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Abstract: Cement manufacturing is one of the most energy intensive processes and is accountable
for substantial pollutant emissions. Increasing energy costs compel stakeholders and researchers to
search for alternative options to improve energy performance and reduce CO2 emissions. Alternative
fuels offer a realistic solution towards the reduction of the usage of fossil fuels and the mitigation
of pollutant emissions. This paper developed a process model of a precalciner kiln system in the
cement industry using Aspen Plus software to simulate the effect of five alternative fuels on pollutant
emissions and energy performance. The alternatives fuels used were tyre, municipal solid waste
(MSW), meat and bone meal (MBM), plastic waste and sugarcane bagasse. The model was developed
on the basis of energy and mass balance of the system and was validated against data from a reference
cement plant. This study also investigated the effect of these alternative fuels on the quality of the
clinker. The results indicated that up to a 4.4% reduction in CO2 emissions and up to a 6.4% reduction
in thermal energy requirement could be achieved using these alternative fuels with 20% mix in coal.
It was also found that the alternative fuels had minimum influence on the clinker quality except
in the case of MSW. Overall, MBM was found to be a better option as it is capable on reducing
energy requirement and CO2 emissions more than others. The outcomes of the study offer better
understanding of the effects of solid alternative fuels to achieve higher energy performance and on
mitigating pollutant emissions in cement industry.
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1. Introduction

Increasing fossil fuel prices and new regulations from environment protection agencies to reduce
the emissions from the industry sector is a great concern to stakeholders at the present time. Being
an energy intensive and pollutant emitting industry, the cement industry is always under the scrutiny
of these agencies. The energy required to produce one tonne of clinker varies between 3.2 to 6.3 GJ
depending on the process, while 1.7 tonnes of raw materials are required for the process [1,2].

The huge energy requirement during chemical reaction of raw material are accountable for
about 900 kg of CO2 and other greenhouse gas release in the environment. The cement industry
is held responsible for 5–6% of anthropogenic CO2 emissions, which causes about 4% of global
warming [3]. The researchers are developing different techniques to reduce the CO2 generation as well
as new carbon capture technologies. Hills et al. [4] have summarized the currently proposed carbon
capture technologies for the cement industry while Carrasco-Maldonado et al. [5] identified the recent
development on oxy-fuel combustion technology in the cement industry. Geosequestration carbon
capture technology can also be used in cement industry. CO2 methanation is a similar technology,
which converts CO2 into methane (CH4) using hydrogen [6] and it could be used in cement industry
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as well. All the aforementioned technologies are still in the research and development stage and have
yet to be completely adopted by the cement industry.

Among the other air pollutants, NOX and SO2 are main concerns for cement manufacturers.
To reduce the pollutant emissions from fuel burning and to reduce the usage of nonrenewable fossil
fuels, alternative fuels are often used in the kiln as well as in the calciner. Waste tyre, municipal
solid waste (MSW) and industrial wastes are some of the well-established alternative fuels in cement
industry for last three decades [7]. Many other alternative fuel sources have been recently identified,
including meat and bone meal (MBM) [8], agricultural biomass and spent pot linings (SPL) [9], which
are already in use by the manufacturer.

Introducing alternative fuels in the cement manufacturing process always pose some problem
regarding the emission and clinker quality. Every pro and con must be identified before employing
an alternative fuel to the manufacturing process. Numerous research works have been conducted
in recent years to understand the possible impact of using alternative fuel in cement manufacturing.
Mikulcic et al. [10] reviewed all the recent works on reducing greenhouse gasses emission by employing
different alternative fuels. Horsley et al. [11] summarized the research articles on the behavior of trace
elements on using alternative fuels in the cement industry. Specific pollutants like dioxin-like PCB
have also been studied in recent years to find the correlation between the usage of alternative fuel and
their emission [12]. The life cycle assessment (LCA) methodology was used by Georgiopoulou and
Lyberatos [13] to quantify the environmental impact on using refuse-derived fuel (RDF), tire-derived
fuel (TDF) and biological sludge as alternative fuel.

