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Abstract: An accurate forecast of the power generated by a wind turbine is of paramount importance
for its optimal exploitation. Several forecasting methods have been proposed either based on
a physical modeling or using a statistical approach. All of them rely on the availability of high
quality measures of local wind speed, corresponding generated power and on numerical weather
forecasts. In this paper, a simple and effective wind power forecast technique, based on the probability
distribution mapping of wind speed forecast and observed power data, is presented and it is applied
to two turbines located on the island of Borkum (Germany) in the North Sea. The wind speed forecast
of the ECMWF model at 100 m from the ground is used as the prognostic meteorological parameter.
Training procedures are based entirely on relatively short time series of power measurements.
Results show that our approach has skills that are similar or better than those obtained using
more standard methods when measured with mean absolute error.
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1. Introduction

The production of energy from wind has become economically and technically viable, with high
potential for growth. However, the uncertainty associated with production forecasts, linked to the
stochastic nature of wind, is a critical issue for the existing distribution networks, due also to the
increased supply of power generation from other renewable sources [1].

The problem becomes even more evident if the grid is small and possibly not connected to the
distribution and transmission network. This is particularly the case on small islands, where the
introduction of renewable sources requires particular attention because of the limited size of the
distribution grid and of the concentration of the production [2].

To reduce the negative impact of the variability of energy production from renewables,
in particular from wind power, different strategies can be applied: geographical dispersion of the
production plants, load management, temporary power production cuts, energy storage and wind
power forecast (WPF). Energy storage and generation forecasts are the most attractive strategies
for a small grid, and in particular for use on an island. These procedures are one of the subjects
studied in the European NETfficient project (http://www.netfficient-project.eu), to which this work is
related. The project aims to propose effective innovation on the use and distribution of electric power
through the development of several energy storage technologies and an energy management system,
enabling the implementation of a smart grid on the German island of Borkum in the North Sea.

The improvement of the forecasting techniques for the power produced by wind turbines is
essential for an increase in network input and an optimal sizing of the storage capacity required for
grid stability. To this end, an accurate forecast is critical as well as knowing the uncertainty associated
with that prediction [3].
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It’s hard to compare the many different techniques that have been developed over the years to
predict turbine power from wind velocity, due to the peculiarities of each application, which depend
on the type of installation, geographic characteristics, time horizons of interest, and also on the purpose
for which a prediction is required. A recent and complete review of the techniques proposed in the
literature can be found in [4].

The estimated power production is the output of the representative model of the turbine,
which, according to the forecasting technique used, can receive, as input, different types of weather
variables, which in turn are the output of some Numerical Weather Prediction (NWP) models.

The simplest way of building a turbine model is to obtain a functional relationship between
produced power and wind speed. This model can be supplied directly from the manufacturer or
derived by applying regression techniques to historical data series of electric power and wind speed
simultaneous observations, and in this case is known as the wind turbine power curve.

The power curves provided by turbine manufacturers are valid for a brand new turbine in
standard ideal conditions. Wind turbines seldom operate under such conditions [5], and there is often
a discrepancy between the empirical and theoretical power curve, which results in inaccurate power
prediction and motivates some research works in the recent years [3,6,7].

The forecasting models presented in the literature are usually divided in parametric and
non-parametric.

The parametric models are built from a set of mathematical equations that include some
parameters that have to be determined through regression methods from the available data for
weather conditions and power generation [3]. Through the years many parametric models have
been proposed, examples include: the piecewise linear model [8,9], polynomial power curve of
various degrees as discussed in [10,11], the maximum principle method by Rauh as proposed in [12],
the dynamical approach using the Langevin Model presented in [12], a probabilistic method proposed
in [13], the so-called ideal power curve [14], four and five parameters logistic functions [5,15] , as well
as Modified hyperbolic tangent (MHTan) function [6].

