reactive power of each bus.

The voltage goal can be calculated as Equation (2). gV = 1− V −V
Vmax −Vmin

, i f Vmax 6= Vmin

gV = 0, otherwise
(2)

where V. is the present value of voltage, V is the average voltage of the related bus in the historical
data set, Vmax is the maximum voltage of the related bus in the historical data set, and Vmin is the
minimum voltage of the related bus in the historical data set.

The active power goal can be calculated as Equation (3). gP = 1− P− P
Pmax − Pmin

, i f Pmax 6= Pmin

gP = 0, otherwise
(3)

where P is the present value of active power, P is the average active power of the related bus in the
historical data set, Pmax is the maximum active power of the related bus in the historical data set, and
Pmin is the minimum active power of the related bus in the historical data set.

The reactive power goal can be calculated as Equation (4). gQ = 1− Q−Q
Qmax −Qmin

, i f Qmax 6= Qmin

gQ = 0, otherwise
(4)

where Q is the present reactive power, Q is the average reactive power of the related bus in the
historical data set, Qmax is the maximum reactive power of the related bus in the historical data set,
and Qmin is the minimum reactive power of the related bus in the historical data set.



Energies 2017, 10, 1963 4 of 22

2.3. Operational State Evaluation Model of Smart Distribution Grid

In order to dynamically evaluate the current operational state of the smart distribution grid,
it is necessary to have a comprehensive grasp of the operational condition of the smart distribution
grid. Therefore, a state evaluation model based on BP neural network is proposed, which obtains the
operational state by comprehensively taking each bus state into account. BP neural network has good
features of fault tolerance and strong adaptive learning ability, which can improves the fault tolerance
and the accuracy rate of evaluation.

BP neural network is composed of an input layer, hidden layer and output layer. The input
layer is the state goal of each bus. The output layer is the operational state of smart distribution grid.
The model of BP neural network is shown as Figure 1.
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Figure 1. Model of three-layer back propagation (BP) neural network.

The output result is divided into 4 states, which is shown as Table 2.

Table 2. Division rule of output state in BP neural network.

Output 0 ≤ y < 0.25 0.25 ≤ y < 0.5 0.5 ≤ y < 0.75 0.75 ≤ y ≤ 1

State Bad(B) Middle(M) Good(G) Excellent(E)

2.4. Fault Gene Table Construction Procedure of Smart Distribution Grid

1. A k-means clustering is adopted to cluster all buses state goals of the smart distribution grid in
historical fault data source into four classes, labeled with related tags including of E, G, M and B
according to the magnitude of average state goal Gavg calculated by Equation (5).

Gavg(k) =
∑m

i=1 ∑
ϕ(k)
z=1 Gb(i, z)

m× ϕ(k)
(5)

where k = 1, 2, 3, 4 denotes to different class, m is the number of buses, ϕk represents the number
of groups in kth class, and Gb (i, z) represents the state goal of smart distribution grid in the mth
bus of the zth group.
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2. One part of the clustered data is regarded as the training sample matrix Tn×m(k) shown as
Equation (6).

Tn×m(k) =


t11 t12 . . . t1m
t21 t22 . . . t2m
...

tn1

...
tn2

. . .
. . .

...
tnm

 (6)

where n is the number of training samples, and tnm represents state goal in the mth bus of the nth
training sample.

3. The other part of the clustered data is regarded as evaluation matrix An∗×m, which is shown as
Equation (7).

An∗×m =


a11 a12 . . . a1m
a21 a22 . . . a2m
...

an∗1

...
an∗2

. . .
. . .

...
an∗m

 (7)

where n∗ is the number of evaluation samples, and an∗m represents state goal in the mth bus of
the n∗th evaluation sample.

The training sample matrix Tn×m(k) is input into the BP neural network to determine the weights
and thresholds, and the training process was as follows:

a. Set the weight and threshold between input layer and hidden layer are respectively wij
and γj, the weight and threshold between hidden layer and output layer are respectively
wj and ∅, the number of nodes in hidden layer is N, learning rate is η, and the expected
output of state goal is ŷ which is chosen distinct value according to the type of input
sample Specifically, the ŷ for Bad(B) can be a reasonable value between 0 and 0.25, the ŷ
for Middle(M) can be a reasonable value between 0.25 and 0.5, the ŷ for Good(G) can be a
reasonable value between 0.5 and 0.75, and the ŷ for Excellent(E) can be a reasonable value
between 0.75 and 1. For example, these expected outputs of state goals can take the mean
value of the range, namely 0.125, 0.375, 0.625 and 0.875 respectively.

