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Abstract: As a kind of clean and renewable energy, wind power is winning more and more attention
across the world. Regarding wind power utilization, safety is a core concern and such concern has led
to many studies on predicting wind speed. To obtain a more accurate prediction of the wind speed,
this paper adopts a new hybrid forecasting model, combing empirical mode decomposition (EMD)
and the general regression neural network (GRNN) optimized by the fruit fly optimization algorithm
(FOA). In this new model, the original wind speed series are first decomposed into a collection of
intrinsic mode functions (IMFs) and a residue. Next, the inherent relationship (partial correlation) of
the datasets is analyzed, and the results are then used to select the input for the forecasting model.
Finally, the GRNN with the FOA to optimize the smoothing factor is used to predict each sub-series.
The mean absolute percentage error of the forecasting results in two cases are respectively 8.95%
and 9.87%, suggesting that the hybrid approach outperforms the compared models, which provides
guidance for future wind speed forecasting.

Keywords: wind speed forecasting; empirical mode decomposition; general regression neural
network; fruit fly optimization algorithm

1. Introduction

Wind power, as a type of sustainable and clean energy, is one of the most widely used,
technologically mature, and commercially produced renewable sources [1,2]. According to the
Global Wind Energy Council (GWEC), the cumulative wind generating installed capacity has reached
486,790 MW at the end of 2016 with the share of 34.7% donated by China [3]. The goal that
grid-connected wind power installed capacity should reach 200 GW by 2020 [4] indicates that, during
the “13th Five-Year Plan” period, China needs to put into operation more than 20 GW of wind power
annually. This means that the targets and tasks of wind power development are basically clear, and the
wind power industry will maintain a rapid growth for a long period of time. Concerning the benefits
of wind power, a prediction system installed in grid-connected wind farms becomes important to
effectively reduce the volatility of the voltage and frequency caused by a sudden cut of wind turbines,
and to improve the security, reliability, and controllability of an electric power system to realize the
economic dispatch. In this sense, an accurate forecast of wind speed is an essential prerequisite, which
helps guarantee the construction and operation of the wind power prediction system.

The commonly used methods in terms of wind speed prediction are mainly divided into two
categories: statistical analysis models, such as autoregressive moving average (ARMA) models [5] and
autoregressive integrated moving average (ARIMA) models [6–8]; and machine learning methods,
including artificial neural networks (ANNs) [9–12] and the support vector machine (SVM) [13,14].
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Weron [15] explained the complexity of the available solutions, their strengths and weaknesses, and the
opportunities and threats that the forecasting tools offer or that may be encountered. Cincotti, et al. [16]
proposed and compared three different methods to model prices time series. Amjady and Keynia [17]
applied an improved neural network to day-ahead electricity price forecasting. Here, the back
propagation neural network (BPNN) is a typical instance of an ANN. Guo [18] introduced a new
strategy based on seasonal exponential adjustment and a BPNN to forecast wind speed, where the
BPNN was established to predict the wind speed. Liu [19] put forward a BPNN model with empirical
mode decomposition (EMD) to forecast hourly wind speed. The experiment was repeated 30 times
and took the mean value as the final results to avoid randomness, which indicated that the model
performed well. However, the BPNN has a problem with many parameters to set, and it is easy to
fall into over-fitting or a local optimum. Compared with a BPNN, the radial basis function neural
network (RBFNN) shows a stronger approximation and anti-interference capability with a simple
structure. Zhang [20] exploited a novel method based on the wavelet transform (WT) and an RBFNN
with the consideration of seasonal factors. The general regression neural network (GRNN) has strong
non-linear mapping capabilities and a flexible network structure as well as a high degree of fault
tolerance and robustness, which is suitable for solving nonlinear problems. Moreover, it has more
advantages than the RBFNN in approach ability and learning speed. Liu [21] proposed a GRNN model
on the basis of an integration of a WT and spectral clustering (SC), which presented a high operation
efficiency and prediction accuracy. Thus, a GRNN is considered as the forecasting model in this paper.