With the recent availability of powerful database tools for the management of large amounts
of data, the non-parametric methods emerged. These methods instead of assuming a physical or
analytic relationship between the input and output data, establish a correlation based only on the
data provided.

Among these, the following can be recalled: the copula power curve model [16], cubic spline
interpolation [9], different types of artificial neural network [8,10,17–19], multi-layer perceptron,
random forest, k-nearest neighbors and support vector machines [8,15,20]. Among the non-parametric
methods, there is the Method Of Bins on which the IEC 61400-12-1 standard is based [21]. This standard
is the most prescribed method for power performance evaluation of wind turbines.

All these methods are based on a set of simultaneous data on wind conditions and measured
power. When the turbine model is constructed from Supervisory Control And Data Acquisition
(SCADA) system measurements, the resulting model can be used for forecasting purposes only
through a statistical postprocessing of the wind speed forecast obtained from the NWP systems, to
have a reasonable estimation of the wind at the hub of the turbine. If the model serves only for forecast
purposes, the power measurements may be directly related to NWP’s output, without the need of
using the wind speed at the hub as an intermediate variable.

In this paper a simple but effective modeling technique for wind power forecasting is introduced,
having several distinctive features:

• It is based on the correlation between measured power and NWP wind speed forecast,
specifically their probability distributions, and thus includes implicitly some of the influences of
the local terrain and environment;

• A good model can be obtained from a set of a few hundred of independently taken power
measures and wind speed forecasts;
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• In spite of its simplicity, the results obtained are comparable and, when mean absolute error is
used as an error measure, better than those obtained using other much more complicated and
computationally expensive methods;

• The approach could, in principle, also be applied to wind speed and generated power data
observed in separate campaigns, with different sample rates, as long as the measured sets have
significant statistical representativeness;

The remainder of this paper is organized as follows. The problem and the available datasets are
described in Section 2. The method is presented and discussed in Section 3. Section 4 introduces the
accuracy metrics that are applied in the evaluation of the results, presented and briefly discussed in
Section 5. Finally, the conclusions are drawn in Section 6 and some directions for future research are
also given.

2. Observational and Forecast Data Sets

The problem consists in forecasting the electrical generation of two turbines located on the island
of Borkum in Germany (Figure 1). The two pitch controlled turbines (from the manufacturer Enercon)
are identical, have a nominal power of 1.8 MW, a rotor diameter of 66 m, and are approximately 400 m
apart. The manufacturer suggests installation heights for the hub between 68 and 114 m. The declared
cut-in speed is 2.5 m/s, the cut-out speed is 34 m/s, and the rated speed is 12.5 m/s.

Figure 1. Location of the two wind turbine on the island of Borkum in Germany. The island is almost
flat and the two turbines are about 400 m apart, installed at an altitude of 7 m above sea level.

The observed data consists of one year (2014) of power measurements, with a frequency of 15 min.
In-situ wind speed measurements are not available.

Given the relative proximity and the almost flat shape of the island, one can expect that the two
turbines, sharing the same meteorological condition, must have very similar performances. In the
Figure 2, the scatter-plot of power measures for the two turbines is shown for each measurement
available, using red dots.
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Figure 2. Comparison of the powers produced by the two turbines. Red dots refer to all
available measurements, black dots to those filtered on the basis of the information provided by
the plant operator.

As expected, the two data sets are very similar, but a more careful analysis reveals that, at least for
wind speeds in a medium to high range, the power developed by turbine 1 systematically overrides
the other. This fact can be related to a different level of efficiency of the two turbines, to a deterioration
in performance due to use, or small differences in the local wind field.

The Figure 2 highlights with arrows the instances where the power produced by the two turbines
is significantly different, for reasons that can be related to temporary turbine malfunctioning or because
the maximum output power is limited (power curtailment). Specifically, the plateaus of produced
power (indicated by the arrows at the edge of Figure 2) at about 0, 275 and 600 kW for turbine 1 and 0,
190, 440 and 1000 kW for turbine 2, can be noticed. This data has to be filtered out from the performance
evaluation of a prediction system [6]. The filtering operation was performed using the information
provided by the turbines operator, and filtered data sets are represented in Figure 2 with black dots. It
is clear that, without a proper filtration procedure, any energy production forecasting method would
have been biased because, in power-curtailment conditions, there is no direct link between the wind
conditions and the power produced.