b. Choose sigmoid function as the activation function of hidden layer and output layer,
namely f1 and f2, which is shown as Equation (8).

f1(x) = f2(x) =
1

1 + e−x (8)

c. Calculate the input and output value of each hidden neuron, which is shown as Equation (9) hj =
m
∑

i=1
wijtri + γj

bj = f1(hj)
(j = 1, 2, . . . N) (9)

where hj is the input value of each hidden neuron, bj is the output value of each hidden
neuron, r = 1, 2, . . . n, which denotes the index of training sample, and tri represents state
goal in the ith bus of the rth training sample.

d. Calculate the output value y according to the output of hidden layer bj, weight
and threshold between hidden layer and output layer wj and ∅, which is shown as
Equation (10).

y = f2(
N

∑
j=1

wjbj +∅) (10)
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e. Calculate the output error according to Equation (11).

e =
1
2
(y− ŷ)2 (11)

f. Calculate the generalization error of output layer by Equation (12).

eo = (y− ŷ)× y× (1− y) (12)

g. Calculate the generalization error of hidden layer by Equation (13).

ehj = wj × eo× bj × (1− bj) (13)

h. Adjust the weight and threshold between hidden layer and output layer wj and ∅, which
is calculated as Equation (14). 

∆wj = η × bj × eo
w′j = wj + ∆wj

∆∅ = η × eo
∅′ = ∅+ ∆∅

(14)

where w′j and ∅′ are the weight and threshold between hidden layer and output layer
after adjustment.

i. Adjust the weight and threshold between input layer and hidden layer wij and γj, which is
calculated as Equation (15). 

∆wij = η × tri × ehj
w′ij = wij + ∆wij

∆γj = η × ehj
γ′j = γj + ∆γj

(15)

where w′ij and γ′j are the weight and threshold between input layer and hidden layer
after adjustment.

j. When r is changed from 1 to n, all training sample is trained completely, the global error
Eg will be calculated by adding all errors of each training sample. If Eg reaches into the
specified error range, return to the step k, otherwise, set the Eg to zero and return to step c
to repeat the training.

k. End the training and record the weights and thresholds of current network.

4. Input the evaluation matrix An∗×m into the trained BP neural network to get the state goal
of the smart grid at each moment, and then compare it with the expected state to verify the
effectiveness of the model. The trained BP neural network will be used to build the mapping
relationship between state transition time sequence and fault so as to construct the fault gene
table. The construction flow chart of fault gene table for the smart distribution grid is shown as
Figure 2. The constructed fault gene table is shown as Figure 3.
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3. Fault Early Warning by Improved Smith–Waterman

After the fault gene table is constructed, operation data of all buses in a smart distribution grid
is obtained periodically, which is transformed into gene by BP neural network. Then, a sequence
alignment algorithm is adopted to get the match score between this gene and genes in fault gene table.
If the match score exceeds the given threshold, the related fault will be warned early. If the length of
gene to be matched is increasing gradually, and the lengths of genes in the fault gene table are also
different, it is better to use a local sequence alignment. In addition, fault early warning has a higher
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request of the sensitivity. Therefore, the Smith–Waterman algorithm is chosen to achieve the fault early
warning of smart distribution grids, and some corresponding improvements are made to adapt to the
characteristics of smart distribution grids.

3.1. Improved Smith–Waterman

Smith–Waterman algorithm aligns two sequences by matches or mismatches (also known as
substitutions), insertions and deletions. Both insertions and deletions are operations that introduce
gaps, which are represented by dashes. The Smith–Waterman algorithm based on the dynamic
programing technique provides high sensitivity [28,29]. The procedure consists of three steps:

• Fill in the dynamic programming matrix.
• Find the maximal score in the matrix.
• Trace back the path that leads to the maximal score to find the optimal local alignment.

When the Smith–Waterman algorithm is used in biological gene sequence alignment, the
importance of the four bases are the same, so the score matrix for the same base matching score
is the same. In its application in the field of smart distribution grids, the analogous four bases are
necessary to be different because the operational state of smart distribution grid is divided into four
types with distinct performance, namely E, G, M and B.