The selection of the smoothing factor in the GRNN model has an influence on its performance.
Intelligent optimization algorithms, such as the genetic algorithm (GA) [22–24] and particle swarm
optimization (PSO) [25–28], are usually taken to select the parameters for forecasting models. PSO is
designed by simulating the feeding behavior of birds. Assuming that there is only one piece of food in
the area (that is, the optimal solution in question), the task of the flock is to find the food source. During
the entire search process, members of the flock pass on their own messages to each other so that other
birds know their place. Through such collaborations, they can determine whether they are finding the
optimal solution or not and at the same time pass the information of the optimal solution to the entire
flock. Eventually, the whole flock can gather around the food source, which means that the optimal
solution is found. Ren [29] developed an improved PSO-BPNN model with input parameter selection
for wind speed prediction. The study showed that the model optimized by PSO had better results than
a single BPNN and an ARIMA model. The PSO effectively improved the forecasting accuracy but also
showed the malpractice that, under the condition of convergence, since all the particles fly towards
the direction of the optimal solution, the particles tend to be the same, which makes the convergence
speed of the latter part slow down significantly. Meanwhile, PSO converges to a certain precision, and
cannot be further optimized, thus the accuracy is not high. In order to overcome these drawbacks,
the fruit fly optimization algorithm (FOA) based on the behaviors of food finding was proposed by
Pan in 2011 [30]. This method needs to set less parameters, performs at a relatively high speed for
searching for the optimum, and has a wide application [31–33]. Here, the FOA is utilized to adjust the
appropriate smoothing factor in the GRNN model.

The strong randomness and volatility of wind speed add difficulties to its accurate prediction,
therefore its inherent characteristics must be taken into account. The original wind speed series can
be regarded as a combination of sub-series with different frequency which show more regularities.
EMD [34,35] decomposes the signal according to the time-scale characteristics of the data itself without
any pre-setting basis function, which is essentially different from the Fourier decomposition and
wavelet decomposition methods that are based on the priori harmonic basis functions and wavelet
basis functions. Precisely because of this characteristic, EMD can theoretically be applied to any type
of signal decomposition and has very obvious advantages for processing nonstationary and nonlinear
data. In reference [36], an ANN model integrated with EMD was proposed, where EMD was utilized to
decompose the original wind speed series to eliminate its irregular fluctuations. Wang [37] hybridized
an Elman Neural Network (ENN) method with EMD. The results showed that it indicated a higher
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prediction accuracy than the single ENN model. Therefore, EMD is applied to decompose the original
datasets in this study.

According to the above research, a GRNN model integrated with EMD and FOA is proposed.
It is the first time that these three models have been combined in wind speed forecasting, and several
comparing methods are utilized to validate the effectiveness of the proposed hybrid model. The paper
is organized as follows. Section 2 introduces the implementation process of EMD and the GRNN
optimized using the FOA. Section 3 presents the evaluation criteria of the results. Section 4 provides a
case to validate the proposed model. Section 5 analyzes another case in a different place at another time
to prove the generalization of the forecasting method. Section 6 obtains the conclusion in this paper.

2. Methodology

2.1. EMD

EMD is an adaptive time series decomposition technique proposed by Norden E. Huang [38].
The principle of this signal processing method is to decompose the original time series with various
fluctuations into a stationary one with different characteristics. Each series that is obtained after
decomposition is treated as an intrinsic mode function (IMF), which satisfies the following two
conditions: (1) in the whole time range, the number of local extremal points and over zero must be
equal, or the maximum difference is one; and (2) the mean value of the two envelopes formed by the
local maxima and local minima, respectively, is zero at any point.

