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Abstract: This paper focuses on the optimal intraday scheduling of a distribution system that includes
renewable energy (RE) generation, energy storage systems (ESSs), and thermostatically controlled
loads (TCLs). This system also provides time-of-use pricing to customers. Unlike previous studies,
this study attempts to examine how to optimize the allocation of electric energy and to improve
the equilibrium of the load curve. Accordingly, we propose a concept of load equilibrium entropy
to quantify the overall equilibrium of the load curve and reflect the allocation optimization of
electric energy. Based on this entropy, we built a novel multi-objective optimal dispatching model
to minimize the operational cost and maximize the load curve equilibrium. To aggregate TCLs
into the optimization objective, we introduced the concept of a virtual power plant (VPP) and
proposed a calculation method for VPP operating characteristics based on the equivalent thermal
parameter model and the state-queue control method. The Particle Swarm Optimization algorithm
was employed to solve the optimization problems. The simulation results illustrated that the
proposed dispatching model can achieve cost reductions of system operations, peak load curtailment,
and efficiency improvements, and also verified that the load equilibrium entropy can be used as a
novel index of load characteristics.

Keywords: active distribution networks; intraday optimal dispatching; load equilibrium entropy;
thermostatically controlled loads

1. Introduction

The rapid development of modern society has brought with it issues, including energy shortages
and environmental pollution. To overcome these issues, it is crucial to exploit renewable energy
(RE) [1,2] resources. In recent years, the installed capacities of RE have been rapidly increasing
around the world. For example, in China, the generating capacities of wind power and photovoltaic
(PV) power were 131 GW and 42 GW, respectively, by the end of 2015 [3]. Moreover, according
to a recent report by the Energy Research Institute of the Chinese National Development and
Reform Commission, both the RE electricity integration ratios of wind power and PV power are
expected to reach approximately 30%, and their sum may rise to as much as 63% by 2050 [4,5].
However, the increased penetration of RE resources into distribution systems may lead to bidirectional
power flow and bring abundant volatility and uncertainty, resulting in tremendous challenges to
traditional distribution networks. To deal with these issues, traditional distribution networks are
gradually evolving from a passive mode to an active mode. Hence, the concept of Active Distribution
Networks (ADNs) [6–9] has been proposed. In the context of ADNs, distributed energy resources
(DERs) (containing RE generators), controllable loads, and energy storage equipment can be actively
adjusted using intelligent control techniques to attain specific operation objectives [10].

Energies 2017, 10, 2003; doi:10.3390/en10122003 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en10122003
http://www.mdpi.com/journal/energies


Energies 2017, 10, 2003 2 of 17

The extant research has been primarily focused on the control [11,12], protection [13,14],
and dispatching [15–18] of ADNs. This study will investigate optimal ADN dispatching.
Golshannavaz et al. [15] presented an optimal operational scheduling framework for intelligent
distribution systems that are aimed at minimizing the day-ahead total operation costs to optimally
control the active elements of distributed generations, the network, and demand response loads.
In Ref. [16], the objective of the operation model was to maximize the social welfare in a real-time
distribution energy market based on locational marginal prices. A new probabilistic methodology
was proposed to assess the impact of residential demand response considering the uncertainties
associated with load demand, user preferences, environmental conditions, house thermal behavior,
and wholesale market prices. In addition, Safdarian et al. [17] developed a distribution company’s
stochastic operation framework, consisting of the day-ahead operation and real-time operation stages.
The objective of the two stages was to minimize the expected operating costs. In Ref. [18], a bi-level
optimization model of distribution networks with several micro-grids was built, with the upper level
being aimed at maximizing the distribution networks’ profit and the lower level aimed at minimizing
the micro-grids’ cost.

