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Abstract: In the Pikes Peak oil field near Lloydminster, Canada, a significant amount of heavy oil
reserves is located in reservoirs with a bottom water zone. The properties of the bottom water zone
and the operation parameters significantly affect oil production performance via the steam-assisted
gravity drainage (SAGD) process. Thus, in order to develop this type of heavy oil resource, a full
understanding of the effects of these properties is necessary. In this study, the numerical simulation
approach was applied to study the effects of properties in the bottom water zone in the SAGD
process, such as the initial gas oil ratio, the thickness of the reservoir, and oil saturation of the bottom
water zone. In addition, some operation parameters were studied including the injection pressure,
the SAGD well pair location, and five different well patterns: (1) two corner wells, (2) triple wells,
(3) downhole water sink well, (4) vertical injectors with a horizontal producer, and (5) fishbone
well. The numerical simulation results suggest that the properties of the bottom water zone affect
production performance extremely. First, both positive and negative effects were observed when
solution gas exists in the heavy oil. Second, a logarithmical relationship was investigated between
the bottom water production ratio and the thickness of the bottom water zone. Third, a non-linear
relation was obtained between the oil recovery factor and oil saturation in the bottom water zone,
and a peak oil recovery was achieved at the oil saturation rate of 30% in the bottom water zone.
Furthermore, the operation parameters affected the heavy oil production performance. Comparison
of the well patterns showed that the two corner wells and the triple wells patterns obtained the
highest oil recovery factors of 74.71% and 77.19%, respectively, which are almost twice the oil recovery
factors gained in the conventional SAGD process (47.84%). This indicates that the optimized SAGD
process with the two corner wells and the triple wells pattern is able to improve SAGD production
performance in a heavy oil reservoir with a bottom water zone.

Keywords: numerical simulation study; steam-assisted gravity drainage (SAGD); bottom water zone;
well pattern

1. Introduction

The remarkable production potential of heavy oil in Canada has been widely reported [1–8].
A significant amount of this heavy oil is contained in reservoirs with a bottom water zone, such as the
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reservoirs in the Pikes Peak field, Christina Lake field, Senlac field, Tucker Lake field, and Lindbergh
field [9–14].

Numerous experimental studies [13,15], pilot tests [11,16], and numerical simulations [15,17]
have investigated the production performance of the heavy oil reservoir with a bottom water zone.
In the experimental studies, a scaled physical model, which includes a bottom water zone, was
used to perform steam-assisted gravity drainage (SAGD) tests. Despite the negative effect of the
existence of a bottom water zone in the heavy oil reservoir, the SAGD process was found viable, and
it improved the oil recovery factor significantly to as high as 67% [18]. The SAGD process can also
be optimized by controlling the injection pressure and the location of the producer to gain better
production performance [13]. The thickness of the bottom water zone is a key factor that affects
production performance in the SAGD process. The tests results concluded that a minimum bottom
water thickness, below which the production performance cannot be affected significantly, is around
10% of the gross thickness [19].

Steam-assisted gravity drainage pilot tests were carried out in heavy oil reservoirs with a bottom
water zone. The operation parameters such as well design [9,20] and well pattern [16,21,22] were
considered. Swisher and Wojtanowicz created a new completion method (water is produced from
the tubing and oil is produced from the annulus) to eliminate bottom water coning. They concluded
that this method could prevent water coning and was able to reverse a water cone after water
breakthrough [20]. From studying the effects of different well patterns, scholars found that well
pattern affects the production performance significantly. They found that, first, in a high water cut
heavy oil reservoir, the water cut can be reduced significantly from 90% to 60% by using a combination
of vertical injectors and horizontal producers. A very large increase in the oil recovery factor was
obtained in the Tangleflags North oil field [21]. Second, the single well SAGD process shown high fluid
production rates and low steam oil ratios (SOR) [23]. Third, scholars found that the downhole water
sink (DWS) technology can reduce the high water cut by an optimum combination of top production
and bottom drainage rates in the R&D progress [24]. Fourth, the single vertical well SAGD process to
screen the reservoir was considered as a quicker way to predict the SAGD production performance
than the horizontal SAGD pilot test in the Pikes Peak oil field [22].

Numerical simulation is another efficient approach to study the SAGD process applied in the
heavy oil reservoir with a bottom water zone. The numerical simulation studies found the existence
of a bottom water zone leading to the negative effect of water coning from the bottom water zone
occurred due to the reduction of oil mobility around the producer [25]. The bottom water zone reduced
the oil recovery factor by 10% of the Original Oil in Place (OOIP) [26], and different kinds of bottom
water zones (confined and unconfined) were found to affect the production performance in various
ways. The unconfined bottom water zone reduced the oil recovery factor much more than the confined
bottom water zone [27]. In order to avoid the negative effect of the bottom water zone in the heavy oil
reservoir, the DWS well pattern showed good production potential mainly because of two mechanisms:
(1) gravity drainage around the well and (2) water drive oil towards the steam chamber [28]. Research
regarding the well location indicated that the wells should be placed as low as possible to the bottom of
the reservoir to obtain better production performance when no bottom water exists in the reservoir [29];
and the highest recovery factor was obtained when the producer was located at the bottom of the
reservoir. Moreover, this process can be applied in the reservoir with a bottom water zone where the
ratio of the bottom water thickness and the oil pay zone thickness is no more than 1:3 [30]. Although
many studies have been conducted on the production performance of the heavy oil reservoir with a
bottom water zone, an insufficient number of correlations have been carried out to study the effects
of different parameters on heavy oil production performance. In this study, the effects of reservoir
properties, operation parameters, and well patterns on heavy oil production performance in the heavy
oil reservoir with a bottom water zone are studied by using the correlation method. First, the well
constraints are optimized. Second, the effects of the reservoir properties are studied. Finally, different
well patterns are conducted to investigate the production performance of the heavy oil under different
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conditions. A new parameter Y (the oil recovery factor over the water production ratio form the
bottom water zone) is defined to indicate the heavy oil production performance, and the relationships
among the defined parameter and the reservoir properties are correlated. Several correlations are
generated to show a very clear trend for the effects of the ranges of the reservoir properties and the
operation parameters. The reservoir properties changing range covers the properties appearing in the
whole oil field. Also, the well patterns are optimized using the most effective well patterns, and the oil
recovery factors can reach almost twice that obtained in the conventional SAGD process.