For the original time series s(t), the procedures of EMD are shown as follows:

(1) Apply cubic spline interpolation to connect all the local maxima and minima after identification in
the time series s(t) so that the upper envelope xmax(t) and lower envelope xmax(t) are accordingly
formed. Calculate the mean value n(t) of the two envelopes and the difference between n(t) and
the original signal s(t):

n(t) =
xmax(t) + xmin(t)

2
(1)

p(t) = s(t)− n(t) (2)

(2) Identify whether p(t) satisfies the two conditions of IMFs. If it conforms, p(t) can be considered
as the first IMF; then, calculate the difference between the original signal s(t) and c1(t):

c1(t) = p(t) (3)

r1(t) = s(t)− c1(t) (4)

If not, repeat the above procedure until it meets the two conditions.
(3) The sifting process above will be repeated n times until rn is a monotone function. The original

signal s(t) can be reconstructed as follows:

s(t) =
n

∑
i=1

ci + rn (5)

where ci represents the IMFs, and rn is the final residue.

2.2. GRNN

The GRNN model was proposed by the American scholar Donald F.Specht in 1991 [39].
The GRNN model has strong nonlinear mapping capabilities and flexible network structure as well
as a high degree of fault tolerance and robustness, which is suitable for solving nonlinear problems.
Moreover, it has more advantages than an RBFNN in approach ability and learning speed. The GRNN
model is structurally similar to an RBFNN. It consists of four layers, as shown in Figure 1, which are
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the input layer, the pattern layer, the summation layer, and the output layer. Corresponding to the
network input is X = [X1, X2, · · · , Xn]

T , and its output is Y = [Y1, Y2, · · · , Yk]
T .
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(1) input layer. The number of neurons is equal to the dimension of the input vector in the learning
sample. Each neuron is a simple distribution unit that passes the input variable directly to the
pattern layer.

(2) pattern layer. The number of neurons is equal to the number of learning samples. Each neuron
corresponds to a different sample, and the neuron transfer function is:

pi = exp

[
− (X−Xi)

T(X−Xi)

2σ2

]
, i = 1, 2, · · · , n (6)

where X represents the network input variable, Xi is the corresponding learning sample of
neuron i, and σ belongs to the width coefficient of the Gaussian function, which is called the
smoothing factor.

(3) summation layer. Two types of neurons are used for summation.

One kind of calculation formula is
n
∑

i−1
exp

[
− (X−Xi)

T(X−Xi)
2σ2

]
, which sums up the output of all

neurons in pattern layer, and the connection weight between the pattern layer and each neuron
equals 1. The transfer function is

SD =
n

∑
i=1

Pi (7)

Another calculation formula is
n
∑

i−1
Yi exp

[
− (X−Xi)

T(X−Xi)
2σ2

]
, which performs weighted summation

on all the neurons in the pattern layer. The connection weight between the ith neuron in the
pattern layer and the jth molecule in the summation layer is the jth element of ith output sample
Yi. The transfer function is

SNj =
n

∑
i=1

yijPi, j = 1, 2, · · · , k (8)

(4) output layer. The number of neurons is equal to the dimension k of the output vector in the
sample. Each neuron will divide the output of the summation layer, and the output of neuron j
corresponds to the jth element of the estimated result Ŷ(X), namely

yj =
SNj

SD
, j = 1, 2, · · · , k (9)
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When the smooth factor σ is very large, Ŷ(X) is approximately the mean of all the
sample-dependent variables. On the contrary, when the smooth factor tends to 0, Ŷ(X) is very
close to the training sample. When the point to be predicted is included in the training sample set,
the forecasting value of the dependent variable will be very close to the corresponding dependent
variable in the sample. Once encountered, the sample cannot be included in the point, and it
is possible to predict a very poor performance, which indicates that the network has a poor
generalization ability. When the value of σ is moderate, the dependent variable of all of the
training samples is considered in the estimation Ŷ(X), and the dependent variable corresponding
to the forecasting point distance is added to the larger weight. Therefore, the value of σ has a
great influence on the forecasting results of the GRNN, and the FOA is used to find the optimal
processing of σ.