Economic risks associated with the experimentation of alternative fuels restrict the researchers’
ability to conduct tests in the cement plant. Alternatively process model offer a realistic solution of
testing numerous alternative fuels and can predict the possible changes in pollutant emission and
quality of the clinker. A number of software packages are available to model the manufacturing process
based on thermodynamic calculation. Researchers use computational fluid dynamics (CFD) based
software to model mainly the kiln section of the process [14–23]. Due to the complexity of modelling
the behavior of solid particles in conventional CFD framework, researchers used one-dimensional
models with material and energy balance equations. Numerical techniques associated with solving
boundary value problems were incorporated to achieve accurate temperature profiles and specific mass
fractions [9–14]. These models were used to study flame shape, temperature of the kiln, velocity profile
of particles in the kiln system and oxygen enrichment in the burning zone. A different approach of
modelling the cement manufacturing process can be found in literature by using Aspen Plus software,
which focuses on the clinker chemistry, reaction stoichiometric and thermodynamic property of the
material in the process [8,24–27].

In the current study, an Aspen Plus-based model for the entire clinker manufacturing process has
been developed to simulate the flue gas formation while using selected alternative fuels. The model
was verified using real plant data for coal that was used as primary fuel in the burning zone.
The validated model was run with five selected alternative fuels—namely tyre, MSW, MBM, plastic
waste and sugarcane bagasse—to predict the emission as well as the change in the kiln environment.
Simulation results were used to optimize the usage of selected alternative fuels. Finally the model was
executed under certain conditions to reduce the energy requirement of the system by lowering the
total fuel feed but not affecting the kiln environment and daily production. The simulation results
presented here indicated the reduction of pollutant emission as well as energy requirement for clinker
production. This study also examined one of the biggest concerns of employing alternative fuels in
the system, which is the quality of the clinker. The quality of the clinker should not be compromised,
otherwise all the benefit that could be achieved through the usage of alternative fuels will have ceased.
Simulation results indicate that the usage of alternative fuels had minimum effect on the clinker quality.
The outcomes of this paper have provided a better understanding on the effect of alternative fuels in
cement manufacturing.
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2. Principles of Cement Manufacturing Process

The technology of cement production has been improved significantly from the days of its initial
innovations. The principles of manufacturing process depend on the equipment design, method of
operation and fuel consumption [28]. Four different operational categories are available for clinker
production, which are dry, semi-dry, semi-wet and wet. Wet and semi-wet process use raw slurry,
while semi-dry and dry process use dry raw meal with different process mechanism [29].

Another type of kiln, known as a vertical shaft kiln, is still in use predominately in China. A shaft
kiln consists of a large drum set vertically with a packed mixture of raw material and fuel travelling
down through it by gravity [30]. In Australia, precalciner kilns accounted for over 90% of total clinker
production in the years 2014–2015 [31]. The current study considered the precalciner kiln type of
manufacturing process due to its dominancy over the other process. In addition, an in-line calciner (ILC)
has been considered for the current simulation, as this facility was available to the plant from which the
data were collected. In an ILC, the tertiary air and kiln exhaust gas are carried to the burning zone of
the calciner, which is useful to burn waste derived alternative fuel as well as coal and natural gases.

Quarry, raw meal preparation, preheating of raw meal, kiln, clinker cooling, grinding, storage and
dispatch; these are the basic steps of cement production process. The first stage of chemical reactions is
calcination, which is basically the decomposition of calcium carbonate (CaCO3) at about 900 ◦C to leave
calcium oxide (CaO, lime) and release CO2. Inside the kiln, the major reactions occur where calcium
oxide reacts at high temperature (typically 1400 ◦C–1500 ◦C) with silica, alumina and ferrous oxide
to form the silicates, aluminates and ferrites respectively. This clinker is then ground in the ball mill
together with gypsum and other additives to produce cement. Figure 1 shows a schematic diagram of
the entire manufacturing process. Fuels are required to generate thermal energy during the process of
calcination in the preheater-precalciner tower and during the clinkerization process in the kiln.
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Figure 1. Cement manufacturing process [8].

In the current study, the model was prepared on the basis of a process with production rate
2200 tonnes/day and 60–40% split of thermal energy requirement in precalciner and kiln respectively.