The power measurements were sub-sampled at a frequency of one hour, corresponding to the
resolution of the weather forecast.

The weather forecasts of the wind speed at 100 m from the ground (height level that is most
representative of the effect of the wind on the turbine) at 10 m and of wind gust are provided by
the operative model (OP) of the ECMWF [22]. In 2014, the ECMWF OP model was the TL1279L137
(horizontal resolution equivalent to approximately 14 km at medium latitudes with 137 vertical levels).
The data were collected from the ECMWF MARS archive for 00GMT analysis and forecast time up to
48 h with a prediction interval of 1 h.
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The wind speed was interpolated from the values on the nearest four grid points with weights
inversely proportional to the distance.

The Figure 3 shows the measured power as a function of the wind speed forecast of the ECMWF
model with the manufacturer’s power curve (mnf) in green, overlapped. It is evident that values
corresponding to a power curtailment or where the turbines have been switched off have been
appropriately filtered, as already evident from Figure 2. In both figures, the presumable configuration
of the power curve that relates wind speed and power produced is apparent. It is also apparent
that there are wind speed and power pairs that significantly deviate from any plausible regression
curve. These deviations can be due to power measurement errors, to modifications of the standard
operation of the turbines not reported by the operator, and, of course, to wind speed forecast errors of
the meteorological model.

It is perhaps useful to point out that a standard filtering procedure based on the direct relationship
between produced power and wind speed, such as that described for example in [6], is virtually
ineffective in our case, once the wind speed forecast error are considered. Taking, in fact, σ = 2.5 m/s
as representative of the 48-h wind forecast uncertainty of the ECMWF model [23] and using a 3σ range
around the manufacturer’s curve (which to a first approximation can be considered representative of
the turbine’s behavior) we would obtain a range of uncertainty such as that represented by the area
between the green curves in the Figure 3. It can be seen that, at least in this case, the uncertainty of the
wind estimate is such as to make practically any value of the measured power plausible.

Figure 3. Turbine 1 (left) and 2 (right) power measurements as a function of the ECMWF operating
model wind speed forecast, at 100 m, for forecasting times up to +48 h. Red dots show all available
measurements, and black dots the measurements after the filtering on the basis of the plant operator’s
directions. The solid curve represents the manufacturer’s power curve (mnf), the same power curve
translated to account for the wind forecast error is plotted dashed.

3. Distribution Mapping Power Forecast

3.1. Introduction

Many techniques have been proposed in the literature for the construction of an efficient turbine
model, integrating weather data measured in-situ or predicted from NWP models, with measures of
the recent power generation.

The most straightforward model is known as the power curve. It relates generated power to wind
speed at the height of the hub and can be formalized both as a lookup-table between discrete wind
speed and corresponding power values or through a continuous analytic function.
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The turbine builder often provides an estimate of the power curve. The model is obtained under
controlled conditions by simultaneously measuring the power generated and the wind speed at the
turbine hub height, and using a regression procedure between these two data sets.

The limit of this curve is related to the standard conditions under which it is obtained. Installation
and operating conditions of the turbine, any deterioration of its performance, or the particular shape
of the surroundings cannot be taken into account. For example, it was observed that there could be
notable discrepancies between manufacturer’s power curves and the test results carried out at high
wind speeds [24].

A possible limitation to its use in predictive contexts is the fact that the power curve of the
constructor is obtained using actual wind measurements and, in general, it can not be shifted
automatically for use with wind speed forecasts taken from a weather model. Therefore its use
for power forecasting usually requires a statistical post-processing of the weather forecasts to be able
to reduce the effects of possible systematic errors [25,26].