2.3. A GRNN Based on the FOA with Parameter Selection

The FOA is a new global optimization method based on foraging behaviors. The fruit flies
themselves are superior in smell and vision to other species; specifically, they can collect all kinds
of smells in the air and fly in the direction of the food or gather with companions. Thus, there are
two steps for searching for food of a fruit fly swarm [30]: (1) use an olfactory organ to collect odors
floating in the air and fly towards the food location; and (2) use vision to find food and other fruit flies’
gathering position and fly to that direction. The iterative food searching process of a fruit fly swarm is
shown in Figure 2. Compared with PSO, the FOA has strong robustness as a result of the algorithm’s
operation not involving multiple loops and complicated functions. An optimization problem with
only one parameter can achieve very good results. In this paper, the FOA is utilized to select the best
value of the smoothing factor σ in the GRNN.
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Figure 2. Iterative food searching process of a fruit fly swarm. 

Figure 2. Iterative food searching process of a fruit fly swarm.

The wind speed forecasting model combining EMD, the FOA, and the GRNN are constructed as
illustrated in Figure 3.
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The specific steps for wind speed prediction are listed as follows:
Step 1: Decompose the original wind series into a collection of IMFs by EMD. In order to choose

a proper input, the partial autocorrelation coefficient function (PACF) is applied to each of the IMFs
to select the elements for the training set. For the stationary time series {Yt}, the so-called k-order
lag PACF refers to the correlation between yt−k and yt under the condition of a given middle random
variable yt−1, yt−2, · · · , yt−k+1, or after eliminating the interference of the middle random variable
yt−1, yt−2, · · · , yt−k+1.

Step 2: Initialize the parameters: after many attempts, the optimal population size and the
maximum iteration number are respectively proposed as 20 and 50. The initial position of the fruit
fly swarm is set as X_axis = rand(), Y_axis = rand(), where rand() represents the random number
generation function. Here, according to general value range of the smoothing factor σ, the range of
random flight distance is set as (–10,10). To avoid overtraining, the samples are divided into two
groups to carry out the cross-training.

Step 3: Start searching for the optimum: according to the operation mechanism of the FOA [29],
set the number of iterations gen = 0, and let [X(i), Y(i)] be the random direction and distance that an
individual fruit fly follows to look for food.

X(i) = X_axis + 20× rand()− 10 (10)

Y(i) = Y_axis + 20× rand()− 10 (11)
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Step 4: Evaluate the population: firstly, calculate the distance Dist(i) from the location of the fruit
fly to the origin and take the reciprocal of Dist(i) as the smell concentration judgment value S(i).

Dist(i) =
(

X(i)2 + Y(i)2
) 1

2 (12)

S(i) =
1

Dist(i)
(13)

Secondly, set S(i) as the value of the smoothing factor in the GRNN to predict the wind speed.
Thirdly, select the root mean square error as the fitness function (Function()) to evaluate the disparity
between the actual value and forecasting result, and record the corresponding value as the smell
concentration Smell(i). Finally, the fruit fly with the minimal smell concentration can be found out.

Smell(i) = Function(S(i)) (14)[
bestSmell bestIndex

]
= min(Smell(i)) (15)

Step 5: Record the optimal value. The best smell concentration value Smellbest, smell
concentration judgment bestS(i), and the x and y coordinates need to be kept as follows. Then,
the fruit flies utilize vision to fly towards that location.

Smellbest = bestSmell (16)

bestS(i) = S(bestIndex) (17)

X_axis = X(bestIndex) (18)

Y_axis = Y(bestIndex) (19)

Step 6: Implement iteration optimization. Repeat Step 3 and Step 4 to determine whether the
smell concentration is better than the previous one. If it is, go to Step 5 and set gen = gen + 1.

Step 7: Stop optimization and start prediction. Circulation ends at the maximum number of
iterations. Here, the best value of the smoothing factor can be substituted into the GRNN model for
wind speed forecasting.

