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Abstract: Ambient conditions can have a significant impact on the average and maximum
temperature of the battery of electric and plug-in hybrid electric vehicles. Given the sensitivity
of the ageing mechanisms of typical battery cells to temperature, a significant variability in battery
lifetime has been reported with geographical location. In addition, high battery temperature and the
associated cooling requirements can cause poor passenger thermal comfort, while extreme battery
temperatures can negatively impact the power output of the battery, limiting the available electric
traction torque. Avoiding such issues requires enabling battery cooling even when the vehicle is
parked and not plugged in (key-off), but the associated extra energy requirements make applying
key-off cooling a non-trivial decision. In this paper, a representative plug-in parallel hybrid electric
vehicle model is used to simulate a typical 24-h duty cycle to quantify the impact of hot ambient
conditions on three performance attributes of the vehicle: the battery lifetime, passenger thermal
comfort and fuel economy. Key-off cooling is defined as an optimal control problem in view of the
duty cycle of the vehicle. The problem is then solved using the dynamic programming method.
Controlling key-off cooling through this method leads to significant improvements in the battery
lifetime, while benefiting the fuel economy and thermal comfort attributes. To further improve
the battery lifetime, partial charging of the battery is considered. An algorithm is developed that
determines the optimum combination of key-off cooling and the level of battery charge. Simulation
results confirm the benefits of the proposed method.

Keywords: plug-in hybrid electric vehicle; battery cooling; key-off cooling; partial charging; climate
impact; battery lifetime; thermal comfort; optimal control

1. Introduction

The most significant obstacle in the way of the transition from conventional vehicles to electric
vehicles (EVs) is the under-developed traction battery technology [1,2]. As this transition takes place,
most technology road maps and policy trends indicate that plug-in hybrid electric vehicles (PHEVs)
will dominate the passenger vehicles markets in the next decade [3–5]. Limited experience with
batteries in the automotive industry and scarce field data [6] mean that production vehicles should
continue to evolve in order to fully accommodate the challenges posed by the battery [7]. Ageing of
battery cells, defined as the irreversible reduction of their energy storage capacity and power [8,9],
is one such challenge [10]. Lithium-ion cells, which are believed to be the most promising choice
for automotive applications [11,12] have ageing mechanisms that are sensitive to real world usage
conditions [13]. Cycling ageing (ageing due to the conditions of charge-discharge cycles) accelerates at
high temperature, as well as with a high degree of discharge, and high charge-discharge rates [14,15].
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Storage ageing (ageing due to storage conditions) increases with elevated temperature [8,16] and state
of charge (SoC) [17,18]. Heat transfer from the ambient environment, the passenger cabin and
other adjacent components, in addition to internal heat generation, contribute to high battery
temperature [19] that can reach as high as 65 ◦C [20]. Therefore, some form of battery cooling system
is necessary. Battery cooling is traditionally a “key-on” function, that is, it is only activated when the
vehicle is switched on [21].

In hot climate conditions, the heat gain from the ambient environment alone is enough to
heat the battery to extreme temperatures [22,23]. Although key-on cooling can significantly reduce
the daily maximum battery temperature in most cases [24,25], extreme battery temperatures can
be still experienced when vehicles are parked (“key-off”). Since typical passenger vehicles are
parked for most of their lifetime, markedly short battery lifetimes have been observed in hot
geographical locations [20,22].

In hot climate conditions, the only practical source of cooling power is the refrigeration circuit
of the air conditioning system [26]; therefore, battery cooling systems are often integrated into the
refrigeration circuit [27,28]. This integration creates two challenges. First, the compressor of the
refrigeration circuit is powered by the battery itself [29,30]. Therefore, key-on cooling has a negative
impact on the vehicle’s energy efficiency and electric drive range (EDR) [31,32]. Second, to cool the
cabin and perform key-on battery cooling at the same time, the cooling power of the refrigeration
circuit is distributed between cabin air conditioning and battery cooling. When the air conditioning
load is high (i.e., when the cabin is hot), allocating part of the available cooling power to the battery
causes a noticeable rise in the average cabin air temperature [33–35]. Therefore, key-on cooling can
negatively affect the passengers’ thermal comfort [36].