As described above, the previous literature primarily focused on minimizing operational costs
or maximizing social welfare. Limited attention has been paid to load profiling with simultaneous
optimization of both operational costs and social welfare. In the meantime, the power demands
have increased dramatically with economic development. The similar electricity usage patterns
of urban residents and the weak awareness of energy conservation lead to an increased load
peak-valley gap and low energy efficiency. Therefore, it is necessary to investigate how to schedule
coordinately the electric energy, including DERs, demand response (DR) resources, and energy storage
devices using ADN technologies to improve energy efficiency and decrease the load peak-valley gap.
In order to achieve the above targets, we propose the concept of load equilibrium entropy and
use it as one objective function. The proposed load equilibrium entropy can quantify the overall
equilibrium of a load curve, which reflects the optimization level of electric energy allocation.
Certain practical implications of this study are as follows: First, for generators, optimal allocation of
electric energy reduces the impacts of frequent starting or stopping. Secondly, for power systems,
optimal allocation increases the security and stability of the system’s operation. Thirdly, for end-users,
optimal allocation enables them to avoid the extensive usage of electrical power in the high peak
load periods, thereby decreasing their electricity consumption cost and improving the electrical
power consumption efficiency. Lastly, from the sustainable societal development perspective,
optimal allocation saves energy and improves the efficiency of energy utilization.

The distribution system in this paper includes a wind farm, a PV power station, an energy storage
system (ESS), and thermostatically controlled loads (TCLs). In addition, this distribution system also
provides time-of-use (TOU) pricing to customers. The energy storage technique [19,20] and TOU
pricing [21] strategy are commonly used to mitigate the intermittency of RE resources and reduce
system operation costs. In recent years, TCLs [22], such as air conditioners, heat pumps, water heaters,
and refrigerators, have been frequently used as distributed energy resources because they can store
electric energy as thermal energy. In addition, the usage of TCLs has been steadily increasing in recent
years. In the United States, for example, TCLs are responsible for approximately 20% of the total
electricity consumption [23]. In China, air conditioner loads (a typical type of TCLs) may account
for 30–40% of the total load during peak load periods, and, hence, have enormous potential for
load curtailment [24]. As they are small-scale electric loads, a key challenge of managing TCLs is
determining how to aggregate them to make them operate as a virtual generator in the system. One way
to address such a challenge is to model these small-scale electric loads as virtual power plants (VPPs),
an approach that is proposed to aggregate small-scale DERs to provide generation services [25,26].
Ruiz, Cobelo and Oyarzabal proposed an optimization algorithm to manage a VPP composed of a
large number of customers with thermostatically controlled appliances [26]. However, they did not
illustrate how to calculate generation limits and operating costs of the VPP. Hence, this study proposes
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a calculation method for VPP operating characteristics based on the equivalent thermal parameter
model and the state-queue control method.

The focus of this paper is on intraday scheduling of a distribution system with the wind farm,
the PV power station, the ESS, and TCLs. Based on load equilibrium entropy, we propose a
multi-objective optimization model to simultaneously optimize scheduling costs and load equilibrium.
Furthermore, we conduct a comparison analysis between the proposed model and two single-objective
optimization models, focusing on minimizing scheduling costs and maximizing the load equilibrium
entropy, respectively.

Five sections follow the introduction. First, the model of TCLs is developed in Section 2.
Then, the concept of load equilibrium entropy is proposed in Section 3. Section 4 presents the optimal
ADN dispatching model. In Section 5, a distribution system is studied to illustrate the proposed
optimal scheduling model. Finally, a summary is given in Section 6.

2. TCL Modeling

2.1. Thermal Parameter Model for TCLs

Thermostatically controlled appliances include air conditioning, electric water heaters,
and refrigerators. Because of their similarities, these TCLs are normally modeled in the same fashion.
While this paper focuses on air conditioning load (ACL) models, our results could also be applied to
the other two TCLs (electric water heaters, and refrigerators).

According to the simplified equivalent thermal parameters, model [27] of the ACL for residential
users and small commercial customers [28], the calculation formula for the indoor temperature can be
obtained as follows:

Tin,t+1 = Tout,t+1 − (Tout,t+1 − Tin,t)e−∆t/RC, sAC = 0 (1)

Tin,t+1 = Tout,t+1 − ηPAC/A− (Tout,t+1 − ηPAC/A− Tin,t)e−∆t/RC, sAC = 1 (2)

In the model, Tin refers to indoor temperature, Tout outdoor temperature, e−∆t/RC heat
dissipation parameter, ∆t time interval, R equivalent thermal resistance, C equivalent thermal capacity,
η efficiency of ACL, PAC the rated power of ACL, A conduction coefficient, and sAC the switching state
of the air conditioner, where “1” and “0” denote that the air conditioner is on and off, respectively.