2. Prototype Reservoir

Typical reservoir properties in the Pikes Peak oil field near Lloydminster, Canada, were applied
in this study to describe the prototype reservoir, and the thermal properties of reservoir fluid, rock,
and over-/under-burdens were optimized from the typical values in the sandstone reservoir, as shown
in Table 1.

In this area, the depth of the pay zone is 500 m. The main production zone is a homogeneous unit,
the net pay ranges from 5 m to 30 m, and the mean thickness of the oil pay zone is 20 m. The thickness
of the bottom water zone ranges from 0.3 m to as high as 13.3 m in this field. The average thickness is
5 m. The average porosity of the reservoir is 0.37, and the average absolute horizontal permeability is
5000 mD in the oil pay zone and 2000 mD in the bottom water zone. The anisotropy factor (the ratio of
the vertical permeability to the horizontal permeability), both in the oil pay zone and the bottom water
zone, is 0.4.

The oil properties in this area are listed in Table 2. The oil is live oil with an initial gas oil ratio
(GOR) of 8.0 Sm3/m3 under the initial reservoir temperature of 18 ◦C and the average pressure of
3350 kPa. The salinity of the acquire is 44,000 PPM [11,12,14,31–34]. In addition, the viscosity of
the oil is reduced remarkably with temperature increasing, which was simulated by using the CMG
software [35], as shown in Figure 1.
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Figure 1. Heavy oil viscosity reduction with increasing temperature at the atmosphere pressure. 

Table 1. Properties of the reservoir in the Pikes Peak oil field, Lloydminster region. 

Parameter Value 
Depth (m) a 500 

Initial reservoir temperature (°C) a 18 
Initial reservoir pressure (kPa) b 3350 

Thickness of oil zone (m) a 20 
Porosity a 0.34 

Permeability in the oil zone (mD) a 5000 
Permeability in the bottom water zone (mD) a 2000 

Oil saturation a 0.85 
Formation compressibility (1/kPa) c 2.0 × 10−6 

Rock, over-/underburden heat capacity J/(m3·°C) d 2.39 × 106 
Rock, over-/underburden thermal conductivity J/(m3·°C) d 2.333 × 105 

Oil phase thermal conductivity J/(m3·°C) d 2.0 × 104 
Water thermal conductivity J/(m3·°C) d 5.35 × 104 
Method for evaluation of 3-phase Kro e Stone’s second model 
Methane K-value correlation e K = (KV1/P) × EXP((KV4)/(T-KV5))

KV1 (kPa) e 5.4547 × 105 

Figure 1. Heavy oil viscosity reduction with increasing temperature at the atmosphere pressure.
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Table 1. Properties of the reservoir in the Pikes Peak oil field, Lloydminster region.

Parameter Value

Depth (m) a 500
Initial reservoir temperature (◦C) a 18

Initial reservoir pressure (kPa) b 3350
Thickness of oil zone (m) a 20

Porosity a 0.34
Permeability in the oil zone (mD) a 5000

Permeability in the bottom water zone (mD) a 2000
Oil saturation a 0.85

Formation compressibility (1/kPa) c 2.0 × 10−6

Rock, over-/underburden heat capacity J/(m3·◦C) d 2.39 × 106

Rock, over-/underburden thermal conductivity J/(m3·◦C) d 2.333 × 105

Oil phase thermal conductivity J/(m3·◦C) d 2.0 × 104

Water thermal conductivity J/(m3·◦C) d 5.35 × 104

Method for evaluation of 3-phase Kro
e Stone’s second model

Methane K-value correlation e K = (KV1/P) × EXP((KV4)/(T−KV5))
KV1 (kPa) e 5.4547 × 105

KV4 (◦C) e −879.84
KV5 (◦C) e −265.99

a Miller and Xiao [33]; b Wong et al. [32]; c Dusseault [36]; d Butler [37]; e CMG [35].

Table 2. Properties of the oil sample applied in this study.

Properties Value

Density @18·◦C (kg/m3) a 985
API gravity a 12.4

Viscosity @ 18·◦C (mPa·s) a 25,000
Oil formation volume factor (m3/m3) a 1.022

Initial solution GOR (Sm3/m3) b 8.0
SARA composition (wt%) c

Saturates 23.1
Aromatics 41.7

Resins 19.5
Asphaltenes 15.3

Solids 0.4
a Wong et al. [32]; b Miller and Xiao [33]; c Akbarzadeh et al. [38].

3. Numerical Simulation Model

In this study, the commercial numerical simulator CMG STARS® (Computer Modelling Group
Ltd., Calgary, AB, Canada) was employed to optimize the SAGD process in the reservoir with a bottom
water zone. The basic numerical simulation model consisted of a 5-m active water zone directly
below the oil zone, which is 20 m and covered by a 500-m overburden. A 3-D model was developed
measuring 60 m in width with a grid size of 2 m (I direction), 25 m in height with a grid size of 1 m
(including a 20 m oil pay zone and a 5 m bottom water zone; K direction), and 1000 m in length with a
grid size of 20 m (J direction). In total, 37,500 grids were discretized. The 1000 meter-long horizontal
SAGD well pair was drilled at the edge of the model along the J direction. For the base case, the
thicknesses of the grid blocks were 1 m for both the oil pay zone and bottom water zone.