Observation of short battery lifetime in hot geographical locations indicates the need for extending
battery cooling beyond a key-on function. Previous research in this area have assumed that vehicles
can be always plugged in when they are parked; therefore, combining key-on cooling with additional
“plugged-in cooling” (cooling using the grid energy) has been proposed to enable frequent and
aggressive cooling [20,22,32,34,37–39]. Since it uses an external energy source, plugged-in cooling is
effectively ‘free’ for the vehicle. Battery lifetime improvements of approximately 1–2 years have been
reported in hot climate conditions through this approach [34,37–39]. Enabling plugged-in cooling
also benefits the energy efficiency and thermal comfort attributes of the vehicle, as the ‘free’ nature
of plugged-in cooling encourages intensive precooling of the battery to reduce the need for key-on
cooling during the subsequent trip [32].

A further benefit of precooling which has not received sufficient previous attention concerns
the electric traction capability of the vehicle. As a safety function and to avoid damage to the
battery, typical automotive battery management systems limit the power output of the battery at
high temperatures [34,40,41]. This reduces the electric traction capability until the cooling system
brings the temperature of the battery back into the prescribed range [42]. Reduced electric traction in
plug-in parallel hybrid electric vehicles (PPHEVs) can lead to poor fuel economy on aggressive drive
cycles, as the engine will be used more to fulfil the traction requirement. Precooling can help prevent
the negative effect of hot battery on fuel economy.

The fact that most vehicles are not always plugged in when they are parked [43,44] limits the
opportunity for plugged-in cooling. A comprehensive battery cooling strategy should therefore
combine key-on and plugged-in cooling with additional cooling when the vehicle is parked and not
plugged in (key-off cooling) [22,34]. However, two critical concerns have discouraged any previous
consideration of key-off cooling. First, as key-off cooling is supported by the battery, it will reduce the
vehicle EDR, which is equivalent to higher fuel consumption in PHEVs. Second, discharging the battery
to support key-off cooling increases cycling ageing, which may adversely affect the battery lifetime.

Reducing the average SoC of the battery through optimized partial charging is another method
that has been used to improve the battery lifetime [45–48]. The method typically involves using
advanced knowledge of the vehicle duty cycle and charging the battery only as much as the vehicle
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will consume until it is plugged-in next time. However, this method is only effective when the vehicle
is always plugged-in when it is parked. If the vehicle is plugged-in less frequently, as is commonly the
case, limited opportunity for partial charging will be available as the battery charge should be high
enough to support an extended operation. Further, the majority of the previous studies in this area
ignored the benefit of lower SoC relative to lower temperature, and considered controlling the level of
charge independent of controlling cooling, even when plugged-in cooling was available.

This paper, for the first time proposes the application of key-off cooling and develops an
underpinning methodology for optimal control of key-off cooling in a PPHEV. For the first time,
three performance attributes of fuel economy, battery lifetime, and passenger thermal comfort
are considered in cooling the battery, and their trade-off is addressed. Furthermore, for the first
time, this paper proposes that for improving battery lifetime in hot climates, partial charging
optimisation and cooling optimisation should be integrated. A method is developed that determines
the best combination of the level of charge and key-off cooling control for improved battery lifetime,
while considering the fuel economy and passenger thermal comfort attributes.