For a given temperature set point, Tset„ when a consumer turns off an air conditioner, the indoor
temperature will increase as time goes by until it reaches the upper temperature limit Tmax. When a
consumer turns on the air conditioner, the temperature will decrease as time passes by until it drops to
the lower temperature limit Tmin.

2.2. Aggregation of ACLs

In most simplistic analysis scenarios, thermal characteristics of ACLs can be approximately seen
as linear. At the moment, the indoor temperature trajectory of ACLs can be simulated by the state
queueing (SQ) model [29].

Figure 1 shows the states of a single air-conditioning unit during two operational cycles. As shown
in the figure, there are 10 states of equal duration in an operational cycle. Seven shaded boxes represent
“off” states and three white boxes represent “on” states. If the ambient temperature and set point
remain unchanged, then the state of air-conditioning unit will switch forward from state 1 to state 10
in a temperature range of [Tmin, Tmax].
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Figure 1. State-queueing model of air conditioning load (ACL). 
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Figure 1. State-queueing model of air conditioning load (ACL).

Assuming that there are NAC air-conditioning units with similar thermal parameters and the same
initial thermal states shown in Figure 1, they are uniformly divided into tc groups, and each group is
controlled in turn (as shown in Figure 1). If the state time interval ∆t is 1 min, then at each moment,
there are ton groups of ACLs that are “on” states and toff groups of ACLs that are “off” states in the
temperature interval [Tmin, Tmax]. The total number of controlled groups/states equals to the sum of
ton and toff. Thus, the power of the aggregated ACLs PACsum can be calculated as follows:

PACsum =
ton

tc
NACPAC (3)

2.3. Virtual Power Plant Model for ACL

With the adjustment of temperature setting of ACLs, the aggregated demands will
vary accordingly. In order to preferably integrate ACLs into the real-time scheduling and operation,
the concept of VPP is used to represent the aggregated air-conditioning resources.

A VPP is comparable to a conventional power plant with its own operating characteristics, such as
scheduling characteristics of generation, generation limits, and operating costs. Assuming that the
ACLs with uniform and similar parameters can be equivalent to a virtual power plant. All of the
ACLs in scheduling plans are divided into Ng VPPs. Before operators make the scheduling decisions,
aggregators need to offer the feasible power regulation schemes and the corresponding compensation
costs to the grid company. Let Ns,n denote the set of feasible power regulation schemes for VPP n.
The real power of VPP n at time t is as follows:

Pvpp,n,t = ∑
s∈Ns,n

Pa,n,sSn,s,t (4)

where Pa,n,s refers to the load shedding of VPP n as it carries out scheme s at time t. The value of Sn,s,t is
0 or 1. When Sn,s,t = 1, VPP n implements the regulation scheme s at time t. While Sn,s,t = 0, VPP n does
not implement the regulation scheme s at time t. As an example, when the set point of VPP n is adjusted
from Tset to Treset, load consumptions in Tset and Treset can be, respectively, calculated according to (5).
Subsequently, load shedding of VPP n in the above scenario can be obtained as:

Pa,n,reset,t = PACsum,n,reset,t − PACsum,n,set,t (5)
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where Pa,n,reset,t refers to load shedding of VPP n at time t when set point changes from Tset to Treset,
and PACsum,n,reset,t and PACsum,n,set,t represent load consumptions of VPP n at time t in set point Treset

and set point Tset., respectively.

2.4. Cost Calculation for VPP

As the temperature set point increases, the comfort of customers weakens. Thus, customers may
obtain more compensation to remedy the reduction of comfort.