3. Evaluation Criteria of Forecasting Performance

It is the primary issue to determine which forecasting model outperforms the other models,
and the performance of the prediction models is usually assessed by statistical criteria: the mean
absolute error (MAE), the mean absolute percentage error (MAPE), the root mean square error (RMSE),
and the index of agreement (IoA). For the first three indexes, the smaller the values are, the better
the forecasting performance is. For the IoA, the closer the value is to 1, the better the forecasting
performance is. In addition, an MAPE <10% indicates high prediction accuracy, 10% ≤MAPE ≤ 20%
indicates good prediction, 20% ≤MAPE ≤ 50% implies acceptable prediction, and an MAPE ≥ 50%
implies inaccurate prediction [9]. These four error indexes are defined as follows:

MAE =
1
N

N

∑
t=1
|yt − y∗t | (20)

MAPE =
1
N

N

∑
t=1

∣∣∣∣yt − y∗t
yt

∣∣∣∣× 100% (21)

RMSE =

√√√√ 1
N

N

∑
t=1

(yt − y∗t )
2 (22)
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IoA = 1− ∑N
t=1(y

∗
t − yt)

2

∑N
t=1(|y∗t − yt| − |yt − yt|)

2 (23)

where yt and y∗t are the actual and forecast wind speeds at time period t, respectively; N is the
forecasting period; and yt represents the mean value of the actual wind speed at time period t.

Additionally, in order to show the improvement degree of forecasting errors for different models,
ξ is defined as follows:

ξ =


ξcompared−ξ proposed

ξcompared × 100% suitable for MAE, MAPE and RMSE
ξ proposed−ξcompared

ξcompared × 100% suitable for IoA
(24)

where ξ proposed and ξcompared represent the MAE, MAPE, RMSE, and IoA generated by the proposed
model and other compared models, respectively.

4. Case Study

4.1. Wind Speed Data

Gansu province, with a wealth of wind energy resources, is one of the top seven
10-million-kilowatt wind power bases heavily invested for construction in China. Located in Jiuquan
City, Guazhou is known as “the World Storehouse of Wind Energy”, whose geographical position
is shown in Figure 4. In recent years, a series of favorable policies have been issued to promote the
further development of wind power generation in this area. The installed wind capacity is expected
to reach 6.45 million kW and the annual generating capacity will come to 14 billion kWh in 2015 for
the Guazhou region. According to preliminary planning, by 2020, the total installed wind capacity
will exceed 10 million kW. Therefore, accurate wind speed forecasting is not only the basis for wind
power prediction, but also has profound significance for planning and designing a wind farm, making
a schedule for operating the generator, ensuring the safe operation of the electric power system, and
improving economic benefits, etc.

The wind speed data every 20 min from 28 October 2011 to 1 December 2011 were collected from
a wind farm in the northwest of Guazhou, totaling 2520 records. Here, the data from 28 October 2011
to 28 November 2011 are selected as the training set and the remaining 216 data are utilized as the test
set. Figure 5 shows the original wind speed time series (including 2304 samplings) with its nonlinear
and nonstationary characteristics.
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where ξ proposed  and ξ compared  represent the MAE, MAPE, RMSE, and IoA generated by the proposed 
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4.2. Forecasting Steps

Step 1: Wind speed decomposition. EMD is applied to decompose the original wind speed series
into several IMFs to eliminate the nonstationarity of the data, which may have an impact on prediction
accuracy. From Figure 6, it can be observed that until eight independent IMFs and one residue R0 are
decomposed, the wind speed time series in this case satisfies the condition of EMD.
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Step 2: Input variables selection based on PACF. Since the weather variables that may affect wind
speed cannot be easily collected, and the wind speed shows certain time series characteristics, the wind
speed data values before the forecast wind speed point are considered as the input variables of the
GRNN, and the PACF is applied to determine the specific input variable number of each of the IMFs
and R0. Figure 7 is the plot of the partial correlation analysis of the wind speed, where PACF1~PACF8
stand for IMFs (PACF1~PACF8), respectively, and PACF9 represents the residue (R0). Setting each
decomposition wind speed time series xi as the output variable, if the PACF at lag k is out of the 95%
confidence interval, xi−k is applied as one of the input variables.
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So, it is obvious that the input variables of these nine series for the FOA-GRNN are the ones
shown as follows.