The SAGD well pair is a classic SAGD well pair, which indicates that the space between the
two wells is 5 m, the producer is located 2.5 m above the bottom of the oil pay zone, and the
well pair is drilled in a straight trajectory, the perforation of the wells are full perforated [35,39,40].
The reservoir is assumed to be homogeneous across both zones due to the main part of the reservoir
being homogeneous [31].The relative permeability curves applied in the model are from a previous
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study on a heavy oil reservoir that is also operated by Husky Energy Ltd, Lloydminster, Canada, and
is located very close to the Pikes Peak oil field in the Lloydminster region [41], as indicated in Table 3.
The capillary pressure in the heavy oil reservoir is small, as shown in Figure 2 [42]. The start-ups of
the SAGD processes are the same for all of the cases. First, (1) the duration of the preheating process
lasts 75 days under 250 ◦C. Second, the steam trap control is 10 ◦C. Third, the temperature of the steam
is 250 ◦C and the steam quality is 0.9 [43–48]. The maximum production rate is 550 m3/day, which is
the capacity of the production pump used in this field. Also, the boundary condition of the numerical
simulation model is a closed boundary.

Table 3. Relative permeability applied in this study [41].

Water-Oil Relative Permeability Liquid-Gas Relative Permeability

Sw Krw Krow Sl Krg Krog
0.150 0.000 1.000 0.150 1.000 0.000
0.200 0.000 0.981 0.200 0.950 0.000
0.250 0.005 0.955 0.250 0.844 0.005
0.300 0.008 0.723 0.300 0.724 0.008
0.350 0.013 0.602 0.350 0.603 0.018
0.400 0.025 0.472 0.400 0.471 0.027
0.450 0.042 0.351 0.450 0.353 0.047
0.500 0.069 0.243 0.500 0.240 0.069
0.550 0.103 0.166 0.550 0.168 0.107
0.600 0.149 0.110 0.600 0.095 0.156
0.650 0.207 0.072 0.650 0.079 0.209
0.700 0.275 0.040 0.700 0.047 0.274
0.750 0.354 0.016 0.750 0.033 0.354
0.800 0.449 0.000 0.800 0.024 0.450
0.850 0.565 0.000 0.850 0.014 0.564
0.900 0.693 0.000 0.900 0.009 0.689
0.950 0.838 0.000 0.950 0.005 0.838
1.000 1.000 0.000 1.000 0.000 1.000

Sw: water phase saturation; Krw: relative permeability of water phase in the water-oil table; Krow: relative oil phase
permeability in the water-oil table; Sl: liquid phase saturation; Krg: relative gas phase permeability in the liquid-gas
table; Krog: relative oil phase permeability in the liquid-gas table.
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Figure 2. Capillary pressure curve in the heavy oil reservoir [42]. 
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4. Results and Discussion

4.1. Steam Injection Pressure Optimization

When the SAGD process is applied in a reservoir with a bottom water zone, the most serious issue
is that the bottom water will invade the oil pay zone and be produced from the producer. Thus, the
existence of a bottom water zone has a negative effect on heavy oil production performance [15,49,50].

In this study, in order to optimize the steam injection pressure, a new parameter (Y) is defined as
the ratio of the oil recovery factor (RF) over the water production ratio of the bottom water zone (Rbw),
as indicated in Equation (1). The parameter shows the heavy oil production performance in terms
of both the positive aspect (oil recovery factor) and negative aspect (bottom water production) at a
certain condition. The larger the parameter, the better the production performance obtained:

Y =
RF
Rbw

(1)

where Y is the defined parameter, dimensionless; RF is the oil recovery factor, %, equal to the
cumulative oil production/the total original oil in place; and Rbw is the water production ratio
from the bottom water zone, %, equal to the cumulative water production from the bottom water
zone/initial water volume in the bottom water zone.

The Rbw values for each case can be calculated using Equation (2), which is derived from a
previous study [51]. During the derivation process, one important assumption is considered: the
chlorides concentration of the connect water remains constant, and it equals the initial chlorides
concentration in the reservoir:

Rbw =
Qbw
Vbw

=
Qw

Vbw

[
Sa,pw

Sa,bw
−

(
1

WC
− 1

)
Swc

Soi

]
(2)

where Rbw is the water production ratio in the bottom water zone, %; Qbw is the water production
volume from the bottom water zone, m3; Vbw is the total water volume in the bottom water zone, m3;
Qw is the water production volume from the entire reservoir, m3; Sa,pw is the water salinity in the
produced water, ppm; Sa,bw is the initial water salinity in the bottom water zone, ppm; WC is the water
cut, %; Swc is the connate water saturation, %; and Soi is the initial oil saturation, %.

In total, 14 cases are conducted in this section to optimize the steam injection pressure.
The injection pressure ranges from 3350 kPa, which is the initial reservoir pressure, to 4000 kPa.
The interval between the adjacent pressures is 50 kPa. Based on the calculated values, a correlation
is developed. Equation (3) indicates the relationship between the steam injection pressure (Pinj) and
the defined factor (Y). The R2 value (0.9804) shows a good correlation for the process, as shown in
Figure 3.