The operating cost of VPP n is defined as,

CVPP,n,t = K ∑
s∈Nn,s

∆Tn,sSn,s,t (6)

where K is the cost coefficients and ∆Tn,s represents the absolute value of the set point variation for
VPP n as it carries out scheme s. For example, if the set point of VPP n is adjusted from Tset to Treset,
∆Tn,s is equal to |Treset − Tset|.

3. Load Equilibrium Entropy

The increasing peak-valley gap has brought enormous challenges to the reliable operations
of the power systems. Many methods have been used to reduce the peak-valley gap, such as
DR resources and ESSs. Although the peak-valley gap shrinks much after implementing load
curtailment measures, the optimized load curve always appears to be multi-peak or concave-convex.
How to make load evenly distributed during dispatch period through optimization measures is the
goal of this paper in order to achieve optimal allocation of electric energy and improve the efficiency
of electrical consumption. For this purpose, a new index is needed to evaluate the load equilibrium.
In this paper, we propose a concept of load equilibrium entropy to quantify the overall equilibrium of
the load curve.

As a widely-used concept in information theory, entropy can be adopted to measure
heterogeneity [30]. For example, Bao et al. [31] evaluated the heterogeneity of power flow distribution
over lines with entropy. In a similar way in this paper, we utilize entropy to assess load equilibrium
during dispatch period.

The load curve follows continuous distribution patterns. For ease of calculation, we discretize the
load curve. According to the definition of discrete information entropy, the discrete information source
X can be calculated as follows:

H(X) = E[− log pi] = −∑
i

pi log pi (7)

where pi is the probability of occurrence of the i-th possible value of the source symbol. H uses a
logarithm of base 2 and its unit is bit. In addition, ∑

i
pi = 1.

There are two types of discrete information entropy: entropy of real numbers and interval
entropy [32].

In this paper, we attempt to optimize the load curve. It is impossible to divide a variational curve
into intervals. Hence, we adopted the entropy of real numbers. pi refers to the percentage of the i-th
information value in all the information value:

pi =
xi

∑
i

xi
(8)

To calculate load equilibrium entropy, we need to calculate the load utilization rate first.
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pL,t =
PL,t

T
∑

t=1
PL,t

(9)

where PL,t is the load at time t after implementing demand response measures and storage
energy devices. pL,t is load utilization rate at time t and refers to the electricity consumption situation
for customer at time t.

Load equilibrium entropy can be calculated as follows:

H = −
T

∑
t=1

pL,t log(pL,t) = −
T

∑
t=1

PL,t
T
∑

t=1
PL,t

log

 PL,t
T
∑

t=1
PL,t

 (10)

From Formula (10), we can see that the load equilibrium entropy provides an average measure of
load curve equilibrium. As load at every time is more close to each other, the value of load equilibrium
entropy H is bigger. When the load curve is flat in some special situation, H gets maximum value.
Obviously, this is an extreme case.

4. Optimal Dispatching Model

In this section, the intraday dispatching model of ADN is built to optimize the outputs of the wind
farm and the PV power station, electrical energy purchased from the grid, as well as charge/discharge
power of the ESS and the outputs of the VPPs. In previous researches that aim at peak load reduction,
the general objective of dispatching model is to minimize the total operation cost or to minimize the
difference between peak load and valley load. Nevertheless, these studies did not take a measure
about improving the load profile. In order to reduce peak load, achieve even distribution of loads,
and optimally allocate electric energy, a multi-objective optimal dispatch model is presented based on
load equilibrium entropy. The objective function of the proposed model contains the minimization of
the operation costs and the maximization of load equilibrium entropy. We also simulate and compare
the proposed model with other two models whose optimal objectives, respectively, are to minimize the
scheduling cost of distribution system and maximize load equilibrium entropy.