• IMF1: (xt−1)

• IMF2: (xt−1, xt−2, xt−3, xt−4)

• IMF3: (xt−1, xt−2, xt−3)

• IMF4: (xt−1, xt−2, xt−3, xt−4, xt−5)

• IMF5: (xt−1, xt−2, xt−3, xt−4, xt−5, xt−6)

• IMF6: (xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7, xt−8, xt−9)

• IMF7: (xt−1)

• IMF8: (xt−1)

• R0: (xt−1)

Step 3: Wind speed forecasting. The FOA-GRNN is utilized to predict the corresponding sub-series
with the selected input variables in Step 2. The final forecasting results for the wind speed from
29 November 2011 to 1 December 2011 are obtained by aggregating the prediction results of each
sub-series. The values of the smoothing factor in the GRNN optimized by the FOA are recorded in
Table 1 for these IMFs and R0.

Table 1. The values of the smoothing factor for each FOA-GRNN trained by the IMFs and R0.

IMFs IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 R0

Smoothing factor 0.0652 0.0330 0.0076 0.0128 0.0109 0.0273 0.0031 0.0023 0.0023

Step 4: Comparative analysis of different models. From Figure 8, eight models are presented to
predict the wind speed. The ARIMA, BPNN, and GRNN models are three different basic forecasting
models. Since PSO and the FOA both belong to the class of swarm intelligent optimization algorithms,
there are similarities in the operating mechanism. Thus, the PSO-GRNN and the FOA-GRNN are
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utilized to test whether the optimization part donates to the prediction accuracy. The EMD-GRNN,
the EMD-PSO-GRNN, and the EMD-FOA-GRNN can be applied to explore the effectiveness of EMD.
After many attempts, the proper parameters settings in each algorithm are displayed in Table 2. The
wind speed actual and forecasting values for different models are shown in Figures 9 and 10.
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Table 2. The parameters settings in each of the comparison models.

Algorithm Affiliated Comparison
Model Parameter Name Value Setting

BPNN BPNN
maximum iteration number 50

learning rate 0.1
minimum error 0.001

GRNN

GRNN
PSO-GRNN
EMD-GRNN

EMD-PSO-GRNN

smoothing factor 0.05

PSO PSO-GRNN
EMD-PSO-GRNN

population size 20
maximum iteration number 50

learning factor c1, c2 0.8, 0.8
maximum velocity 1

minimum error 0.001

BPNN: back propagation neural network; PSO: particle swarm optimization.
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Figure 10. Prediction results of wind speed from 29 November 2011 to 1 December 2011 (II).

4.3. Results Analysis

Figure 11 displays the degree of correlation between the actual value and predicted values of the
wind speed. It can be seen that the forecasted wind speed obtained by the EMD-FOA-GRNN model
most correlates to the actual one compared with the FOA-GRNN and EMD-GRNN models.

As is presented in Figure 12, the absolute value of error by the EMD-FOA-GRNN model is
relatively stable and there are only five error points out of 4 m/s, which means that the forecasting
results can be accepted. The accuracy estimation of the predicted wind speed by different models is
shown in Table 3. It can be observed that the relative errors in the hybrid models mainly concentrate
on the level of less than 10%. Moreover, the number of errors less than 10% generated by the
EMD-FOA-GRNN, EMD-PSO-GRNN, and EMD-GRNN models is more than 120, which shows
a good performance in wind speed forecasting.



Energies 2017, 10, 2001 13 of 18
Energies 2017, 10, 2001  13 of 18 

 

 

Figure 11. The correlation between forecasting and actual wind speed. (a) EMD-FOA-GRNN and 
FOA-GRNN; (b) EMD-FOA-GRNN and EMD-GRNN. 

 

Figure 12. The absolute value of error by the EMD-FOA-GRNN model. 

Table 3. Accuracy estimation of forecasting models for the test samples. 

Forecasting Models 
<10% 10–20% >20% 

Number Percentage Number Percentage Number Percentage
EMD-FOA-GRNN 140 64.81% 65 30.09% 11 5.09% 
EMD-PSO-GRNN 139 64.35% 60 27.78% 17 7.87% 

EMD-GRNN 126 58.33% 61 28.24% 29 13.43% 
FOA-GRNN 118 54.63% 59 27.31% 39 18.06% 
PSO-GRNN 105 48.61% 80 37.04% 31 14.35% 

GRNN 80 37.04% 73 33.80% 63 29.17% 
BPNN 73 33.80% 57 26.39% 86 39.81% 

Time (20 min)

A
bs

ol
ut

e 
va

lu
e 

of
 e

rr
or

 (m
/s

) 
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Table 3. Accuracy estimation of forecasting models for the test samples.