Y = −0.0538 × ln
(

Pinj − 3340
)
+ 1.2943 (3)

Figure 3 indicates that a logarithm relation was obtained between the steam injection pressure
and the Y value. The maximum of the Y value was achieved under the steam injection pressure at
3350 kPa, which is the initial reservoir pressure. The curve indicates that, with steam injection pressure
increases, the oil production performance of the SAGD process applied in the heavy oil reservoir with
a bottom water zone becomes worse due to the water coning effect growing stronger under a higher
steam injection pressure [13]. Therefore, the well constraints for the base case can be indicated as:
(1) the pressure constraint is 3350 kPa for the injector and (2) the fluid flow rate constraint is 550 m3/d
for the producer and (3) the steam trap in the steam-trapping mode is 10 ◦C.
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4.2. Effect of the Initial Gas Oil Ratio

The existence of the initial solution gas in the heavy oil has a significant impact on the oil
production performance. Even the gas oil ratio is much smaller than that in the conventional oil
reservoir [52]. In order to investigate the effects of the initial solution gas in the Pikes Peak reservoir,
nine cases are developed, among which the initial GOR ranges from 0 to 8 Sm3/m3. The results of the
simulation indicate that both positive and negative impacts of the initial solution gas appearing in the
heavy oil reservoir are obtained in the SAGD process. The well constraints are the same as those in the
base case.

In the SAGD process, the temperature of heavy oil increases when high temperature steam is
injected into the reservoir. The temperature increase leads to part of the solution gas being released
from the heavy oil and rising to the top of the steam chamber (when the temperature is higher enough
to make the heavy oil as saturated heavy oil), due to the gravity difference between the liquid phase
and the gas phase. Thus, a gas bank is established at the top of the heated area, as shown in Figure 4.
The size of the gas bank increases with injection time increases. Figure 4 manifests that the higher
gas saturation always appears in front of the steam chamber due to the injected steam heating the
inner part of the steam chamber, so that the temperature in the inner area of the steam chamber is
much higher than that in other parts. Consequently, the gas oil ratio is lower in the inner area, and
the injected steam pushes the exsoluted gas out of the inner area of the steam chamber. When the gas
reaches the edge of the steam chamber, the mass transfer rate of the gas decreases dramatically because
of the low temperature and the very high viscosity of the heavy oil. This decrease in mass transfer rate
causes gas to accumulate in the front of the steam chamber.
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Because the thermal conductivity of the gas phase is much lower than that of the liquid phase, the
gas bank performs as an insulation layer to the overburden. Consequently, less heat loss occurs in the
reservoir than it does in a reservoir without initial solution gas, as shown in Figure 5. This phenomenon
was also observed in previous researches [53–55]. Figure 5 indicates that, the lower the initial GOR, the
greater the heat loss to the overburden, which means that, with a lower initial GOR, the volume
of the gas bank is smaller so that more heat can pass through the gas bank and be lost to the
overburden. When the initial GOR reaches 5 Sm3/m3, the heat loss to the overburden does not
increase significantly because the volume of the gas bank reaches a critical value under which the heat
cannot be transferred efficiently. When the initial GOR is higher than 5 Sm3/m3, even the volume of
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the gas bank increases. The efficiency of the insulation cannot be improved too much, so the heat loss
cannot be reduced significantly.
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On the contrary, the gas bank not only reduces the heat loss to the overburden, but it also decreases
the heat transfer ratio between the steam chamber and the oil reservoir. Consequently, a lower oil
recovery factor is obtained when solution gas exists in the heavy oil, as shown in Figure 6. The negative
effects of the existence of the initial solution gas were briefly reported in the previous literature [56–69].
In this study, more details are investigated.

Figure 6 manifests that, first, with initial GOR increases, the oil recovery factor decreases mainly
because, the higher the initial GOR, the larger the volume of the gas bank that forms in front of the
steam chamber. Thus, a smaller portion of the injected heat is transferred from the steam chamber to
the oil reservoir.

Second, the oil recovery factor changes significantly in the initial GOR range of 2–5 Sm3/m3,
but it does not change significantly under a low (0–2 Sm3/m3) and high (5–8 Sm3/m3) initial GOR.
The reason for this is that, when the initial GOR is lower than 2 Sm3/m3, the volume of the gas bank is
not large enough to establish an insulation layer to reduce the heat transfer efficiently. When the initial
GOR is higher than 2 Sm3/m3, the volume of the gas bank increases with the initial GOR increases,
and the efficiency of the insulation layer between the steam chamber and the overburden is improved,
so that the heat loss to the overburden is reduced and more steam is applied to heat the cold heavy oil.
Therefore, a higher oil recovery factor is obtained under the higher initial solution GOR. When the
critical solution GOR is reached (5 Sm3/m3), the gas bank can reduce the heat transfer efficiently and
the injected energy cannot be transferred into the further part of the reservoir. Consequently, the oil
recovery factor does not increase significantly.

Third, the oil recovery factor with solution gas in the heavy oil is higher than that without solution
gas in the early stage of the production process. This occurs because, at the early stage of the SAGD
process, without initial GOR, the steam chamber increases vertically and cannot heat a large area of the
heavy oil. When the solution gas appears in the oil reservoir, the gas saturation at the top of the steam
chamber is higher than that in the other parts (as shown in Figure 4a), so that the heat transfer in the
vertical direction is reduced and the steam chamber increases in both vertical and lateral directions.
This leads to a larger area of the oil reservoir being heated. Consequently, the oil recovery factor is
higher than that without initial solution gas.
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4.3. Effect of Thickness of the Bottom Water Zone

In the Pikes Peak Waseca area, the thickness of the bottom water zone ranges from 0.3 m to 13.3 m,
and the net pay of the oil zone reaches as high as 30 m. However, the lowest part of the oil pay zone is
only 5 m [32]. Thus, the volume ratio of the bottom water zone to the oil pay zone (VRw/o) ranges from
0.01 to 2.66.