4.1. Objective Functions and constraints

4.1.1. Model 1

The objective function of Model 1 is to maximize load equilibrium entropy:

max f1 = −
T

∑
t=1

PL,t
T
∑

t=1
PL,t

log

 PL,t
T
∑

t=1
PL,t

 (11)

Constraints include:

(1) Power Balance

PW,t + PPV,t + PTR,t = Pload,t + PTOU,t + PE,t −
NV

∑
n=1

PVPP,n,t (12)

PL,t = Pload,t + PTOU,t + PE,t −
NV

∑
n=1

PVPP,n,t (13)
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where PW,t and PPV,t refer to the real power of the wind farm and the PV power station at time t;
PTR,t is electrical energy purchased from the grid; Pload,t is the original system load at time t;
PTOU,t represents load variation on account of TOU tariff; PE,t refers to the charge/discharge
power of the storage battery at time t; PVPP,n,t is the real power of VPP n at time t.

(2) The Upper and Lower Limit Constraints of Wind Farm and PV Power Station

0 ≤ PW,t ≤ PWmax,t (14)

0 ≤ PPV,t ≤ PPVmax,t (15)

where PWmax,t and PPVmax,t refer to the largest predictive power output of wind farm and PV
power station at time t.

(3) Constraint of Electrical Energy Purchased from the Grid

0 ≤ PTR,t ≤ PTRmax,t (16)

where PTRmax,t is the largest energy purchased from the upper grid company.
(4) Constraints of ESS

Take the storage battery for example. The battery balance for ESS can be formulated as:

Et = Et−1 + PE,t−1∆t (17)

where Et and Et−1, respectively, are capacity of the storage battery at time t and time t − 1.
PE,t−1 represents the charge/discharge power at time t − 1.

The charge/discharge limit for the storage battery can be represented by:

− PEmax ≤ PE,t ≤ PEmax (18)

where PEmax refers to maximum limit of charge power of the storage battery.

The storage battery capacity limit can be represented as:

Emin ≤ Et ≤ Emax (19)

where Emax and Emin refer to maximum and minimum values of capacity of the storage battery.
(5) Constraints of VPPs

According to the Formulas (4) and (5), the real power of VPPs can be calculated. We assume that
the temperature regulation schemes are given before dispatching, and that the temperature set
point does not continuously change. The real power of VPPs can be seen as the discrete variable.

4.1.2. Model 2

The objective function of Model 2 is to minimize the total operational cost of the distribution
system, which includes electricity expenses due to purchasing electricity from wind farm, PV power
station and the upper grid company, maintenance cost of ESS, and the operating cost of VPPs.

min f2 =
T

∑
t=1

 CW PW,t∆t + CPV PPV,t∆t + CTRPTR,t∆t

+CE|PE,t|∆t +
Ng

∑
n

CVPP,n,t∆t

 (20)

where CW, CPV and CTR, respectively, refers to electricity price of wind farm, PV power station and
transmission grid, and CE is the operating cost of ESS.
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4.1.3. Model 3

The dispatch problem of Model 3 is a multi-objective optimization, in which the operation cost is
minimized and load equilibrium entropy is maximized. The objective functions can be formulated
as follows:

f3 =

{
max f1

min f2
(21)

4.2. Solution Method

We employ Particle Swarm Optimization algorithm to solve the three models because this
algorithm can handle well the nonlinear mixed integer problem and has higher rate of convergence
than other intelligent algorithms. Particle Swarm Optimization algorithm is also considered as one
of the most promising method of optimizing problems with multiple objectives. The multi-objective
optimization problems can be expressed as follows:

min f = ( f1(x), . . . , fm(x), . . . , fM(x)) (22)

s.t.x ∈ Ωn (23)

where x = [x1, x2, . . . , xn] refers to N-dimensional decision variable. Ωn is the feasible solution space of
decision variables. fm(x) is the m-th objective function. M refers to the number of objective functions.

In the multi-objective optimization problems, the goals of each objective might be conflicting.
It is hard to make all of the objectives simultaneously optimal. Therefore, we may get a set of optimal
solutions for solving multi objective problems.