To overcome this limitation, the forecasting models may be built through regression or the
training of a machine learning system, by directly correlating the output of an NWP system to the
measured power. The generated model may use the NWP forecast directly as an input to obtain the
power forecast.

3.2. The Proposed Method

If in situ measurements of wind speed are not available, as in our study, when implementing
a procedure for predicting the power generated by a wind turbine, one must operate with a high level
of uncertainty due mostly to the weather forecasting errors (see also discussion of Figure 3).

Forecast errors are amplified by the high non-linearity of the turbine power curve, and any
effective forecasting procedure must, at least on average, implicitly take these errors into account.
The uncertainty of the power forecasting can be estimated once the bivariate distribution that links the
wind velocity forecast to the measured power is known.

Even hypothesizing to know the wind probability distribution and the turbine power curve,
the joint distribution J(Ws, P) of wind speed and power produced is practically impossible to know
given the stochastic nature of the wind forecasting errors and of course of the power measurements
errors.

The methodology introduced in this work, which to our knowledge has not yet been discussed
in the literature, estimates the turbine model as the curve that maps the distribution function of the
wind speed forecast into that of the measured power. We will refer to this methodology as distribution
mapping and we will identify it with the acronym dm.

The procedure is illustrated in detail in boxes A, C and D of Figure 4. Box A shows measured
power production against 100 m wind speed forecast for turbine 1. B and D boxes show the quantile
u, v of the cumulative distributions of wind speed and power. In practice, u, v plots are calculated by
sorting the respective time series of Ws and P separately and dividing their rank by the total number
of samples. In the box A the blue line associates the value of the wind speed for each quantile uo(Wso)

to the value of the power in the same quantile: vo((Po)) = uo(Wso). This curve correlates wind speed
with the power generated by mapping their distributions and constitutes the functional relation for
the proposed model.

As a consequence of the independent sorting of the time series needed to calculate the dm curve,
the time correspondence between the wind forecast and power measurements is lost. This, which could
appear to be a weakness, in practice turns out to be a strong point of the method as it allows, in theory,
to apply the same technique also to situations where wind and power are evaluated at different times.
For the transformation to make sense, in this case, it is necessary to hypothesize that both data sets are
a statistically representative sample of the actual distribution of the two quantities.
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Figure 4. Illustration of the dm method. Box A shows measured power production against 100 m wind
speed forecast for turbine 1. B and D boxes show the quantiles u, v of the cumulative distributions of
wind speed and power. In box A the blue line associates the value of the wind speed for each quantile
to the value of the power in the homologous quantile. This curve relates wind speed with the power,
by mapping their distributions and constitutes the proposed model. Finally box C shows wind speed
forecast and corresponding measured power in the [u, v] copula space. The dm is here the line that
bisect the [u, v] space.

A strong argument that can be used to justify the introduction of dm come from its relation with
the well known copula method. Copulas have been extensively discussed in literature primarily as
a method to characterize the uncertainty of the forecast.

When operating with a sufficiently large sample set, a non parametric copula can be easily
generated considering the response curve of the turbine to the wind speed forecast as a bivariate
joint distribution C(u, v) mapping values, evaluated at a given time t, of wind Ws(t) and power
P(t) into the corresponding quantiles u(t) and v(t). Figure 4 illustrates schematically the procedure
applied to the wind speed forecast, and corresponding measured power data and the resulting copula
shown in box figure D. As it can be seen, the cloud of points, representing wind speed forecasts and
corresponding power measurements, in the copula space [0, 1]2, follows the straight line joining (0,0)
and (1,1) points. This fact is confirmed by the high value of the correlation coefficient between u and v,
that in the specific case of Figure 4 is r = 0.932.