To achieve this, a representative vehicle model is simulated, over a 24-h duty cycle composed of
two trips and two park phases per day. The vehicle is subjected to hot climate conditions and undergoes
a hot soak when it is parked during the day, experiencing high battery temperatures. The impact of the
climate conditions on the fuel economy, battery lifetime and thermal comfort attributes of the vehicle
are quantified through comparison with milder climate conditions. The need for key-off cooling of
the battery in hot climate conditions is established from this comparison. Then, the optimal control
of key-off cooling is defined as the minimization of a cost function composed of the weighted sum
of fuel consumption, capacity loss of the battery, and a thermal discomfort index that represents
the deterioration of the passengers’ thermal comfort due to key-on battery cooling. Solving the
problem for different weightings of the cost function demonstrates the ability of the method to target
individual or a combination of the represented performance attributes. The effect of key-off cooling for
improving each performance attribute is analyzed. Later, the proposed method is expanded to include
partial charging, and the benefit of integrating partial charging and key-off cooling on battery lifetime
is demonstrated.

The paper is organized as follows. Section 2 defines a 24-h vehicle duty cycle, which constitutes
the basis for subsequent simulations and analyses. Section 3 introduces the vehicle model developed
for the purpose of this research. Section 4 discusses the result of simulating the model over the defined
duty cycle and quantifies the negative effect of high battery temperature on each performance attribute
of the vehicle. Section 5 defines key-off cooling as an optimal control problem. Section 6 discusses the
control of key-off cooling in view of the 24-h duty cycle of the vehicle based on improving individual,
and combinations, of the performance attributes. Section 7 proposes a method for integrating key-off
cooling and partial charging. Section 8 discusses the applicability of the proposed methods to EVs.
Section 9 provides additional discussion of the results. Section 10 outlines how the research will
continue in the future. Finally, Section 11highlights the conclusions of the research.

2. The Duty Cycle

In this paper, a vehicle duty cycle is defined by three elements:

(1) the usage case, which includes details such as the number and timing of the trips,
charge frequency, etc.;

(2) the drive cycles of the trips;
(3) the climate conditions in which the vehicle operates.

The usage case considered in this research was a work commute, which starts at 7 a.m. with a trip
(Trip 1), followed by an 8-h park (Day Park) and another trip (Trip 2), after which the vehicle is parked
and plugged-in until the next day (Night Park). In Figure 1, different phases of the duty cycle are
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marked on the daily profile of the vehicle speed. For simplicity, Trip 1 and Trip 2 are assumed to have
identical drive cycles.Energies 2017, 10, 2058 4 of 28 
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The vehicle was assumed to operate in Phoenix, AZ, USA, which has hot climate conditions.
In the interest of simplicity and generality, it was assumed that a year in Phoenix can be divided into
a six-month warm season, from May to October, and a six-month cold season, from November to April.
These will be loosely referred to as summer and winter. The daily air temperature and the solar load
profiles were created for each season, as shown in Figure 2, by averaging the hourly climate conditions
of the relevant months [49]. The vehicle is subjected to the above conditions during the two daily trips,
and during Day Park when it is parked in the open. In the interest of simplicity, it was assumed that in
Night Park, the vehicle is parked in a garage maintained at constant temperature of 25 ◦C in summer
and 15 ◦C in winter.
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Figure 2. Daily air temperature and solar load profiles assumed for the summer and winter seasons.

Both trips were assumed to be on the US06 drive cycle. The aggressiveness of the US06 is
representative of most real-life drive cycles [22]. The distance covered by the US06 is approximately
eight miles, which is comparable with the distance covered by the current European homologation
drive cycle (NEDC) [50], although it is shorter than the average commutes in the U.S. [51]. Nevertheless,
the purpose of the drive cycle for the analyses that will follow is to create the necessary boundary
conditions for the park phases of the duty cycle; hence, the US06 is a sufficiently representative drive
cycle to showcase the methodology of this research. A summary of the duty cycle assumptions is
given in Table 1.
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Table 1. Duty cycle assumptions.