Assume that x1 and x2 are two feasible solution of multi objective optimization.
Then, x1 dominates x2, when and only when the following two formulas are satisfied:

fm(x1) ≤ fm(x2), m = 1, 2, . . . , M (24)

fm(x1) < fm(x2), ∃m = 1, 2, . . . , M (25)

In this paper, according to Pareto dominance relations, we use Particle Swarm Optimization
algorithm to obtain the Pareto optimal solutions [33,34]. Then, we choose the optimal compromise
solution from a set of Pareto optimal solutions. In order to achieve such a compromise solution,
a fuzzy decision making function with a membership function is adopted to represent the optimality
of each objective function among every Pareto solution. The membership function for the j-th objective
function among the i-th Pareto solution can be formulated as follows:

uij =


fij− f jmin

f jmax− f jmin
, j = 1

f jmax− fij
f jmax− f jmin

, j = 2
(26)

where fij refers to the i-th Pareto solution of the j-th objective function, fjmin and fjmax, respectively,
are minimum and maximum values of the j-th objective function among all od the Pareto solutions,
uij ranges from 0 to 1, where uij = 0 indicates that the decision maker is completely dissatisfied,
while uij = 1 means that the decision maker is fully satisfied. For the i-th Pareto solution, the normalized
membership function can be calculated as follows:

ui =

M
∑

j=1
uij

I
∑

i=1

M
∑

j=1
uij

(27)
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where I is the number of Pareto solutions. The maximum value of the membership function ui is the
best compromise solution.

5. Case Study and Simulation Results

In this section, the simulation case is an active distribution system characterized by the inclusion
of the wind farm, the PV power station, the storage unit and a significant number of TCLs.
In the calculation, the time-steps are set as 15 min.

5.1. Basic Data

Figure 2 shows the power prediction curves of wind farm and PV power station. The max
installed capacities of wind farm and PV power station are 1.5 MW and 1.2 MW, respectively. Based on
their max installed capacities, we obtain prediction powers of wind and PV by transforming the
data from [35]. Figure 3 illustrates four load curves, which, respectively, express initial system
total load, residential load, commercial load, and industrial load of a typical day in the summer.
According to the distributed generation pricing policy issued by National development and reform
commission of China in 2011, it is assumed that the electricity prices of wind farm and PV power
station are 510 RMB yuan/MWh and 1100 RMB yuan/MWh, respectively. The electricity price of
power transmission network is 350 RMB yuan/MWh [36]. In our simulation study, we adopt the TOU
pricing from [37]. TOU prices are composed of three price levels in one day, 150 RMB yuan/MWh
during valley periods, 400 RMB yuan/MWh during plan periods, and 500 RMB yuan/MWh
during peak periods. The division of the three periods is shown in Table 1. As can be seen in
Figure 3, the system contains three types of costumers: residential costumer, industrial costumer,
and commercial costumer. On account of the research on different load response of residential,
industrial, and commercial costumer to TOU pricing [38], it can be seen that, in order to decrease their
electricity costs, residential users tend to utilize more electricity in off-peak periods and less electricity
in peak periods. By contrast, industrial users use much more electricity in off-peak periods, while their
electricity consumption during peak hours is significantly decreased. For business users, they do
not adjust their electricity consumption patterns much during office hours. Hence, we assume that
the demand of commercial costumer is inelastic. We set the parameter value of residential demand
elasticity and industrial demand elasticity as −0.36 and −0.48. Table 2 shows the parameters of ESS,
which includes the maximum value of charge power, the initial capacity, and the total capacity of ESS.
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Table 1. Electricity prices of time-of-use (TOU) pricing.

TOU Prices Periods Prices (RMB/(MWh))

Peak load 9:00–12:00 and 17:00–22:00 500
Plan load 6:00–8:00 and 13:00–16:00 400

Valley load 1:00–5:00 and 23:00–24:00 150

Table 2. Parameters of energy storage systems (ESS).