The relevant data including mass flow rate, temperature and pressure at different stage and
chemical composition of fuel and feed material were collected from local cement plant where coal is
used as primary fuel. According to the reference data, a constant 10% of excess air was maintained in
the kiln. Excess oxygen in the precalciner depends on the flow rate of tertiary air and the kiln gas.
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3. Clinker Chemistry

The chemical changes in clinker production occur almost exclusively through the pyroprocessing
stage and are the same regardless of the process. Four primary materials, namely alite (C3S), belite
(C2S), aluminate (C3A) and ferrite (C4AF) are formed during the production of clinker. Each of these
constituents has a specific effect on the properties of the final material clinker. Along with the clinker
formation reaction basic fuel burning reaction occurs inside the precalciner and kiln. The standard
reaction enthalpies for the most important clinker forming reactions are given in Table 1 while
the occurrence stages of different reactions are stated in Table 2.

Table 1. Reactions and reaction enthalpies [32].

Reaction Reaction Equation Standard Reaction Enthalpy [kJ/kg]

I. Formation of oxides and decomposing reactions

Evaporation of water H2O(l) → H2O(g) 2453
Decomposition of kaolinite Al2O3·2SiO2·2H2O→ Al2O3 + 2SiO2 + 2H2O 780

Oxidation of carbon C + O2 → CO2 −33,913
Dissociation of MgCO3 MgCO3 →MgO + CO2 1395
Dissociation of CaCO3 CaCO3 → CaO + CO2 1780

II. Formation of intermediates

Formation of CA CaO + Al2O3 → CaO·Al2O3 −100
Formation of C2F 2CaO + Fe2O3 → 2CaO·Fe2O3 −114

Formation of β-C2S 2CaO + SiO2 → 2CaO·SiO2 −732

III. Sintering reactions

Formation of C4AF CA + C2F + CaO→ C4AF 25
Formation of C3A CA + 2CaO→ C3A 25
Formation of C3S β-C2S + CaO→ C3S 59

Table 2. Description of reactions occur in various stages [33].

Temperature Reaction Stage of Process

100 ◦C Evaporation of free water Preheater

500 ◦C and above Evolution of combined water from clay Preheater

900 ◦C and above Crystallization of amorphous dehydration products of clay Precalciner, Early kiln

900 ◦C and above Evolution of calcium carbonate to form carbon dioxide Precalciner, Early kiln

900 ◦C–1200 ◦C Reaction between lime and clay Early to mid-kiln

1250 ◦C–1280 ◦C Commencement of liquid formation Mid to late Kiln

Above 1280 ◦C Further formation of liquid and completion of formation of
cement compounds Mid to late kiln

Lime saturation factor (LSF), silica ratio (SR) and alumina ratio (AR) are the three basic ratios
used to identify the quality of the clinker in cement production. The lime saturation factor is a ratio of
CaO to the other three main oxides and the formula for the case of MgO < 2% is given by [34,35],

LSF =
100(CaO + 0.7MgO)

2.8SiO2 + 1.2Al2O3 + 6.5Fe2O3
(1)

where CaO, MgO, SiO2, Al2O3 and Fe2O3 are all expressed in weight percentage.
The LSF is proportional to the ratio of alite to belite in the clinker and indicate the amount

of unacceptable amount of free lime present in the clinker. The typical value of LSF for modern
clinkers are 92–98% [35]. Theoretically, free lime will exist in the clinker if LSF is more than 100% but
practically mixing of raw materials is never perfect and residual free lime exist in clinker even the LSF
is considerably below 100%. The SR (also known as the silica modulus) governs the proportion of
silicate phase in the clinker and is defined as,
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SR =
SiO2

Al2O3 + Fe2O3
(2)

SR is related with the liquid phase of the clinker at high temperature and controls the burnability of
the clinker. For Portland cement, SR ranges from 2.0 to 3.0 [35]. AR is defined as the ratio of aluminate
to ferrite phase and determines the quantity of liquid formed at low temperature. The formula AR is
given by,

AR = Al2O3/Fe2O3 (3)

A high alumina ratio together with a low silica ratio could result in a fast-setting property of the
cement, which needs to be controlled by adding higher amounts of gypsum. The value of AR between
1.0 and 4.0 is suitable for Portland cement.

4. Alternative Fuels

Alternative fuels are mostly waste derived and hence, are the more economical option over fossil
fuels. It’s been over 30 years since the utilization of alternative fuels took place in cement industry
on a commercial basis. Still, the manufacturers are facing some challenges regarding environmental,
social and product quality issues. Rahman et al. [36] presented a detailed review on the common
alternative fuels for cement industry where all the recent studies have been summarized.