In order to apply the request of online fault early warning of smart distribution grids, it is
necessary to have some improvements to the traditional Smith–Waterman algorithm, specifically, in
the design of the substitution matrix, which has two rules to be followed:

1. If two states are matched, the worse the performances of two states are, the higher the match
score is; namely, the match score of E with E, G with G, M with M and B with B follow an
ascending order.

2. If two states are mismatched, the bigger the difference between the two states is, the lower
the match score. For instance, the match score of E with G, E with M and E with B follows a
descending order.

The first rule can make the match between lower operational states more important, which can
improve the accuracy rate of fault early warning. The second rule can lower the negative effects on
fault early warning when the alignment of two states are mismatched.

According to the importance degree of each operational state and the design rules, the substitution
matrix can be designed as the Equation (16).

Score
(

sli , ulj

)
=

{
σ(sli )× σ(ulj

), i f two states are matched

−
∣∣∣σ(sli )− σ(ulj

)
∣∣∣, otherwise

(16)

where σ is the importance degree of operational state, sli is the state of lth
i element in the gene sequence

S to be mentioned in the following paper, and ulj
is the state of lth

j element in the gene sequence U also
to be mentioned in the following paper.

3.2. Procedure of Fault Early Warning by Improved Simth–Waterman

1. The operation data of a smart distribution grid is obtained periodically in real time, and
transformed to state transition time sequence, namely gene to be matched, by the BP neural
network. The length of it gradually increases with the passage of time.

2. The gene to be matched and the gene in fault gene table are matched periodically by the improved
Smith–Waterman algorithm, and the matching process is as follows:

a. Let gene to be matched S = s1s2 . . . sli . . . slS , gene in fault gene table U = u1u2 . . . ulj
. . . ulU ,

and the lengths of them be lS and lU , respectively.
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b. Determine the substitution matrix and the gap penalty scheme.
c. Construct a scoring matrix D and initialize its first row and first column. The size of the

scoring matrix is (lS + 1)× (lU + 1).
d. Fill the scoring matrix using the Equations (17) and (18).

D(li, 0) = D(0, lj) = 0 (17)

D(li, lj) = max


0
D(li − 1, lj − 1) + Score(sli , ulj

)

D(li − 1, lj)− Score(sli , 0)
D(li, lj − 1)− Score(0, uli )

(18)

In which, 1 ≤ li ≤ lS, 1 ≤ lj ≤ lU , Score(si, uj) can be calculated by Equation (16),
Score(sli , 0) and Score(0, ulj

) are the gap penalty when the ulj
or the sli is dash.

e. Find l∗i and l∗j to make
D(l∗i , l∗j ) = max

1≤li≤lS ,1≤lj≤lU
D(li, lj) (19)

where D(l∗i , l∗j ) is the highest score in the scoring matrix D.

f. Until all alignments are finished between genes to be matched and all genes in the fault
gene table, all highest scores are obtained.

3. Find the maximum score from all the highest scores, and compare it to the given threshold. If the
maximum score exceeds the threshold, the related fault will be warned early. The block diagram
of fault early warning for smart distribution grid realized by the improved Smith–Waterman
algorithm is shown as Figure 4.Energies 2017, 10, 1963 9 of 20 
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In the process of gene sequence alignment, it is very critical to set an appropriate early warning
threshold. In this paper, the early warning threshold is set to the percentage of full score of fault genes
in the fault gene table. Therefore, the match score of early warning is different, which depends on the
length of genes in the fault gene table for better adaptability. In the following simulation, the most
suitable threshold, which can make the proposed model obtain an optimal accuracy rate of fault early
warning, is chosen from different early warning thresholds.

4. Simulation and Analysis

PSAT (power system analysis toolbox) based on MATLAB is adopted to do time domain
simulation tests for the proposed model. The IEEE-14 bus is used as the simulation object, and
random disturbance is introduced during the process of the simulation. The disturbances are randomly
introduced into one of the four components including of the constant power (PQ) load, automatic
voltage regulator (AVR), transmission line and synchronous machine of IEEE-14 Bus.
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4.1. Simulation Parameters

The corresponding simulation parameters include the simulation parameters of the proposed
model and IEEE-14 bus.

1. Simulation parameters of the proposed model are shown as Tables 3–6.
2. Simulation parameters of the IEEE-14 bus are shown as Figure 5 and Table 7.

Table 3. Weights of bus operational state goal.