Parameters Values

Maximum charge power (MW) 0.5
Initial capacity (MWh) 1.0
Total capacity (MWh) 5.5

We consider that load aggregators (LAs) [39–41] operate in our research district. LA provides
a significant load reduction capacity to power network, according to dispatching commands by
implementing the corresponding control measures to electricity consumers with thermostatically
controllable devices. The aim of this case study is to realize participation of TCLs in the
intraday dispatch through the VPP. Here, our paper does not focus on the research of the optimal
control schedules, and we assume that ACLs can immediately carry out the dispatching command
without response delay time. Assuming that there are six VPPs, controllable devices belonging
to the same VPP have the same load parameters. Load reduction is required in two periods:
9:00–11:00 and 19:00–20:00. In summer, outdoor temperature may have small changes during high
temperature periods. Therefore, we assume that outdoor temperature remains the same from 9:00 to
11:00 and from 19:00 to 20:00. Outdoor temperature Tout is set at 36 ◦C. Table 3 presents the parameters
of six VPPs. Based on content in Section 2, we can calculate the outputs of every VPP. We propose three
temperature regulation schemes: (1) rising the temperature set point by 2 ◦C for a maximum of 90 min;
(2) rising the temperature set point by 3 ◦C for a maximum of 60 min; and, (3) rising the temperature
set point by 4 ◦C for a maximum of 30 min. Table 4 shows the outputs of every VPP under different
temperature regulation.
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Table 3. Parameters of six virtual power plant (VPPs).

Parameters R (◦C/kW) C (kWh/◦C) PAC (kW) η NAC

VPP1 3.5 12.1 3.5 2.5 480
VPP2 2.0 10.0 2.5 2.7 460
VPP3 2.5 11.6 3.0 2.6 500
VPP4 2.7 12.8 4.5 2.1 560
VPP5 2.7 15.8 4.2 2.3 540
VPP6 2.8 13.5 2.9 2.8 500

Table 4. Output of VPP under different schemes.

Schemes +2 ◦C +3 ◦C +4 ◦C

Duration 90 min 60 min 30 min
VPP1 69.3 kW 102.9 kW 138.6 kW
VPP2 61.5 kW 92.2 kW 123.0 kW
VPP3 69.4 kW 104.1 kW 138.8 kW
VPP4 96.2 kW 144.4 kW 192.6 kW
VPP5 84.7 kW 127.1 kW 169.5 kW
VPP6 64.5 kW 96.7 kW 129.0 kW

5.2. Analysis of Results

In this study, we simulate by using particle swarm optimization algorithm. We set that
population size is 100 and the number of iteration is 300. The simulation is programmed in the
MATLAB environment. Aiming at verifying the performance of the proposed load equilibrium entropy,
we compare the proposed Model 3 with other two models. Figure 4 illustrates the optimized load curve,
the output power of the wind farm and the PV power station, the power purchased from the grid,
load variation due to TOU tariff, the charge/discharge power of the storage battery, and the output of
VPPs under three models. When compared to the original scenario (Figure 3), when considering the
energy storage and implementation of DR, the simulation results of load curves confirm that three
models all accomplish the objective of decreasing the difference between peak and valley demand.
Whereas, the distribution of load during whole dispatch period in mode 1 are more balanced than
other two modes. In addition, Figure 5 also verifies this conclusion. Figure 5 shows the values of load
equilibrium entropy of three optimized load curves and initial load equilibrium entropy. According to
the presented definition of the load equilibrium entropy in Section 3, as the value of load equilibrium
entropy increases, load at every time is close to equal. In Figure 5, the value of load equilibrium entropy
of model 1 is at its maximum value, so the distribution of load is most equilibrium as compared to
other models. The originally operation cost is 12.85 ten thousand RMB, when the system has not
employed DR resources and storage energy devices. The total operation costs of three modes all
decrease when compared to the original scenario, as shown in Figure 6. Because the objective of
model 2 is to minimize the dispatch cost, the optimization scheme of model 2 is the most economical.
Nevertheless, it can be observed that the load curve of mode 2 is the most fluctuant. By contract,
the distribution of the improved load under model 1 is most balanced, but its operation cost is the
maximum when compared with other two modes. To sum up, the best optimization scheme is model 3,
which can balance the demands between economy and load equilibrium.
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In order to compare the optimized index of load equilibrium with the conventional indices of load
characteristics (peak load, valley load, the difference between peak and valley load, and load rate),
we provide the values of characteristic indices and load equilibrium entropy of three optimized
loads and initial load, as shown in Table 5. According to the previous simulation analysis based
on Figure 4, the distribution of load under model 1 is most equilibrium among all of the models in
the simulation. In addition, Table 5 shows that the other indices of load characteristics (peak load,
valley load, the difference between peak and valley load, and load rate) of model 1 are also better than
the other models. In addition, the conventional indices of load characteristics and the load equilibrium
entropy of three optimized load results are better than that of the initial load, which is caused by the
application of ESS and DR. Consequently, it is verified that DR resources and ESS technologies can
play an important role in reducing peak demand, increasing the equilibrium level of load distribution
and optimizing allocation of resources.