The range of alternative fuels is extremely wide. Alternative fuels are divided into three distinct
categories: solid, liquid, and gaseous fuels. Different types of alternative fuel regarding their physical
state are listed in Figure 2. Generally, the alternative fuels are chosen on the basis of price and
availability but some other criteria such as energy content, moisture and volatile contents are equally
important to ensure a feasible manufacturing process. Ash analysis of the alternative fuel is another
key property that needs to be considered, as the ash remains in the kiln and takes part in the clinker
formation reactions. In this article, five alternative fuels were considered for study with the process
model. The chemical composition of the alternative fuels in terms of elemental analysis and ash
analysis data was collected from the literature [37–44] and has been summarized in Table 3.
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Table 3. Chemical composition and elemental analysis of fuels [37–44].

Coal (Plant Data) Tyre MSW MBM Plastic Waste Bagasse

Proximate analysis on dry basis (wt %)

Moisture 4.2 0.62 31.2 1.35 0.6 0
Ash 19.1 4.81 35.17 10.54 0.4 11.95

Volatile matter 36.6 67.06 64.83 80.74 94.77 85.61
Fixed carbon 53.0 28.13 0 8.72 4.83 2.44

Elemental analysis on dry basis (wt %)

C 69.43 84.39 34.88 55.7 77.02 48.64
H 3.83 7.13 4.65 8.03 12.14 5.87
N 1.5 0.24 1.02 7.15 0 0.16
S 0.36 0.01 0.15 0 1.09 0.03
Cl 0.2 1.24 1.02 0.05 0 0.04
O 5.58 2.18 23.11 18.53 4.92 42.82

LHV (MJ/kg) 27.4 37.8 15.4 30.705 41.5 18.99

Ash analysis (wt %)

SiO2 46.09 14.1 15.1 5.97 61.35 46.61
Al2O3 20.64 2.7 15.6 1.81 25.13 17.69
Fe2O3 7.84 1.1 4.7 0.59 5.44 14.14
CaO 16.19 47.0 36.6 45.6 4.72 4.47
MgO 1.16 0.7 2 1.43 0.94 3.33
SO3 2.45 1.2 1.7 - 0.03 2.08
TiO2 1.3 <0.01 - 1.1 - 2.63
P2O5 2.45 <0.01 1.5 37.3 - 2.72
Na2O 0.31 <0.01 1.8 2.07 0.42 0.79
K2O 1.57 <0.01 1.3 1.86 1.52 0.15
Cl2 - - 9.7 0.11 - -

ZnO - 33.1 - - - -

5. Process Model

The manufacturing of cement is a very complex process that includes several endothermic and
exothermic reactions along with heat transfer in the solid, liquid and vapor phases of different materials.
The process model was developed using simulation software Aspen Plus. The process model was built
according to the reference plant specification with 2200 tonnes/day clinker production capacity with
an ILC preheater tower. To simplify the model, several assumptions were made without affecting the
basic principles of clinker formation, which are stated below.

• In the burning zone, the coal and other fuel combustion has taken place in two different reactors.
The combustion process consists of the fuel decomposition section and decomposed products
combustion section with Gibbs free energy minimization technique. These have been simulated
by using two reactor modules of Aspen Plus, namely RYIELD and RGIBBS.

• NOX generation from the kiln was due to the combustion of the fuel only.
• CO2 was produced through calcination process and combustion of fuels.
• Only CaCO3 and MgCO3 of raw feed were decomposed within the calciner.
• Ash took part in the clinker formation reaction and ash yields were determined from the ash

analysis of coal and alternative fuel.
• All the clinker formation reactions in kiln occurred in three separate reactors to facilitate

pyoprocessing in different set of temperature.
• Any air leakages in the calciner system have not been considered throughout the model.

The Aspen Plus process flow sheet for cement manufacturing is illustrated in Figure 3, which
clearly indicates the input and output stream of the system. One of the key features of Aspen Plus
software is the availability of large numbers of the physical property method, which enables to
modeling of most of the complex industrial process.
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For the current process model, RKS-BM property method was selected which is suitable for
coal and solid fuel combustion. The RKS-BM property method uses the Redlich-Kwong-Soave (RKS)
cubic equation of state with Boston–Mathias (BM) alpha function for all thermodynamic properties.
Three basic sub-stream classes exist in Aspen Plus, which are given in Table 4. For the current study,
a combination of these three streams was considered, namely MCINCPSD, which includes MIXED,
CISOLID and NC streams with particle size distribution (PSD) option. All fuels are considered as
nonconventional and raw meal is composed of the conventional component.