The more massive concentration of points at the tails reflects the lower correlation between the
u and v near the cut-in and the rated powers. Apart from this, the fact that u and v are well linearly
correlated is a consequence of a monotonic relationship between wind speed predictions and measured
powers. This is also indirectly an indication of the quality of wind speed forecast which, despite being
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affected by consistent errors, on average has a behavior similar to that which would have the in situ
measurements compared to the real power generated by the turbine.

Following these considerations, a reasonable way to choose the "most probable" response curve
of the turbine as a function of the wind speed forecast is along the line that bisects the copula space
and where the bivariate distribution C(u, v) has its maximum. This line pairs the quantiles of wind
speed with the same quantiles of the power production and in the space of physical variables is what
we have indicated as dm.

Of course, the choice of dm as response curve to the wind speed forecast doesn’t assure the
minimization of any measure of error as it has not been obtained by an optimization algorithm.
However, as we will see in the discussion of the results, our method, being obtained from considerations
in the space of probabilities shows some interesting characteristics that make it of sure interest due
also to its simplicity and immediate applicability.

It is perhaps useful to underline that the quantification of the error obtainable by using the
dispersion of points in the space of the copula is only of a statistical nature and not in any way
linked to the uncertainty of the specific meteorological forecast. A quantification of the uncertainty
“weather-dependent” can only be obtained by using a probabilistic meteorological forecast such as that
provided by the ECMWF EPS.

3.3. Benchmark Methods

This technique is compared in the following with a few significant non-parametric methods.
The first two benchmark models are based on the so-called Method of Bins. Given a data set of wind
speed measurements and the corresponding power values produced by the turbine, the data is divided
into wind speed intervals of equal amplitude, typically 0.5 m/s, next, the average wind speed and
power output for each bin are calculated. The power curve is obtained by the interpolation of the
points. This procedure may be influenced by the presence of outliers in the data. A more robust version
of the method can be simply obtained taking the median of the power measurements in the bin instead
of the mean. These two methods are identified in the following as mean and median respectively.

The previous methods relate the power output to the value of wind speed at a height level close
to the hub height. The result of the NWP is richer than this since it contains information on the wind
speed at several levels and the intensity of gusts, for instance. This information may be introduced
through machine learning techniques.

A simple data-mining technique is evaluated for comparison, based on the well-known
k-nearest-neighbors (kNN) approach [27]. The features selected to represent the wind conditions
at the point of interest are the forecasts of the wind speed 10 m and 100 m above ground and the
forecast of the wind gust. This prediction is coupled with a measured power generated by the turbine.
Given the NWP forecast, the power prediction is obtained evaluating the k closest points in the feature
space from a set of training samples and taking the mean of the associated measured power values.
In this case, the parameter k has been chosen by an optimization procedure and is a function of the
number of samples in the training set; the method is referred to as knn in the following.

Artificial Neural Networks (ANN) seem to be the preferred method in the recent literature to
predict the power generation by the NWP forecast, a comparison of the proposed methodology with
a model based on neural network is therefore necessary. The model is labeled with ann in the following
and is based on a Multilayer Perceptron Model [18], the input layer takes as input the forecasts of
the wind speed at 10 m and 100 m above ground as well as the wind gust. The number and size of
the hidden layers and activation function were selected through an optimization procedure, which
resulted in a single hidden layer of 5 neurons and a sigmoid activation function.

In both knn and ann, the features and outputs have been scaled to improve the stability.
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4. Forecast Verification

Some well-known accuracy metrics has been used to assess the quality of the deterministic
forecast. Specifically, the mean error (ME), the mean absolute error (MAE) and the root mean square
error (RMSE) [7]:

ME =
1
N

N

∑
i=1

(Pa(i)− Pe(i)),

MAE =
1
N

N

∑
i=1
|Pa(i)− Pe(i)|,

RMSE =

√√√√ 1
N

N

∑
i=1

(Pa(i)− Pe(i))2,

(1)

where Pa is the actual power, Pe is the estimated power using a specific forecast technique, and N is the
number of observations. The error measures normalized to the turbine rated power Pr, are indicated
with nME, nMAE and nRMSE. Finally, the quality of correlation between two variables will be
measured by the coefficient of determination (R2), where P̄a is the mean value of the actual power:

R2 = 1− ∑N
i=1(Pa(i)− Pe(i))2

∑N
i=1(Pa(i)− P̄a)2

. (2)

5. Results and Discussion

First of all the power data available at a frequency of 15 min were filtered, following the indications
of the plant operator (see Figure 2 and discussion in Section 2), and resampled every 1 h. The NWP
data of the 00 UTC analysis time, for forecast times from +25 h to +48 h inclusive were put in line with
the recorded power measurements at the same time resolution. This generates a time series of forecasts
and corresponding generated power, with a forecast time of at least one day in advance, which cover
the whole year 2014.

For the ann and knn models, the wind speeds at 10 m, 100 m and wind gust at 10 m above
ground are considered, while for the dm, mean and median models, only the wind speed at 100 m have
been used.

The data set for each of the two turbines is divided into a test set and a training set. The train
set is filled with some samples taken at random from the complete dataset; the test set consists of all
remaining samples. The regression models are trained on the train set, their effectiveness in forecasting
is verified on the test set through the error metrics defined in Section 4.

Different values of the number of samples included in the train set were considered to assess the
sensitivity of regression methods to the number of samples of the training set.

The training procedure and the related performance testing is carried out 50 times on randomly
taken sets, the results of the reported performances are obtained as an average of the realizations.

The results for the two turbines for the distribution mapping method and the other methods used
as a comparison are shown in the Tables 1 and 2 and in the Figures 5 and 6.

As expected, the performance of all methods improves as the number of samples used for training
increases. It is also noticeable how the distribution mapping exhibit satisfactory skill even if a dataset
with relatively few samples is available. Even the knn and ann methods can be trained with relatively
few samples, while Method of Bins models offers satisfactory performance only for larger train sets.
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Table 1. Error measures of the forecasting models with different training set samples size, for turbine 1.
The number of samples correspond to 2 days, 10 days, 4 weeks and 24 weeks of data.

Samples Model R2 nME nMAE nRMSE

48

dm 0.783 −0.19 10.86 15.87
ann 0.766 −0.43 11.95 16.43
knn 0.770 0.37 12.06 16.34

mean 0.741 −0.44 12.33 17.31
median 0.738 −0.31 12.36 17.42

240

dm 0.795 −0.06 10.53 15.43
ann 0.797 −0.09 11.13 15.35
knn 0.789 0.26 11.33 15.66

mean 0.779 −0.15 11.37 15.99
median 0.775 0.13 11.35 16.16

672

dm 0.798 −0.03 10.43 15.31
ann 0.803 −0.04 10.92 15.10
knn 0.798 0.23 11.04 15.31

mean 0.792 −0.08 11.06 15.54
median 0.786 0.24 10.98 15.74

4032

dm 0.801 −0.02 10.36 15.21
ann 0.807 −0.03 10.81 14.95
knn 0.806 0.19 10.80 15.00

mean 0.801 −0.06 10.80 15.18
median 0.796 0.25 10.66 15.36

Table 2. Error measures of the forecasting models with different training set samples size, for turbine 2.
The number of samples correspond to 2 days, 10 days, 4 weeks and 24 weeks of data.

Samples Model R2 nME nMAE nRMSE

48

dm 0.783 −0.18 10.72 15.60
ann 0.768 −0.09 11.62 16.06
knn 0.770 0.89 11.78 16.06

mean 0.743 −0.02 12.02 16.94
median 0.740 0.19 12.07 17.04

240

dm 0.793 −0.02 10.39 15.22
ann 0.796 0.01 10.95 15.11
knn 0.787 0.42 11.15 15.44

mean 0.776 0.06 11.24 15.82
median 0.770 0.47 11.25 16.03

672

dm 0.797 −0.03 10.29 15.10
ann 0.802 −0.02 10.77 14.87
knn 0.797 0.31 10.89 15.09

mean 0.789 0.01 10.93 15.37
median 0.783 0.44 10.88 15.57

4032

dm 0.799 −0.01 10.21 15.00
ann 0.806 −0.00 10.65 14.72
knn 0.805 0.28 10.65 14.78

mean 0.799 0.01 10.68 15.00
median 0.794 0.38 10.54 15.19
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Figure 5. Normalized MAE and RMSE as a function of the training set samples size, for turbine 1.