Phase Duration Plugged In Indoor Ambient

Phase

Trip 1 600 s (US06) – –
Figure 2Day Park 8 h no no

Trip 2 600 s (US06) – –

Night Park 15.5 h
(approximately)

Yes
13.2 kW charger Yes 25 ◦C (summer)

15 ◦C (winter)

Initial
Conditions

Parameter Value

Battery SoC 95%

Battery/cabin temperature 25 ◦C (summer)
15 ◦C (winter)

3. The Vehicle Model

To simulate the duty cycle defined above, a model was developed that represents a commercially
available PPHEV with the high-level specifications given in Table 2. The layout of the model is
shown in Figure 3. Details of the model and its experimental verification are explained in [52,53].
For completeness, a summary of the key attributes of the model pertinent to the problem considered
here is provided below.
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Table 2. Specifications of the target vehicle.

Specification Value

Type sport utility vehicle

Architecture All-wheel-drive parallel plug-in hybrid

Test Weight (European Union) 2270 kg

Engine 3.0Lv6 diesel, 140 kW

Electric Machine
rated power 75 kW
rated torque 420 Nm

Traction Battery

energy capacity 16.8 kWh
voltage 430 V

thermal capacity 190,000 J/K
cell type cylindrical NCA

The battery cooling system includes a water-glycol coolant circuit that rejects heat to the
refrigeration circuit of the AC system. The battery is represented by a lumped parameter thermal mass,
and includes an internal heat generation model based on Joule heating [54], as well as heat transfer
paths to the coolant, the ambient environment and the cabin. The electrical behavior of the battery cells
is represented by a zero-order equivalent electric circuit model [55]. In this model, the open-circuit
voltage and the resistance of the cells are calculated from look-up tables. The open-circuit voltage
is a function of SoC, while resistance is a function of SoC and temperature. The SoC of the cells is
estimated from current, based on the method of Coulomb counting [56]. The cabin model includes
lumped parameter representations of the cabin interior (seats, dashboard, etc.) and the enclosed air,
as well as the glass and the wall that form the shell of the cabin.

The controller block in Figure 3 includes a set of rule-based algorithms that regulate the operation
modes of the powertrain, and those that set the high level set points for the AC and the battery cooling
systems. These rules are developed based on the control algorithms of the target vehicle. The key
parameters implemented in the rules are given in Table 3. The AC system is controlled to cool the cabin
and maintain it at 22 ◦C during the trips. The battery cooling system is controlled in a thermostatic
fashion in the temperature range of 25 ◦C–30 ◦C; and is activated during the trips (key-on cooling),
as well as when the vehicle is plugged in, that is in Night Park (plugged-in cooling). The control rules
include overheating thresholds: the battery power is limited at 50% when the battery temperature
exceeds 45 ◦C and is cut off when the temperature exceeds 50 ◦C.

Table 3. Control parameters adopted from the target vehicle specifications.

Parameter Value

SoC window: charge depleting mode 95–10%
SoC window: charge sustaining mode 10–13%
Lower SoC limit for electric pull-away 11%

Tcabin setpoint 22 ◦C
Tbatt setpoint 25 ◦C–30 ◦C

Tbatt overheat (power cut-off) 50 ◦C
Tbatt high temperature threshold (50% power cap) 45 ◦C

The capacity loss of the battery cells of this vehicle has been analyzed in [57,58]. These analyses
give the storage capacity loss of the cells for different SoC levels and temperatures. They also give
the cycling capacity loss of the cells based on the number of charge-discharge cycles at different
temperatures. As a general trend, the data presented in [57,58] show that storing the battery at
higher SoC or temperature increases the rate of capacity loss. Furthermore, a higher number of cycles
increases the capacity loss, especially when the cells are cycled at higher temperatures. Using these
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data, the capacity loss of the battery and its lifetime can be calculated as the vehicle undergoes its duty
cycle. To achieve this, it was assumed that the total capacity loss of a cell is equal to the sum of its
storage and cycling capacity losses [59]. It was also assumed that all cells within the battery pack age

at the same rate. Defining the state of the battery as xb =

[
Tbatt
ζ

]
, the capacity loss calculations can

be notationally described as below:

∆C = ∆Cstor(Tbatt, ζ) + ∆Ccyc(Tbatt, n) = ∆C(xb, n) (1)