Table 4. Material stream class.

Name Function

Mixed Used to handle conventional components that reach
vapor–liquid–solid phase equilibrium

CISOLID (Conventional, Inert, Solid) Used to handle conventional components that appear in the solid
phase but do not participate in phase equilibrium

NC (Nonconventional) Used to handle nonconventional components

The proposed model used HCOALGEN and DCOALIGT attribute to calculate enthalpy and
density respectively of coal and selected alternative fuels, based on the elemental analysis of fuels.
The HCOALGEN model includes a number of different correlations for the following:

• Heat of combustion,
• Heat of formation and,
• Heat capacity.

The DCOALIGT model gives the true density of a nonconventional component on a dry basis
by using ultimate and sulfur analyses. The amount of excess air in the kiln section was maintained
to be at 10% in accordance to the reference plant specification. The amount of excess oxygen in the
calciner was calculated by using a calculator block. To run the model properly, operating parameter
for each block and streams were specified. Data was collected from the reference plant as well as from
the literature, which includes:

• Mass flow rates of all incoming streams.
• Temperature and pressure of all incoming material streams.
• Heating values and chemical composition of the coal and alternative fuels.
• Composition of raw meal in terms of mass or mole fraction.
• Particle size distribution of all fuel and raw feed.
• Dimension and efficiency of cyclone string.
• Heat flux data for the cooler section.

Different reactor blocks were chosen for the process model in such a way that all equilibrium
and non-equilibrium equations can be used to generate a realistic output. The output data regarding
the composition of clinker and the stack gas provided vital information about any possible changes
that might occur due to the introduction of alternative fuels in the system. Collected plant data was
used to validate the model from clinker composition and pollutant emission perspective. Though air
emission data was not available for a particular instance, average air emission data were used to check
the effectiveness of the model. Table 5 summarizes the validation results containing the input and
output data collected from the local cement plant and simulation results. Model validation results
indicate that the process model agrees well with the plant data and could be useful to predict the
changing conditions with different sets of operating parameters. Some variation is observed in air
emission data, which is obvious since available data of CO2 emissions was not the actual plant data
(which was not available), but rather a standard limit. In spite of a few variations, the model showed
promise on predicting the pollutant emission.



Energies 2017, 10, 1996 8 of 17
Energies 2017, 10, 1996  8 of 17 

 

 
Figure 3. Aspen Plus process model flow sheet for cement manufacturing.  

DRYCOAL
 

INBURNER

Q-DECOMP

AIR

 

AF UELQ1
AF DCOMPR

KILNSEC1

KLNQ1

KILNF EED

KLINPROD

KILN2PRD

HOTPROD
ALT FUEL

 

AF UEL-R

AF
 

AF -R

AF Q1

MIXGASF

CGASF

FEEDF

MIXGASE

CGASE

FEEDE

FEEDA

MIXFDA

MIXFDEF

CGASD

TTLGAS
 

MIXGASEF

PRIM-AIR
 

KILNGAS1

TERT-GAS

MIX-GAS

POR1

CALCINQ1

PRODUCT

Q1

ASHDCPR1

ASHDCPR

COAL
 

GAS-OUT

COALASH

DECOMGAS

AFUELASH

DCOMGAS1

COOLAIR
 

HOTPROD1

CLINKER
 

AF ASH

GAS1

FEEDMEAL
 

KLDECOMP
BRNKILN

KILN

KILN-3

KILN-2AF DECOM

AF DCOMP

CYCF CYCE

MIXA

MIXEF

CYCA

GASMIX

SSPLTEF

GASMIXER

RMDECOMP

COMBUST
DECOMP

CYCLONE

ASHSEPT

ASHSEPT1

ASHDECOM

ASHDCOM1

MIX1

MIX

GTCL

ASHSPT1

ASHSPT

ASHDCMP1

MIXER1

MIXER

ASHDCMP

SEPARAT1

FDMIXA

Figure 3. Aspen Plus process model flow sheet for cement manufacturing.
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Table 5. Model validation.