In order to study the effects of different sizes of the bottom water zone, various types of bottom
water zones are created according to the VRw/o value. In this study, the thickness of the oil pay zone in
the base case is 20 m. To meet the range of the VRw/o value, the thicknesses of the bottom water zone
are developed from 0 m to 55 m. In total, 14 cases are developed to investigate the effect of the bottom
water thickness. The interval is 5 m for the bottom water zone from 0 m to 55 m, and thicknesses
of 1 m and 2.5 m are constructed to observe the effects of a very small bottom water zone. The well
constraints in the section are the same as in the base case.

The relationships of the defined factor (Y), the bottom water production ratio (Rbw), and the
volume of water produced from the bottom water zone (Qbw) under different thicknesses of the bottom
water zone (hbw) are demonstrated in Figure 7. Through corrections, high corrections among Y, Rbw,
Qbw, and hbw are obtained, as indicated in Equations (4)–(6). The corrections can be applied to analyze
the effects of the properties of the bottom water zone:

Y = 0.1227 × hbw + 0.5651 (4)

Rbw = −0.2053 × ln(hbw) + 0.8192 (5)

Qbw = 13355 × ln(hbw) + 23678 (6)
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Figure 7. Simulation results and correction curves for the defined factor (Y), the water production ratio
from the bottom water zone (Rbw), and the volume of water produced from the bottom water zone
(Qbw) under different thicknesses of the bottom water zone (hbw).

Figure 7 shows that the volume of water produced from the bottom water zone increases quickly
with a lower thickness of the bottom water zone, but the incremental starts to decrease when the
thickness increases to 20 m. That is mainly because: (1) the total volume of the bottom water zone
increases proportional to the thickness and (2) the effect of the injection pressure (3350 kPa) to the
thickness of the bottom water zone is around 20 m. When the thickness is higher than 20 m; the effect
of the injection steam on the bottom water becomes weak. To be precise, the injected steam cannot
push the water below 20 m in the bottom water zone. Consequently, the water production ratio in the
bottom water zone (Rbw) decreases significantly before the hbw value is less than 20, but it decreases
slowly when the thickness of the bottom water zone reaches 20 m. The Y value increases linearly
with increases in the thickness of the bottom water zone due to: (1) the water production from the
bottom water zone imminent a linear relation with the thickness of the bottom water zone when the
thickness reaches 20 m; (2) the volume of the bottom water zone increases linearly, so that the Rbw
value decreases smoothly; and (3) the oil recovery factor does not change too much when the bottom
water zone appears, as shown in Figure 8.
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Figure 8 reveals that the oil recovery factor and cumulative energy injected into the oil reservoir
without a bottom water zone are lower than those occurring in reservoirs with a bottom water zone
due to the bottom water augmenting the expansion process of the steam chamber in the oil pay zone,
as indicated in Figure 9. This result is opposite to that of the previous study [26], which showed that
the oil recovery factor is reduced by 10% with the bottom water zone. This difference occurs mainly
because, in the previous study, no solution gas was considered in the heavy oil so that the heat transfer
rate would not be reduced and the steam chamber could extend freely [26]. Therefore, the pressure
in the steam chamber was not maintained, and the steam could be injected continuously. When the
steam chamber reached the bottom water zone, heat loss occurred and negative effects occurred [26].
However, in this study, solution gas was considered in the heavy oil, and the gas bank reduced the heat
transfer and kept the steam in the inner part of the steam chamber. Thus, less steam was injected into
the reservoir, but the bottom water performed as a means to extend the steam chamber, as indicated in
Figure 9.
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In Figure 9, the log value of water phase velocities in the reservoirs are highlighted to show the
water phase flow direction in the reservoir. Without the bottom water zone (Figure 9a), the injected
steam changes into the condensate water phase in the reservoir and flows towards the bottom of the
reservoir. Then it is produced from the producer. Due to the negative effect of the gas bank, the heat
transfer ratio of the steam chamber is lower, resulting in the lower volume of the steam chamber.
Also, due to the well constraint (550 m3/day) of the producer, the condensate water phase cannot be
produced immediately, which leads to the pressure in the steam chamber being maintained. Therefore,
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the volume of the steam (indicated by the injected energy) cannot be injected continuously. With the
bottom water zone (Figure 9b), the condensate water phase would flow into the bottom water zone
and circulate in it, carrying part of the energy with it. Also, the pressure in the steam chamber could
be reduced and more steam could be injected into the reservoir to maintain the pressure. In addition,
the energy that was taken by the water could be transferred to a further part of the bottom of the
oil zone where it could help increase the temperature of the cold oil in front of the steam chamber.
This temperature increase would increase the spread rate of the gas bank and result in a greater volume
of the steam chamber.

4.4. Effect of Oil Saturation in the Bottom Water Zone

In the heavy oil reservoirs, lean zones (those located anywhere in a reservoir with low or no oil
saturation zones) were found in Nexen’s Long Lake and Suncor’s Firebag SAGD projects. The effects
of the existence of lean zones are remarkable in the SAGD process [50,70,71]. In this study, the bottom
water zone is a typical lean zone in the heavy oil reservoir. In order to study the effects of the different
oil saturations in the lean zone, six cases were developed. The range of the oil saturations in the lean
zone changed from 0 to 0.5, and the thickness of the bottom water zone was the same as that of the
base case, which is 5 m. The well constraints for the cases are same as the base case.