Parameters λV λP λQ

1st set 0.34 0.33 0.33
2nd set 0.4 0.4 0.2
3rd set 0.4 0.2 0.4
4th set 0.2 0.4 0.4Energies 2017, 10, 1963 10 of 20 
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Table 4. Simulation parameters of BP neural network.

Parameters Nodes of
Input Layer

Nodes of
Hidden Layer

Nodes of
Output Layer

Learning
Rate

Active
Function

Value 14 [4,20] 1 0.1 sigmoid
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Table 5. Simulation parameters of Smith–Waterman algorithm.

Parameters Warning Threshold

Value [0.6, 0.9]

Table 6. Importance degree of four operational state in smart distribution grid.

Parameters σ(E) σ(G) σ(M) σ(B)

Value 1 2 3 4

Table 7. Model parameters in IEEE-14 bus.

Model Bus Line Transformer Synchronous
Machine

PQ
Load AVR

Constant
Voltage (PV)

Generator
Breaker Static

Compensator

Number 14 16 4 5 11 5 1 1 3

4.2. Procedure of Simulation

In the process of simulation, the random disturbances are introduced into each model of IEEE-14
bus so as to simulate the actual operating environment of the distribution grid and shorten the
appearance time of faults. The simulation process is divided into two steps including the simulation of
fault gene table construction and the simulation of fault early warning of smart distribution grid based
on the obtained fault gene table.

4.2.1. Simulation of Fault Gene Table Construction

Firstly, PSAT based on MATLAB is adopted to do time domain simulation on the IEEE-14 bus.
The simulation time is 20 s. Two types of operation data of each bus are obtained. One type is the
normal operation data of each bus about voltage, active power and reactive power of distribution grid
without any disturbance, which is shown as Figure 6. The other is the operation data with random
disturbances per second during the simulation, which is shown as Figure 7.

In Figure 6a–c, the change of the three parameters of each bus are very regular, namely the state
fluctuation of each bus is very regular without any disturbance. In Figure 7a–c, the fluctuation of
voltage and reactive power in each bus is strong, while the fluctuation of active power in each bus
is weak.

Simulation data about three parameters of each bus to first fault is exported by PSAT, and
166 groups of voltage, active power and reactive power are obtained, respectively. The comprehensive
operational state goal of each bus can be calculated by Equations (1)–(4) with the simulation data. Then,
a k-means clustering is adopted to cluster the data about state goal of each bus into four classes, labeled
with related tags including of E, G, M and B according to the magnitude of average state goal Gavg

calculated by Equation (5). The clustered data is a high-dimensional dataset for the number of buses
is 14. A dimensionality reduction algorithm named t-Distributed Stochastic Neighbor Embedding
(t-SNE) [30,31] is adopted to model the high-dimensional data by a two-dimensional point, which then
is visualized in a scatter plot shown as Figure 8.
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Figure 6. Three parameters of each bus without disturbances: (a) Voltage; (b) Active power; (c) 

Reactive power. 
Figure 6. Three parameters of each bus without disturbances: (a) Voltage; (b) Active power;
(c) Reactive power.
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Figure 8. Clustered 166 groups of data with 14 dimension reduces to two-dimensional points.

A 10-fold cross-validation is adopted on the obtained 166 groups of data to get the relation
between the average accuracy rate of BP neural network evaluation model and the number of neurons
in hidden layer. As the number of neurons in hidden layer ranges from 4 to 20, the relation between
them is shown as Figure 9.
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Figure 9. Relation between the average accuracy rate of BP neural network evaluation model and the
number of neurons in a hidden layer.

In Figure 9, the BP neural network evaluation model has the highest average accuracy rate close
to 95%, when the number of neurons in a hidden layer is 12.

After the BP neural network state evaluation model is trained and the number of neurons in
the hidden layer is set to 12, the goal of each bus in each time domain simulation with random
disturbances is firstly transformed into a data sequence with a sampling period of 0.5 s, and then this
data sequence is input into the trained BP neural network evaluation model to obtain a state transition
time sequence and its related fault. In each time domain simulation, the flow diagram of the fault gene
table construction is shown in Figure 10.