Input Data (From Plant)

Coal analysis

Proximate analysis Moisture Fixed carbon Volatile matter Ash Calorific Value
1.35 57.3 24.15 18.55 27.4 MJ/kg

Ultimate analysis C H N Cl S O (by diff.)
69.13 3.79 1.51 0 0.36 6.66

Ash analysis SiO2 Al2O3 Fe2O3 CaO MgO SO3 TiO2 P2O5 Na2O K2O
0.4609 0.2064 0.0784 0.1619 0.0116 0.0245 0.013 0.0245 0.0031 0.0157

Raw meal (wt %)
SiO2 Al2O3 CaO MgO K2O Na2O Fe2O3 TiO2 SO3 L.O.I. CaCO3
13.68 3.54 43.49 0.66 0.23 0.15 2.49 - 0.16 35.39 78.13

Output Data

Clinker composition (oxide form)

CaO SiO2 Al2O3 Fe2O3 MgO P2O5 TiO2 Na2O K2O SO3 Free CaO
Plant data 66.79 21.84 5.72 3.89 1.1 – – 0.31 0.37 0.22 1.1

Simulation results 66.7793 21.6564 5.7106 3.8798 1.0089 0.052 0.028 0.245 0.362 0.2227 0.9369

Clinker composition (Compound form) and ratios

C4AF C3A C2S C3S LSF AR SR
Plant data 11.84 8.58 15.95 61.26 96.003 1.47 2.273

Simulation results 11.80692 8.55310 15.90564 61.23595 95.14625 1.47190 2.25813

Air emission data

Pollutant Unit Source Available data Simulation results
CO2 kg/tonne clinker Standard limit 977 803.6919
NOX gm/tonne clinker Average plant data 2200 2076.50498
SO2 gm/tonne clinker Average plant data 170 175.893923
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After validation, the model was executed with selected alternative fuels replacing fossil fuel coal
up to 30% of the total thermal energy requirement. Simulation results, in terms of pollutant emission
and kiln outlet temperature, were presented to identify the possible impact of using alternative fuels.
To quantify potential improvement in energy demand, process model was run with less fuel feed while
maintaining the kiln temperature at a fixed point and with a fixed production rate.

6. Results and Discussion

An Aspen Plus simulation model for cement manufacturing by using data from a reference plant
which consists of a rotary kiln and an inline calciner with a five-stage cyclone string in the preheater
tower is presented here. The model is validated for the reference case of only coal as process fuel
and with a daily production of 2200 tonnes of clinker. Several unit operation blocks from simulation
program were used to model all the segment of the process. The process model was prepared with
mass and energy balance for chemical compounds and operation blocks. The fuel requirement was
calculated on the basis of energy requirement data from the reference plant. Data related to process
input, which included raw meal, combustion air and operating conditions, were supplied from the
reference plant data. The proposed process model was run with five selected alternative fuels to
investigate potential improvement in emission and energy demand data. Selected alternative fuels
were set to substitute up to 30% of total thermal energy and each alternative fuel was used separately
to identify their impact.

6.1. Emission Control

Total CO2 emissions from the pyroprocess depend on energy consumption and nearly 977 kg of
CO2 was produced for each tonne of clinker. The simulation result for CO2 is presented in Figure 4,
which indicates that apart from bagasse, all other selected alternative potentially reduces CO2 emission
up to some extent. MSW was found as the best option to reduce CO2 emission up to 4.7% while
substituting 30% of the thermal energy requirement. As the raw meal flow rate remains the same
throughout the simulation, the reduction of CO2 occurs from fuel combustion stage. Carbon percentage
in the elemental analysis of the alternative fuels and the energy content plays vital role in CO2 emission.
For instance, MSW has a lower energy content which implies that a higher amount of fuel is required
to keep the production amount near to the reference case. This could result in a higher CO2 emission,
but the lower carbon content eventually offsets the CO2 as found in Figure 4. On the other hand,
though the carbon content of bagasse is low, it will produce higher CO2 because of its lower energy
content as suggested by the simulation results.
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NOX and SO2 emission results are presented in Figure 5a,b respectively. For reference case
the NOX and SO2 emission are found to be a little higher from the standard baseline, which is due
to the excess air in the burning zone. As per plant specification, the kiln model was operated with
10% excess air and a constant flow of tertiary air in the calciner increase the oxygen level of up to 20%.
Though MSW potentially reduces the CO2 emissions, an opposite scenario was observed in the case
of NOX emission with 29.5% increase in the stack gas. All the selected alternative fuels were found
to increase the NOX emission. SO2 emission remained almost constant for the case of MSW, while
tyre produced about 11% more SO2 than reference case which was actually expected due to the sulfur
content of tyre. All the other alternative fuels had the potential to reduce the SO2 emission significantly.
The excess amount of NOX also depends on the amount of excess air in the burning zone. Since the
excess air in the kiln was kept at a constant 10% limit, the amount of oxygen in the calciner had the
impact on the NOX emission.