The incremental ratio of the parameters can be represented as follows:

Rinc,i =
i@So,bw = 0 − i@So,bw

i@So,bw = 0
× 100% (7)

where i represents the Original Oil in Place (OOIP), Rbw, RF, and cEOR; Rinc,i is the incremental ratio
of parameter i; and So,bw is the oil saturation in the bottom water zone.

With oil saturation increases in the bottom water zone, three phenomena are investigated. First,
the Rbw increases over 10% (Rinc,Rbw = 10.748%) when oil (with a 10% oil saturation) appears in the
bottom water zone. Then the ratio decreases when the oil saturation in the bottom water zone increases.
Second, the RF increases a little bit before the oil saturation reaches 30%. Then it decreases with the
oil saturation in the bottom water zone increases. Third, the cEOR decreases with increases in oil
saturation in the bottom water zone. The major reason for this is that, with a small amount of oil in the
bottom water zone, when the reservoir is heated by injected steam, the solution gas evolves from the
oil. The evolved gas disperses in the heavy oil for a certain amount of time, and it partly decreases the
viscosity and density of the fluids in the bottom water zone [8]. This decrease in viscosity and density
leads to a relative higher mobility of the fluids (both water and oil) in the bottom water zone. Thus,
the Rbw and the RF increase. As shown in Table 4.

Table 4. Simulation results for different oil saturations in the bottom water zone.

So,bw OOIP Rinc,OOIP Rbw Rinc,Rbw RF Rinc,RF cEOR Rinc,cEOR

% 105 m3 % % % % % GJ/m3 %
0 3.775 - 41.953 - 48.972 - 4.062 -

10 3.886 2.943 46.462 10.748 49.250 0.568 3.994 −1.671
20 3.997 5.884 45.557 8.591 49.024 0.107 3.912 −3.682
30 4.108 8.827 45.242 7.838 49.581 1.245 3.752 −7.627
40 4.219 11.768 43.274 3.149 45.886 −6.301 3.624 −10.782
50 4.330 14.711 37.311 −11.066 43.282 −11.619 3.325 −18.128

So,bw: oil saturation in the bottom water zone; OOIP: original oil in place; Rinc,OOIP: incremental of the OOIP
compared with the base case; Rbw: water production ratio in the bottom water zone; Rinc,Rbw: incremental of the Rbw
compared with the base case; RF: oil recovery factor; Rinc,RF: incremental of the oil recovery factor compared with
the base case; cEOR: cumulative energy oil ratio; Rinc,cEOR: incremental of the cEOR compared with the base case.

The mole density of the gas phase indicates gas phase distribution in the reservoir, as shown in
Figure 10a,b. However, with the continual increase of oil saturation in the bottom water zone, the
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amount of free gas increases during the heating process (as indicated in Figure 10c). This results in
the negative effect of the solution gas (the heat transfer rate is reduced by the gas bank) becoming
increasingly more significant. Therefore, the Rbw and RF will decrease. For the cEOR, before the oil
saturation reaches 30%, the oil recovery factors are higher than the case without oil in the bottom water
zone, so the cEOR decreases. When the oil saturation in the bottom water zone is higher than 30%,
the energy injected into the reservoir decreases due to the obstacle of the gas bank in the reservoir.
This energy decrease causes the cEOR to decrease.
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4.5. Effect of the Well Pair Location

To study the effect of the well pair location in the SAGD process, 13 cases are developed. Among
these, the distance between the injector and producer in the horizontal well pair is kept constant (5 m).
The location of the producer changes from the oil pay zone to the bottom water zone, and the distance
between the producer and the original oil-water contactor is changed from 4.5 m (i.e., the producer is
located 4.5 m above the original oil-water contact) to −4.5 m (i.e., the producer is located 4.5 m below
the original oil-water contact).

The results of parameters Rbw and RF are shown in Figure 11. The negative distance indicates that
the producer is located below the original oil-water contact, and the positive distance shows that the
producer is drilled above the original oil-water contact. Both Rbw and RF decrease when the producer
location changes from the bottom of the reservoir upwards (i.e., when the producer location is −4.5 m).
This decrease occurs because, the lower the well pair, the larger the area of the bottom water zone
occupied by the steam chamber and the more water produced from the bottom water zone. Also, the
area of the steam chamber in the oil pay zone is larger due to the shape of the steam chamber moving
downwards and the wider part occupies the oil pay zone. Therefore, more oil will be heated and
produced, which results in a higher RF.
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Figure 11. Bottom water production ratio (Rbw) and oil recovery factor (RF) under different well
pair locations.

If the well pair is moved upwards, the steam chamber moves towards the top of the reservoir.
Therefore, less water in the bottom water zone can be produced, and the Rbw decreases quickly with
the upward movement of the well pair. Also, the lower part of the steam chamber is moved to the oil
pay zone, resulting in less area of the oil pay zone being heated. Therefore, the RF decreases.

4.6. Effect of Different Well Patterns

In order to study the effect of different well patterns in the production process in a heavy oil
reservoir with a bottom water zone, five well patterns (two corner wells, triple wells, downhole water
sink well (DWS), vertical injectors with a horizontal producer (VInj-HPro), and fishbone well) are
conducted in the same reservoir with the same operation parameters. The well patterns are shown in
Figure 12. Figure 12a,c show the I-K direction cross-section of the reservoir. Figure 12d indicates the
J-K direction cross-section of the reservoir, while Figure 12e demonstrates the I-J direction cross-section
of the reservoir. In order to gain a better view, the display length ratio for Figure 12e in the J direction
to the I direction is revised to Y/X = 0.1 × J direction length: 1 × I direction length. For the two corner
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wells, as shown in Figure 12a, the producer is located in the boundary of the reservoir, which is the
same place as the conventional SAGD process. The injector is drilled 2.5 m under the top boundary of
the other boundary. For the triple wells, as shown in Figure 12b, the injector is located 2.5 m under the
top boundary in the middle of the reservoir. One producer is drilled 2.5 m above the original oil-water
contact on each boundary. For the DWS, as shown in Figure 12c, another producer is placed at the
bottom of the reservoir under the conversational SAGD well pair. For the VInj-HPro, as shown in
Figure 12d, five vertical injectors are drilled 5 m above the horizontal producer. For the fishbone well,
as shown in Figure 12e, the locations of the main wells are the same as the location of the conventional
SAGD well pair, and the well brunches are in the same layer as the main wells.