Forecasting
Models

<10% 10–20% >20%

Number Percentage Number Percentage Number Percentage

EMD-FOA-GRNN 140 64.81% 65 30.09% 11 5.09%
EMD-PSO-GRNN 139 64.35% 60 27.78% 17 7.87%
EMD-GRNN 126 58.33% 61 28.24% 29 13.43%
FOA-GRNN 118 54.63% 59 27.31% 39 18.06%
PSO-GRNN 105 48.61% 80 37.04% 31 14.35%

GRNN 80 37.04% 73 33.80% 63 29.17%
BPNN 73 33.80% 57 26.39% 86 39.81%

ARIMA 49 22.69% 55 25.46% 112 51.85%
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From Table 4, it can be analyzed that: (a) based on the four evaluation criteria MAE, MAPE,
RMSE, and IoA, the proposed model EMD-FOA-GRNN shows the best forecasting performance
among the eight models. The MAE, MAPE, RMSE, and IoA of the proposed model is 1.286 m/s, 8.95%,
0.124 m/s, and 0.9070, respectively. (b) by comparing the three single models, the GRNN and the
BPNN have higher accuracy than the ARIMA model. Therefore, it can be concluded that intelligent
models can obtain better forecasting results than statistical models. Additionally, the GRNN presents
more satisfactory performance than the BPNN. The prediction accuracy of the BPNN is closely related
to typical training samples and network structure, and it is easy to fall into a local extreme. However,
the GRNN, with only one parameter to be optimized, is more suitable for forecasting nonlinear and
non-stationary wind speed series. (c) when comparing the EMD-FOA-GRNN with the FOA-GRNN,
the EMD-PSO-GRNN with the PSO-GRNN, and the EMD-GRNN with the GRNN, EMD improves the
forecasting performance in terms of lower MAE, MAPE, RMSE, and a higher IoA, which proves it can
effectively decompose the volatile signals to promote the forecasting capacity. (d) the two optimized
models PSO-GRNN and FOA-GRNN produce better results than the single GRNN model. Here, the
FOA and the PSO algorithm are utilized to select the appropriate value of the smoothing factor for the
GRNN. These two optimization algorithms can effectively enhance the training and learning process
so as to avoid falling into a local optimum and improve the global searching ability of the GRNN.
Moreover, as seen from these four indexes’ values, the FOA made a better optimal performance than
that of PSO, which verified the optimization mechanism of the FOA.

Table 4. Statistical error measures of prediction methods in Case One.

Forecasting
Models

Indexes

MAE (m/s) MAPE (%) RMSE (m/s) IoA

EMD-FOA-GRNN 1.286 8.95 0.124 0.9070
EMD-PSO-GRNN 1.320 9.45 0.135 0.8921

EMD-GRNN 1.593 10.99 0.151 0.8195
FOA-GRNN 1.657 11.38 0.146 0.8354
PSO-GRNN 1.739 11.57 0.145 0.8124

GRNN 2.265 14.50 0.171 0.7310
BPNN 2.461 18.26 0.231 0.7257

ARIMA 3.197 23.52 0.285 0.6618

MAE: mean absolute error; MAPE: mean absolute percentage error; RMSE: root mean square error; IoA: Index
of Agreement.

From Table 5, it can be found that: (a) the forecasting performance of the EMD-GRNN combined
with the PSO algorithm and the FOA have been effectively improved. It can be seen that the FOA
performs better than the PSO algorithm in improving prediction accuracy, mainly because it is easier to
use the FOA to fulfill a global optimization goal with less parameters to be optimized. (b) For the basic
EMD-GRNN model, it can be analyzed that the FOA enhances the forecasting accuracy and the MAPE
promoted percentage is 18.56%. Similarly, owing to EMD, the promoted percentage of MAPE is 21.35%.
(c) The EMD part makes more of a contribution than the FOA part in the EMD-FOA-GRNN model.