Simulating the duty cycle of the vehicle gives the variations in the temperature, the SoC; and the
current of the battery. The charge-discharge cycles of the cells can be calculated from the battery current:

n =

∫
|i|dt

2× C0
(2)

and the total time that the battery is stored at any particular condition, as well as the number of cycles
at any particular temperature can be calculated. The annual capacity loss of the battery can be then
calculated as the sum of the capacity loss in different seasons of the year; and across different phases
of the duty cycle. Having calculated the annual capacity loss, the battery lifetime can be determined
based on the end of life (EoL) at 30% capacity loss [16,60–62]. It is assumed here that the vehicle
undergoes the same duty cycle seven times per week. Although this assumption does not strictly
apply to most vehicles, it simplifies the simulations without invalidating the subsequent analyses.

4. Baseline Simulation Results

In this section, the result of simulating the vehicle model over the assumed duty cycle will be
presented. The variation of the battery temperature during the duty cycle will be demonstrated, and the
effect of the battery temperature on the performance attributes of the vehicle will be quantified from

the simulation results. Figure 4 shows the daily profile of the vehicle state xv =
[

Tcabin, Tbatt, ζ
]′

in summer. These results can be explained as follows:

Trip 1: The cabin and the battery are both initially at 25 ◦C. During the trip, air conditioning
maintains the cabin at 22 ◦C, while the battery gradually warms up until it reaches 30 ◦C and cooling
initiates. The vehicle operates mostly in CD mode, discharging the battery from 95% to about 74%.

Day Park: Influenced by the ambient conditions, the vehicle undergoes a hot soak. As a result,
the temperature of the cabin and the battery rise to 60 ◦C and 48 ◦C respectively, while the SoC
remains constant. It is worth noting that since six-month average climate conditions are assumed,
the simulations do not represent the worst-case scenario.

Trip 2: Air conditioning and battery cooling are applied to cool down the vehicle from hot
conditions. Within the duration of the trip, the cabin and battery are only cooled to about 33 ◦C and
39 ◦C, respectively. The battery is discharged to about 54% SoC. Considering that the CS operation can
commence at 13% SoC, the battery has approximately 40% excess charge over this duty cycle.

Night Park: When the vehicle is parked again, air conditioning terminates. Plugged-in battery
cooling is applied until the battery temperature drops to 25 ◦C. Both the cabin and the battery continue
to exchange heat with the ambient environment until they are stabilized at 25 ◦C. Whilst the vehicle is
plugged-in at the start of Night Park, the just-in-time charging strategy [22,63] is applied (i.e., charging
is delayed until just before the next trip) to minimize the adverse effect of high SoC on the battery.
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4.1. The Impact on Battery Lifetime

Table 4 gives the time average of the battery temperature and SoC, as well as the number of its
charge-discharge cycles in each phase of the duty cycle in summer and winter. The seasonal storage
and cycling capacity losses are also calculated for each phase, as explained in Section 3. For example,
the table shows that in summer Day Park, the battery is stored at an average SoC of 74.6% and at an
average temperature of 39 ◦C, and it is not cycled (the vehicle is key-off and no cooling is applied).
Due to the storage conditions, the battery loses 1.07% of its capacity, while the cycling capacity loss
is zero. Adding the cycling and storage capacity losses for different phases of the duty cycle in each
season leads to 2.72% capacity loss in summer, compared to 2.05% in winter. The total capacity loss in
one year is therefore 4.76%, which indicates a battery lifetime of just over six years.

The calculated lifetime is significantly shorter than the eight-year target of most warranty
schemes [64]. The calculations in Table 4 indicate that the high battery temperature in summer
Day Park is a major contributor to the low battery lifetime. The battery loses more than 1% of its
capacity in summer Day Park compared to 0.64% in winter Day Park. The average battery temperature
is 14 ◦C higher in summer Day Park compared to winter Day Park, while the SoC levels are similar.
A similar difference also occurs in peak temperatures (not given in Table 4). The variability of battery
lifetime with geographical location can be highlighted here: if the climate conditions of the winter
season, which is not particularly mild, were to apply year-round, the battery could last one year more.
Key-off cooling in Day Park can be beneficial to the battery if it does not lead to a disproportionately
high cycling capacity loss.
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Table 4. Battery capacity loss and lifetime calculations.