Energies 2017, 10, 1963 15 of 22

Energies 2017, 10, 1963 14 of 20 

 

 
StartStart

EndEnd

Introduce random 
disturbance

Introduce random 
disturbance

Obtain operation state of 
smart distribution grid 

through entering state goal 
of each bus into trained BP 

neural network 

Obtain operation state of 
smart distribution grid 

through entering state goal 
of each bus into trained BP 

neural network 

Obtain state 
transition time 

sequence (gene)

Obtain state 
transition time 

sequence (gene)

Reduce the model 
performance when 

operation state of smart 
distribution grid is middle 

or bad

Reduce the model 
performance when 

operation state of smart 
distribution grid is middle 

or bad

If simulation 
time is over ?

Store fault in 
fault gene table

Store fault in 
fault gene table

If fault 
occurs ?

Yes

NO

EndEnd

Yes

NO

 

Figure 10. Flow chat of fault gene table construction for smart distribution grid in the simulation test. 

According to Figure 10, plenty of time domain simulations with random disturbances are made, 

and the relationship between the fault and the state transition time sequence is obtained in each time 

domain simulation, which is used to construct the fault gene table. The faults in the fault gene table 

are mainly composed of four component faults shown in Table 8. 

Table 8. Component faults in fault gene table. 

Component Fault Bus Generator Line Breaker 

Fault number 60 50 100 40 

Three typical relationships between sate transition time sequences and related component faults 

are given in Figure 11. 

In Figure 11, it can be concluded that smart distribution grid has been in a lower operation before 

the occurrence of a fault. 

Figure 10. Flow chat of fault gene table construction for smart distribution grid in the simulation test.

According to Figure 10, plenty of time domain simulations with random disturbances are made,
and the relationship between the fault and the state transition time sequence is obtained in each time
domain simulation, which is used to construct the fault gene table. The faults in the fault gene table
are mainly composed of four component faults shown in Table 8.

Table 8. Component faults in fault gene table.

Component Fault Bus Generator Line Breaker

Fault number 60 50 100 40

Three typical relationships between sate transition time sequences and related component faults
are given in Figure 11.

In Figure 11, it can be concluded that smart distribution grid has been in a lower operation before
the occurrence of a fault.
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According to Equation (16) and Table 6, the substitution matrix for gene sequence alignment is 

shown in Table 9. 

Figure 11. Typical relationship between sate transition time sequences and component faults in the
simulation test.

4.2.2. Simulation of Fault Early Warning

PSAT based on MATLAB is adopted to do time domain simulation added with random
disturbances on IEEE-14 bus with a simulation time of 20 s. During the time domain simulation,
state transition time sequence as a gene is obtained periodically, which is used to match with the genes
in the fault gene table by the improved Smith–Waterman algorithm. If the match score exceeds the
given threshold, the related fault will be warned early. The flow diagram of fault early warning is
shown in Figure 12.
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According to Equation (16) and Table 6, the substitution matrix for gene sequence alignment is
shown in Table 9.

Table 9. Substitution matrix for gene sequence alignment.

State E G M B

E 1 −1 −2 −3
G −1 4 −1 −2
M −2 −1 9 −1
B −3 −2 −1 16

If a fault occurs during a time domain simulation, and the proposed model fails to give the fault,
or the gene related to the fault is a new type, then it is necessary to be stored in the fault gene table for
improving the accuracy rate of fault early waning in the following simulation. The total number of
proposed models giving a right fault early warning and occurring faults are recoded respectively, and
then the accuracy rate of fault early warning is calculated by the Equation (20).

ρ =
T
C

(20)

where T is the number of giving a right fault early warning, C is the total number of occurring faults,
and ρ is the accuracy rate of fault early warning.

If the threshold and weights of three parameters in each bus are different, the accuracy rate of
fault early warning is different. In order to know the relation between them, four sets of different
weights are chosen and threshold ranges from 0.6 to 0.9. The relations between the average accuracy
rate of fault early warning and threshold in different weights are obtained using plenty of simulations
as shown in Figure 13.
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Figure 13. Relations between the average accuracy rate of fault early warning and threshold in
different weights.

In Figure 13, the following can be concluded:

1. In terms of weights: the accuracy rate of fault early warning is higher when the weights of voltage
and reactive power of each bus is bigger. The threshold has a trend of decreasing at the maximum
accuracy rate of fault early warning with the decrease of voltage weight.
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2. In terms of threshold: when the threshold is too small, the probability of error is higher due to
the interference of the other similar fault genes. While the threshold is too large, the probability
of that fault occurring before the match score reaches the threshold is higher.