Table 5. Promoted percentage of errors in Case One.

Forecasting Models Promoted Percentage of Errors (%)

ξMAE ξMAPE ξRMSE ξIoA

EMD-FOA-GRNN versus EMD-GRNN 19.27 18.56 17.88 10.68
EMD-FOA-GRNN versus FOA-GRNN 22.39 21.35 15.07 8.57
EMD-PSO-GRNN versus EMD-GRNN 17.14 14.01 10.60 8.86
EMD-PSO-GRNN versus PSO-GRNN 24.09 18.32 6.90 9.81
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5. Case Two

In order to verify that the proposed model has good adaptability in different times and places,
another case which selects the wind speed data in a wind farm located in the middle of Inner Mongolia
(shown in Figure 13) is provided in this paper. The study is carried out with the data from 18 February
2012 to 22 March 2012 as the training set and data from 23 March 2012 to 25 March 2012 as the test set.
The forecasting results are displayed in Figures 14 and 15. The error analyses are shown in Tables 5
and 6.
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Figure 15. Prediction results of wind speed from 23 March 2012 to 25 March 2012 (IV).
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Table 6. Statistical error measures of prediction methods in Case Two.

Forecasting
Models

Indexes

MAE (m/s) MAPE (%) RMSE (m/s) IoA

EMD-FOA-GRNN 1.677 9.87 0.137 0.9288
EMD-PSO-GRNN 1.880 10.16 0.142 0.8941

EMD-GRNN 2.037 10.91 0.147 0.8671
FOA-GRNN 2.300 12.47 0.164 0.8334
PSO-GRNN 2.459 13.53 0.183 0.8264

GRNN 3.164 16.38 0.194 0.7453
BPNN 3.505 18.85 0.226 0.7518

ARIMA 3.594 25.19 0.382 0.6258

As demonstrated in Tables 6 and 7: (a) intelligent algorithms have higher accuracy in wind speed
forecasting than statistical models. (b) the hybrid models show better performance than the single one.
(c) EMD improves the performance compared with the corresponding forecasting models that directly
utilize the original wind speed series to make predictions. (d) The EMD-FOA-GRNN presents the best
forecasting results among the models, and the EMD part donates much more than the FOA part in
improving prediction precision. In all, the results in Case Two once again verify the feasibility and
effectiveness of the proposed model.

Table 7. Promoted percentage of errors in Case Two.

Forecasting Models
Promoted Percentage of Errors (%)

ξMAE ξMAPE ξRMSE ξIoA

EMD-FOA-GRNN vs. EMD-GRNN 19.27 18.56 17.88 10.68
EMD-FOA-GRNN vs. FOA-GRNN 22.39 21.35 15.07 8.57
EMD-PSO-GRNN vs. EMD-GRNN 17.14 14.01 10.60 8.86
EMD-PSO-GRNN vs. PSO-GRNN 24.09 18.32 6.90 9.81

6. Conclusions

This paper presents a hybrid intelligent algorithm for wind speed forecasting. Firstly, EMD is
proposed to preprocess the original wind speed signals to eliminate the random fluctuations of the
wind speed data. Then, the GRNN model, which is improved by the FOA, is used to forecast the set
of IMFs obtained by EMD. The PACF is used to select the arguments of the GRNN and choose the
lags of the historical speeds. Major conclusions are summarized as follows: (a) the EMD effectively
improves the forecasting performance; (b) the optimization algorithms FOA and PSO increase the
strong global searching capability of the model, and the FOA shows better performance; (c) the EMD
part contributes more than the FOA in increasing the accuracy of the EMD-FOA-GRNN model; and (d)
the error valuation criteria shows that the EMD-FOA-GRNN is a very promising methodology, which
can provide a new idea for short-term wind speed forecasting. In addition, with the development of
signal processes and intelligent algorithms, there will be more advanced models applied to predict
wind speed, which is our study direction in the future.
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