Figure 6. Normalized MAE and RMSE as a function of the training set samples size, for turbine 2.

In Tables 1 and 2, the best results for each method, error measure and training time are shown
in bold. As it can be seen the performance of the proposed method is not excellent when measured
for nRMSE, while it is considerably better than all the benchmark for nMAE. Note, also, that the
comparison with ann and knn methods, it is not completely fair, as the latter by using more features,
benefits of additional information about the wind speed profile.

The same kind of information can be extracted from inspection of Figures 5 and 6 that show
nMAE and nRMSE as a function of the number of samples used for training. It is evident that dm
method performance is better than the maximum that can be obtained with any other method already
for a sample of only a couple of hundreds of elements (∼10 days).

The substantial differences between the forecast errors produced by the dm and ann models can
also be appreciated in Figure 7, where the histogram of forecasting errors of turbine 2 is shown. It can
be seen that the distribution of errors obtained from the dm model has a much more marked peak at
zero and this behavior is the cause of the smaller size of nMAE.
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Figure 7. Histogram of forecast errors for models dm and ann and turbine 1.

As is well known, the nRMSE measure penalizes large forecasting errors and is preferred in
regression procedures for often purely computational reasons, while nMAE is a flat measure of
uncertainty, which can be more practical, sometimes. For example, if the turbine production forecast
is used to comply with the manufacturer’s supply contract with the network operator, penalties are
paid for errors in the power delivered, and no weight is applied based on the deviation [28]. Even in
a scenario in which the generation error forecast is used as a parameter for the sizing of a storage
system serviced to a wind power plant, to guarantee the contracted production profile, the error is,
in general, not weighed [29]. Finally, also the optimal control of a storage system is based on the
prediction error without any weight applied to the error itself [30].

6. Conclusions

This paper introduces a technique for wind power forecasting from meteorological forecast data of
wind speeds, which we named distribution mapping (dm), that is suitable for pitch-regulated turbines
with a monotonically increasing response curve.

The methodology defines a functional relation between the predicted wind speed and the power,
as the transformation between the distribution function of the wind speed and that of the measured
power. It has been tested on two turbines installed on the island of Borkum, Germany, within the
framework of the European NETfficient project, using the wind speed prediction obtained from the
ECMWF model. The accuracy of power forecasting one day in advance and with a resolution of 1 h was
assessed and compared with those obtained with other well known methods found in the literature.

The accuracy of the forecasts obtained are remarkable when expressed in terms of MAE, even with
respect to the results of much more complex and computationally expensive methods. The method
performs well also if a low number of samples is available for its training. Moreover, it can be applied
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even in unfavorable conditions in which data is fragmentary, asynchronous and with considerable
uncertainty (as in the case of the wind forecast used), providing in any case good accuracy.

The aspects of uncertainty, which were overlooked when the deterministic behaviour, that follows
from the imposed monotonic trend to the curve dm, was assumed, will be dealt with in a future article
using the probabilistic data of the ECMWF ensemble prediction systems (EPS) to quantify the ’weather
dependent’ errors of the wind forecast.

Another interesting aspect currently under investigation is the use of the dm curve as a method
for the assessment of the operational condition of the wind turbine. The dm technique seem to be
appropriate to this purpose due to the short length of the data series needed to calculate it, that
therefore can highlight failures of the turbine when a sizable modification of the dm curve is observed.
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