The temperature at the kiln outlet is a good indication of the kiln environment to understand
the clinkerization phase inside the kiln. The reduction of temperature inside the kiln could possibly
cause an incomplete pyroprocessing, which may lead to a downgraded clinker quality. The outlet
temperature of kiln is illustrated in Figure 6a for different feed rate of alternative fuel where 0%
alternative fuel indicates the reference case of only coal as fuel.
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Figure 6. (a) Kiln outlet temperature (◦C); (b) clinker production (tonne/day).

The simulation results showed that the kiln temperature was markedly low for the case of
MSW, which could really change the clinker chemistry. Meanwhile, apart from bagasse all other
three alternative fuels are capable of maintaining the kiln temperature up to the reference case. Clinker
production is another key feature to measure while using alternative fuel. Decline in the production
could cease the economic benefit potentially to be achieved by introducing alternative fuel in the
system. Simulation results regarding the clinker production with a fixed raw meal feed is presented
in Figure 6b. Simulation results showed that usage of plastic waste and bagasse could reduce the
production of up to 0.4%, while MSW could possible increase the same about 0.6%. Since the amounts
are negligible, all the alternative fuel could be used up to 30% based on these criteria.

6.2. Quality Control

Impact on the clinker quality in terms of the basic ratios is presented in Figure 7. Simulation
results suggested that selected alternative fuels had a common trend to increase the amount of LSF.
A maximum 1.5% increase of LSF was observed for the case of MBM. It was also apparent that SR and
AR could be affected while using MSW as alternative fuel, which could possibly due to the low kiln
temperature as pointed out in previous section. Apart from MSW, alternative fuels seem to have no
impact on AR and SR. Based on the analysis, it is evident that selected alternative fuels have minimum
influence on the clinker quality.
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6.3. Energy Performance

The main energy intensive phases of cement production process take place inside the precalciner,
kiln and during the production of clinker. A large amount of thermal energy is required to create
enough heat for the cement kiln and precalciner. Typical thermal energy consumption of clinker
manufacturing with different kiln process is illustrated in Table 6 [35]. The reference plant has the
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configuration of a five-stage preheater tower with two rotary kilns. Only one of the rotary kilns is used
for cement productions, which is connected with the preheater tower through the precalciner.

Table 6. Specific thermal energy consumption in different kiln process [45].

Kiln Process Thermal Energy Consumption
(MJ/kg Clinker)

Wet process with internals 5.86–6.28
Long dry process with internals 4.60

1-stage cyclone pre-heater 4.18
2-stage cyclone pre-heater 3.77
4-stage cyclone pre-heater 3.55

4-stage cyclone pre-heater plus calciner 3.14
5-stage pre-heater plus calciner plus high efficiency cooler 3.01
6-stage pre-heater plus calciner plus high efficiency cooler <2.93

The current thermal energy consumption of the plant is roughly 3.15 MJ/kg of clinker production,
which is little bit higher than the best available practice.

To examine the potential reduction of energy requirement of the system, the maximum percentage
of alternative fuel in the fuel mix was determined from the emission analysis. Used tyre could be used
up to 18% to keep the SOX emission below 300 mg/Nm3, while bagasse could be used up to 5% to
keep the CO2 emission below the baseline limit set by the reference plant. Based on the kiln outlet
temperature, the usage percentage of MSW was set at 15% and NOX level need to be controlled by
reducing excess air in the calciner for this case. Usage of 20% MBM will keep the NOX emission below
950 mg/Nm3, which could even be lowered by controlling the air in the calciner. Plastic waste could be
used up to 12% to avoid the clinker production dropped below 2195 tonnes/day. The model was run
with the prescribed substitution rate and by lowering the total feed rate as well as adjusting the airflow
in the calciner to investigate potential improvement in energy demand. Throughout this simulation
the kiln outlet temperature and daily production were kept same as reference case. Lowering the fuel
feed could reduce the clinker production as the combustion ash stays with the clinker to increase the
volume. Additional raw meal was required for a consistent production rate.