Energies 2017, 10, 1999  15 of 22 

fishbone well, as shown in Figure 12e, the locations of the main wells are the same as the location of 
the conventional SAGD well pair, and the well brunches are in the same layer as the main wells. 

 
(a) 

 
(b) 

 
(c) 

 
(e) (d) 

Figure 12. Well pattern structures for (a) two corner wells in the I-K direction cross-section; (b) triple 
wells in the I-K direction cross-section; (c) DWS in the I-K direction cross-section; (d) VInj-HPro, and 
(e) fishbone well in the I-J direction cross-section. 

The oil recovery factors for different well patterns are shown in Figure 13. For the base case, the oil 
recovery factor is 47.84%, which is not high enough for a SAGD process [35]. When the two corner 
wells, triple wells, and fish bone well patterns were conducted, the oil production was enhanced 
significantly (as indicated in Figure 14d) to as high as 77.19%, which is 10% higher than the previous 
experimental study [18] when the triple wells pattern was applied. However, the start time of the oil 
production was delayed for the well patterns of two corner wells and triple wells. For the base case (the 
traditional SAGD well pattern), the oil production occurred at the time (75 days) when the preheating 
process ends. For the two corner wells pattern, the oil production time was delayed to 1.8 years. For the 
triple wells pattern, it was delayed to 1.2 years due to the long distance between the injector and the 
producer. Thus, the duration of the connection establishment process between the injector and the 
producer is longer than that in the conventional SAGD process, as shown in Figure 14(a1,a2). 

Once the connection between the injector and the producer was established, the oil production 
rate (indicated by the slope of the oil recovery factor curve) increased significantly. Because of the 
viscosity difference between the heavy oil and the bottom water, part of the heavy oil in the oil pay 
zone was pushed into the bottom water zone before the connection process was achieved, as 
indicated in Figure 14(b1,b2). When the heat conduction process transferred the injected heat from 
the injector to the producer, a large amount of heated heavy oil was displaced to the producer due to 
the pressure difference between the injector and the producer together with the gravity effects. The 
condensate water flushed to the bottom water zone due to the density difference between the heavy 
oil and the condensate water. The amount of the invaded heavy oil in the bottom water zone did not 
increase when the injector and the producer connected to each other with the heated heavy oil, and 
the invaded higher temperature heavy oil was pushed to the producer by the condensate water in 

Figure 12. Well pattern structures for (a) two corner wells in the I-K direction cross-section; (b) triple
wells in the I-K direction cross-section; (c) DWS in the I-K direction cross-section; (d) VInj-HPro, and
(e) fishbone well in the I-J direction cross-section.

The oil recovery factors for different well patterns are shown in Figure 13. For the base case, the
oil recovery factor is 47.84%, which is not high enough for a SAGD process [35]. When the two corner
wells, triple wells, and fish bone well patterns were conducted, the oil production was enhanced
significantly (as indicated in Figure 14d) to as high as 77.19%, which is 10% higher than the previous
experimental study [18] when the triple wells pattern was applied. However, the start time of the
oil production was delayed for the well patterns of two corner wells and triple wells. For the base
case (the traditional SAGD well pattern), the oil production occurred at the time (75 days) when the
preheating process ends. For the two corner wells pattern, the oil production time was delayed to
1.8 years. For the triple wells pattern, it was delayed to 1.2 years due to the long distance between
the injector and the producer. Thus, the duration of the connection establishment process between
the injector and the producer is longer than that in the conventional SAGD process, as shown in
Figure 14(a1,a2).
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triple wells, and (3) fishbone well at the end of different production times: (a) 0.5 years; (b) 1 year; (c) 2
years; and (d) 5 years.
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Once the connection between the injector and the producer was established, the oil production
rate (indicated by the slope of the oil recovery factor curve) increased significantly. Because of the
viscosity difference between the heavy oil and the bottom water, part of the heavy oil in the oil pay
zone was pushed into the bottom water zone before the connection process was achieved, as indicated
in Figure 14(b1,b2). When the heat conduction process transferred the injected heat from the injector to
the producer, a large amount of heated heavy oil was displaced to the producer due to the pressure
difference between the injector and the producer together with the gravity effects. The condensate
water flushed to the bottom water zone due to the density difference between the heavy oil and the
condensate water. The amount of the invaded heavy oil in the bottom water zone did not increase
when the injector and the producer connected to each other with the heated heavy oil, and the invaded
higher temperature heavy oil was pushed to the producer by the condensate water in the bottom water
zone. Therefore, an increase in the water phase was observed in the area between the oil pay zone and
the invaded heavy oil, as shown in Figure 14(c1,c2).