Winter Summer
Trip 1 Day Park Trip 2 Night Park Trip 1 Day Park Trip 2 Night Park

ζ (%) 84.4 74.7 62.6 53.4 84.5 74.6 68.8 59.0

Tbatt (◦C) 18.5 24.9 29.6 15.0 28.0 39.0 43.0 26.0

Number of cycles 28.4 0.0 30.7 40.2 28.2 0.00 27.8 36.4

Storage ∆C per season (%) 0.00 0.64 0.00 0.86 0.00 1.07 0.00 1.17

Cycling ∆C per season (%) 0.16 0.00 0.16 0.23 0.15 0.00 0.16 0.17

Total ∆C per season (%) 2.05 2.72

Total ∆C per year (%) 4.76

Lifetime (years) 6.3

4.2. The Impact on Fuel Consumption

Allowing the battery temperature to rise above 45 ◦C in Day Park limits the electric traction
capability of the vehicle. Given that limited time is allowed for natural cooling prior to Trip 2,
and that the US06 drive cycle starts aggressively, limited electric traction capability leads to high fuel
consumption in Trip 2. This can be better explained with the help of Figure 5 in which more details
about the two trips of the vehicle are shown. Despite having identical drive cycles, the vehicle operates
differently in the two trips. In Trip 1, the vehicle operates mostly in CD mode, depleting about 21% of
the battery charge, with the engine starting several times in the high power-demanding parts of the
drive cycle, as expected from a PPHEV. Furthermore, the cabin is maintained at its set point while the
battery temperature gradually rises until cooling is initiated.

In Trip 2, with the battery initially overheated, the vehicle is forced to enter hybrid mode
(engine is used) in the first 100 s of the trip, despite having adequate battery charge (compare the
engine torque profiles in Figure 5b). Once the battery is sufficiently cooled, the engine operates
in a similar fashion to Trip 1, the battery is gradually discharged and its temperature continues
to fall. Therefore, due to the high battery temperature at the start of Trip 2, the vehicle consumes
approximately 0.37 liters of fuel in Trip 2 (67.5 liter per season), compared to approximately 0.23 liters
in Trip 1 (41.7 liter per season). Enabling key-off cooling allows key-off pre-cooling of the battery for
Trip 2 or maintaining a low battery temperature will eliminate the extra fuel consumption in Trip 2.
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capability of the vehicle. Given that limited time is allowed for natural cooling prior to Trip 2, and 
that the US06 drive cycle starts aggressively, limited electric traction capability leads to high fuel 
consumption in Trip 2. This can be better explained with the help of Figure 5 in which more details 
about the two trips of the vehicle are shown. Despite having identical drive cycles, the vehicle 
operates differently in the two trips. In Trip 1, the vehicle operates mostly in CD mode, depleting 
about 21% of the battery charge, with the engine starting several times in the high power-demanding 
parts of the drive cycle, as expected from a PPHEV. Furthermore, the cabin is maintained at its set 
point while the battery temperature gradually rises until cooling is initiated.  

In Trip 2, with the battery initially overheated, the vehicle is forced to enter hybrid mode (engine 
is used) in the first 100 s of the trip, despite having adequate battery charge (compare the engine 
torque profiles in Figure 5b). Once the battery is sufficiently cooled, the engine operates in a similar 
fashion to Trip 1, the battery is gradually discharged and its temperature continues to fall. Therefore, 
due to the high battery temperature at the start of Trip 2, the vehicle consumes approximately 0.37 
liters of fuel in Trip 2 (67.5 liter per season), compared to approximately 0.23 liters in Trip 1 (41.7 liter 
per season). Enabling key-off cooling allows key-off pre-cooling of the battery for Trip 2 or 
maintaining a low battery temperature will eliminate the extra fuel consumption in Trip 2.  