Therefore, when selecting the weights of the parameters of the bus, it is better to choose slightly
higher weights of voltage and reactive power in each bus, and slightly lower weights of active power.
As to threshold, it is not necessary to select too large or too small thresholds, and an appropriate
threshold is better. In Figure 13, when λV = 0.4, λP = 0.2, λQ = 0.4, and the threshold is chosen as
0.8, the proposed model has the highest average accuracy rate of fault early warning by 94%.

With the times of simulation increasing, the fault genes failed to warn early. This will be added
into the fault gene table, which can increase the accuracy rate of fault early warning later. In order to
know the relation between the accuracy rate and times of simulation, the current best weights and
threshold are chosen as λV = 0.4, λP = 0.2, λQ = 0.4, threshold = 0.8, and the accuracy rate changes
with the times ranges from 30 to 150 as shown in Figure 14.
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Figure 14. Relations between the accuracy rate of fault early warning and times of simulation.

In Figure 14, the change trend of accuracy rate can be divided into two parts. The first part shows
that the accuracy rate increases with the times of simulation because the fault genes which failed to
warn early are added into the fault gene table. The second part denotes that the accuracy rate decreases
with the times of simulation because the number of fault genes in the fault gene table is too large,
which causes redundancies and introduces disturbances. Therefore, the accuracy rate of fault early
warning has a tendency to converge to one at the beginning. When the times reach 120, the accuracy
rate of fault early warning is close to 97%.

In the field of fault early warning for smart distribution grids, due to the difference of data source
access and the difference of needed data for distinct models, it is hard to take a quantitative approach to
compare the proposed model with the existing models for fault early warning. Therefore, a qualitative
approach is taken to compare these models to some degrees, which is shown as Table 10.
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Table 10. Comparison of the proposed model with existing models.

Model Proposed Model Based on Harmonic
Current [13]

Fuzzy Logic
Approach [14]

Bayesian
Network [15]

Based on Short
Circuit Current [16]

Fuzzy Comprehensive
Evaluation and Bayes
Discrimination [17]

Considered factors All buses harmonic current Extreme weather Affected
components short circuit current Power transformer

Can it comprehensively
consider the

operational state
Yes No No Yes No No

Is accuracy rate improved
with the increase of times Yes No No No No No

Data sources Simulation Actual data Simulation Actual data Simulation Actual data

Verification means Simulation Actual Test Simulation Actual Test Simulation Actual Test

Result Accuracy rate is
close to 97%

Can detect the
abnormal changes of

the system
harmonic current

Accuracy rate is 100%
Provide certain
support degree
for some faults

Can effectively
predict the size of

short circuit current

Can effectively discriminate
the operational state of
power transformer and

warn early
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5. Conclusions

In this paper, the proposed model combined BP neural network and the Smith–Waterman gene
sequence alignment algorithm, fully exploiting fault features of smart distribution grids, which
provides a new thought in the solution of fault early warning for smart distribution grids. In practice,
the historical fault data source including voltage, active power and reactive power in each bus can be
transformed into a fault gene table by the BP neural network, and then an improved Smith–Waterman
is adopted to match the current state transition time sequence (gene) with the genes in the fault gene
table. If the match score exceeds a given threshold, the related fault will be warned early. The proposed
model has strong versatility and adaptability due to a different fault gene table that can be constructed
when confronted with different scale and more complicated topology of a smart distribution grid.
PSAT based on MATLAB is adopted to do time domain simulations of proposed models on the object
of IEEE-14 bus. The simulation result shows that the proposed model can achieve the fault early
warning for smart distribution grids efficiently and with a high accuracy rate with a tendency to
converge to one. It provides operational monitoring and maintenance guidance of smart distribution
grids for relevant managers and effectively improves the scientific characteristics and predictability of
operational decision-making for power systems.

There are actually some limitations in the proposed model. It can only perform the fault early
warning in the most faults of smart distribution grid which have features of tendency and cumulative
effect. The transient faults caused by the improper operation or extreme weather are hard to be
addressed by the proposed model.

Fault gene tables relating to different scales of smart distribution grids have certain differences,
but also have a certain generality to some extent. Therefore, in further research, it can be considered
that an association rule algorithm such as Apriori and FP-Growth can be used to refine the fault gene
tables related to different scales of smart distribution grids so as to make fault gene tables that have
better universality.
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