Table 5. Indices of load characteristics.

Model Peak Load
(MW)

Valley Load
(MW)

Peak-Valley
Gap (MW)

Load Rate
(%)

Load Equilibrium
Entropy

Model 1 13.80 11.43 2.38 93.5 4.5826
Model 2 14.37 11.03 3.34 89.2 4.5716
Model 3 14.23 11.33 2.91 90.1 4.5759

Initial load 15.56 9.81 5.75 83.5 4.5608
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Taking Model 1 as an example, we analyze the optimization results of VPPs. Figure 7 shows the
real power of 6 VPPs under Model 3 from 10:00 to 12:00. It includes the optimal load reductions and
their durations. As can be seen, the six VPPs all output power during this period. Table 6 displays the
output of six VPPs and the total load reduction at every time during this period. Form Table 6, we can
tell that the average load reduction is 292.3 kW, which represents a drop of approximately 1.88% of
peak load (15.6 MW). Meanwhile, Figure 8 presents the output power of six VPPs from 19:00 to 20:00.
VPP3, VPP4 and VPP5 offer power delivery. Table 7 shows the output of the three VPPs and the total
load reduction at every time during this period. In this period, there is an average load reduction of
285.2 kW, which accounts for approximately 1.83% of peak load. It is confirmed that VPP of ACLs
can supply a potential electric energy reduction of approximately 0.8698 MWh for the whole control
period. This reduction occupies about 1.92 % of total electric energy from 10:00 to 12:00 and from 19:00
to 20:00.
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Table 7. The output of VPPs from 19:00 to 20:00.

Period Output of VPP3 (kW) Output of VPP4 (kW) Output of VPP5 (kW) Total Power (kW)

19:00 104.1 192.6 0 296.7
19:30 104.1 0 169.5 273.6

6. Conclusions

The integration of intermittent renewable energy advances the development of ADNs.
Operation optimization, the core of ADNs’ active power management, makes ADNs different from
the traditional distribution network. In this paper, a multi-objective optimization model for ADNs
intraday dispatching is developed.

1. The main contributions of this study are highlighted as follows:

(1) It proposes a concept of load equilibrium entropy to quantify the overall equilibrium of a
load curve.

(2) It presents a VPP model of TCLs and the calculation method of VPP generation limits and
operating costs. This model and method make it possible to integrate the VPP model into
an optimization objective and constraints.

(3) Based on the proposed load equilibrium entropy and the VPP model of TCLs, it builds a
novel multi-objective optimal dispatching model of ADNs to implement the coordinated
optimization of DERs, DR resources, and the energy storage systems.

2. In addition, certain implications can be drawn from the simulation results:

(1) The proposed dispatching model is effective in cost reduction of system operations,
peak load curtailment, and efficiency improvement.

(2) The results also confirm that the load equilibrium entropy index is viable to represent the
equilibrium characteristic of load.

(3) The simulate results illustrate that TCLs provide a reduction of approximately 1.92 % of
total electric energy for the whole control period. This indicates that TCLs have a good
potential in efficiency improvement and peak load curtailment.
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Nomenclature

RE Renewable Energy
ESS Energy Storage Systems
TCL Thermostatically Controlled Load
VPP Virtual Power Plant
PV Photovoltaic
ADN Active Distribution Network
DER Distributed Energy Resource
TOU Time-of-Use
ACL Air Conditioning Load
SQ State Queueing
LA Load Aggregator
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