For the fishbone well pattern, the main reason for the higher oil recovery rate is that the fishbone
wells, including the main wells and the branches, extend the heating area in the reservoir, as shown in
Figure 12e. The branches of the fishbone wells reach the further part of the reservoir and distribute
the steam in that region, so that the temperature of the heavy oil in that area can be improved and the
viscosity will be decreased significantly. This leads to the heavy oil production process occurring in
the branches, as shown in Figure 14(a3), so that the heavy oil around the main wells and the branches
are heated and produced. When the oil recovery factor reaches 60%, the heavy oil production rate
decreases quickly, and the heavy oil recovery factor curve tends towards flat due to the heavy oil
around the fishbone wells being produced. It is hard for the injected steam to heat the heavy oil in
the further part of the reservoir. Therefore, the production process can be stopped at the second year.
For the same reason, if the two corner wells and triple wells patterns are conducted, the production
process can be ended at 3 years and 3.5 years, respectively, rather than 5 years.

For the DWS well pattern, the pressure constraint of the DWS is 3428 kPa. Compared with the
conventional SAGD process, the oil recovery factor of the DWS well pattern is slightly higher than that
of the base case, which is the conventional SAGD process, as shown in Figure 13. However, the water
cut reduced sharply to around 2% when the DWS started to produce water from the bottom water
zone, as indicated in Figure 15. This reduction in water cut occurred due to the pressure of the bottom
water zone decreasing to 3428 kPa, which is the maximum pressure in the DWS well constraint. Also,
the pressure constraint in the DWS is very sensitive to the water production start time of the DWS,
as an increment of as much as 1 kPa occurred. The start time was delayed for about half a year for
the pressure under 3426 kPa to 3428 kPa, but an almost 1.5 year delay occurred when the pressure
increased from 3428 kPa to 3429 kPa. The key reason for this is that, in the SAGD process, the injected
steam maintains the pressure in the oil pay zone. With the effect of gravity, the pressure at the bottom
of the reservoir, where the DWS located, is thus higher than that in the oil zone, and it increases with
the amount of steam injected. When the pressure is higher than the pressure constraints in the DWS,
the bottom water is produced from the DWS and the pressure in the bottom water zone remains the
same as the pressure constraints of the DWS. Due to the pressure decreases in the bottom water zone,
the pressure difference between the bottom water zone and the producer is reduced and it cannot
support the energy for the water flux to the producer. Therefore, the water cut decreases extremely.
This is the key benefit of the DWS well pattern: even the oil recovery factor does not increase too much.
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Figure 15. Water cut for the cases with DWS under different pressure constraints in the DWS. 
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Figure 15. Water cut for the cases with DWS under different pressure constraints in the DWS.

As shown in Figure 16, before the DWS well pattern started to produce bottom water, it was
under an inactive status. Thus, the bottom water flowed to the producer because higher pressure
in the bottom water zone was obtained with the effect of the gravity of the condensate water, and
the water flowed in a circular flow. When the pressure in the bottom water zone increased to the
well constraint pressure, the bottom water started to flow towards the DWS rather than toward the
producer, as indicated in Figure 16b. As time went by, the condensate water flow direction changed
vertically to the bottom water zone in the bottom of the oil pay zone and fluxed towards the DWS.
Therefore, less water flowed to the producer and a lower water cut was obtained.
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For the VInj-HPro well pattern, the lowest oil recovery factor (31.18%) was gained among the five
well patterns, as shown in Figure 13. The reason for the lower oil recovery factor even through five
vertical injectors were conducted in the reservoir is that the heat conduction process occurs around the
injectors and the size of the steam chamber grows smaller with the depth increases. Due to the effect
of the steam gravity overriding, the results in the residual oil saturation in the top part of the reservoir
are much lower than that in the bottom part of the oil pay zone. The established free gas bank in front



Energies 2017, 10, 1999 20 of 24

of the steam chamber weakens the heat conduction process, which means the heat transfer rate is
decreased. Thus, the steam chamber cannot cover the space among the injectors. As shown in Figure 17,
a large amount of oil remained in the area between the adjacent injectors. Therefore, the oil recovery
rate is lower than that in other well patterns. To obtain a better view of the oil distribution in the oil
reservoir, the display length ratio in the J direction to the I direction was modified to Y/X = 0.1 × J
direction length: 1 × I direction length.
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5. Conclusions

Six conclusions can be drawn from this study. First, for the heavy oil reservoir with a bottom
water zone, the steam injection pressure affects the water production ratio from the bottom water zone
dramatically. An optimized injection pressure can increase the defined value Y to a maximum value,
which indicates a better production performance than in other cases.

Second, both positive and negative effects are observed in the reservoir with solution gas.
The positive effect reduces the heat loss to the overburden because of the gas layer on the top of
the oil pay zone. But the free gas bank in front of the steam chamber, like an insulation layer, reduces
the heat transfer rate in the reservoir, which leads to the reduction of the injected heat utilization.

Third, with the thickness of the bottom water zone increasing, the oil recovery factor decreases a
little bit, and logarithmical relationships are investigated between the volumes of the bottom water
production, bottom water production ratio, and the thickness of the bottom water zone.

Fourth, as a lean zone, the oil saturation in the bottom water zone can increase the oil recovery
rate when the oil saturation is not very high. Then it decreases after the oil saturation reaches 30% and
the cumulative energy oil ratio decreases when the oil saturation in the bottom water zone increases.

Fifth, a higher oil recovery factor can be obtained when a lower well location is applied in the
reservoir. When the producer is drilled in the bottom water zone, the oil recovery factor is higher than
that when the producer is drilled in the oil pay zone. Nevertheless, the water production ratio from
the bottom water zone increases significantly when the producer is located in the bottom water zone.

Sixth, compared to five different well patterns, the two corner wells and triple wells patterns can
gain the highest oil recovery factors (74.71% and 77.19%, respectively), which are almost twice that
achieved in the conventional SAGD process (47.84%), and the main production duration is shortened.
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