Simulation results presented in Table 7 indicate that a reduction of pollutant emissions and energy
demand in the cement industry can be achieved by using alternative fuels in suitable proportions.
The thermal energy requirement in manufacturing process could be reduced a maximum of 6.39% by
using 20% MBM in the fuel mix. The energy requirement could be as low as 2.944 MJ/kg of clinker
production in this case. In addition, a 4.37% of CO2 emission reduction could be achieved by using
MBM in up to 20% in the fuel mix. The only problem of using MBM is the added NOX emission,
predominantly because of the excess air in the calciner that raises to about 15% and can be dealt with
by controlling the air in the calciner. Plastic waste and bagasse are the other two potential options,
which can reduce the energy requirement below the 3 MJ/kg mark along with some extent of decrease
in CO2 discharge. Tyre is most widely used alternative fuel in the cement industry but it always poses
some risk of extra SOX emission [36]. The simulation results shows that tyre can also reduce the energy
requirement near to 3 MJ/kg which is considerable as it need minimum restoration to introduce the
tyre feeding facilities. In contrast to other alternative fuels, MSW showed potential to reduce the raw
meal; still it was less favorable option in consideration of energy requirements. MBM was found to be
the best option among the selected alternative fuels though an additional 0.49% of raw meal required
to secure the benefits. The simulation results presented provides guidelines for using the selected
alternative fuels and further experimental study is recommended to justify the results.
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Table 7. Analysis of potential improvement in emission and energy requirement.

Properties
Fuel Mix Only Coal Coal 82% &

Tyre 18%
Coal 85% &
MSW 15%

Coal 80% &
MBM 20%

Coal 88% &
Plastic Waste 12%

Coal 95% &
Bagasse 5%

Excess air in the kiln 10% 5% 5% 5% 5% 5%

Excess air in the calciner 20.025% 13.58% 6.866% 15.277% 10.7879% 8.64%

Kiln outlet
temperature (◦C) 1680.665 1680.708 1680.441 1679.998 1680.722 1680.205

Raw feed (kg/h) [change %] 137,856 138,365
[+0.369%]

137,510
[−0.25%]

138,530
[+0.489%]

138,475
[+0.449%]

138,320
[+0.337%]

Energy requirement
(MJ/kg clinker) [change %] 3.145 3.028

[−3.72%]
3.152

[+0.22%]
2.944

[−6.39%]
2.983

[−5.15%]
2.982

[−5.18%]

CO2 emission
(kg/tonne clinker)

[change %]
803.692 781.275

[−2.79%]
780.585

[−2.88%]
768.543

[−4.37%]
778.564

[−3.13%]
786.632

[−2.12%]

7. Conclusions

This paper developed a process model for cement manufacturing process using Aspen Plus
software to study the effect of alternative fuels on its energy performance and pollutant emissions.
The five alternative fuels used were tyre, municipal solid waste (MSW), meat and bone meal (MBM),
plastic waste and sugarcane bagasse. The model was validated with the real data from reference
cement plant. The validated model was run for the selected alternative fuels feed in the system to
identify possible improvement in air emission data. In the reference condition, selected alternative
fuels are capable of reducing CO2 emission with an exception for bagasse. In a changed condition,
potentially 6.39% of a reduction in thermal energy requirement could be achieved by using MBM,
which was also identified as the best option among the alternative fuels. Plastic waste showed great
prospect as an alternative fuel in terms of energy demand, though it was not commonly used in cement
industry. CO2 reduction could be achieved by using MSW in the reference condition, but that might
reduce the kiln temperature and affect the clinker composition. It was observed the alternative fuels
had a minimum influence on the clinker quality except in the case of MSW. Tyre, the most widely
used alternative fuel, was found to be a better option as it is capable on reducing energy requirement
and CO2 emission on the top of its worldwide availability. Before introducing any alternative fuel
in the process, simulation results need to be validated with experimental results. The process model
presented in this study could be useful tool for researchers and stakeholders to determine the impact
of wide range of alternative fuels in cement production.
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