 

Figure 5. Simulation results: variations in (a) vehicle speed; (b) engine torque; (c) battery SoC and
(d) the temperature of the cabin and battery over the trips.
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4.3. The Impact on Thermal Comfort

High battery temperature also negatively affects the passengers’ thermal comfort. Figure 5d
shows that in Trip 1 the average cabin temperature is maintained close to its set point, implying a
thermally comfortable cabin. However, following the hot soak in Day Park, the thermal load of the
cabin in Trip 2 is so high that it does not cool down to its set point within the duration of the trip.
As such, allocating a part of the available cooling power of the refrigeration circuit to the battery
deteriorates the thermal condition of the cabin. Figure 6 compares the conditions of the cabin of the
PHEV in Trip 2 to that of an equivalent conventional vehicle in similar circumstances. Although the
cabin remains hot throughout the trip even in the conventional vehicle, the cooling load of the battery
in the PHEV leads to a higher cabin temperature by up to approximately 4 ◦C.
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To quantify this impact, the discomfort index of the PHEV is defined here as the increase in the
cabin average temperature due to the existence of the battery in the vehicle, as:

Idiscom f = ∑

T
PHEV

cabin − T
CONV

cabin
TCONV

cabin

 (3)

In the above equation, T
PHEV

cabin and T
CONV

cabin are the time histories of cabin temperature in
the PHEV and the conventional vehicle, respectively. Idiscom f is primarily applicable to Trip 2 since
the cooling demand of the cabin in Trip 1 is low, making the impact of cooling the battery negligible.
Idiscom f is a positive integer, with an ideal value of zero which indicates that the PHEV cabin is cooled
at a rate similar to, or faster than, the conventional vehicle cabin. Precooling the battery for Trip 2
can help minimize the thermal discomfort by reducing the need for key-on battery cooling. In the
ideal case, the battery can be precooled sufficiently to shift its cooling load to after Trip 2 (i.e., to Night
Park). It is worth noting that precooling the cabin can further improve thermal comfort, but requires
significantly higher energy [33] and addressing it is beyond the scope of this paper.
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4.4. Summary of the Simulation Results

Table 5 summarizes the performance attributes of the vehicle based on the results discussed above.
It can be inferred from the simulation results that the benefits of key-off cooling extend beyond its
potential for reducing the capacity loss resulting from the high temperature in Day Park, to attributes
such as fuel economy and thermal comfort. However, allocating the energy of the battery to key-off
cooling increases cycling ageing which can negate the benefit of cooling, and it reduces the EDR which
can worsen the fuel economy. Therefore, determining the appropriate key-off cooling strategy is
a non-trivial task that requires solving an optimal control problem considering all the implications
mentioned above. The following sections of this paper address this problem. Table 5 summarizes the
key aspects of the simulation results discussed so far. These values will be considered as the baseline
in the forthcoming discussions.

Table 5. Performance measures of the PHEV (summer).

Battery Lifetime
[
vfuel

]
Trp1

[
vfuel

]
Trp2

Idiscomf

6.3 (years) 0.23 (L) 0.37 (L) 59

5. Optimal Control Statement for Key-Off Cooling

For simplicity, it is assumed in this work that key-off battery cooling takes place at maximum
cooling power. Therefore, to control key-off cooling, it will be sufficient to control a flag command
(binary control input indicating cooling on/off). A key-off cooling flag of “1” will be translated as the
refrigeration system working at maximum power and the cooling pump switched on, while a flag of
“0” indicates a passive system. With the above assumption, the number of the charge-discharge cycles,
n, in Day Park, is related to the cooling flag, u. Therefore:

[∆C]DPrk = [∆C(xb, n)]Dprk ≡ [∆C(xb, u)]Dprk. (4)

Key-off cooling of the battery can be defined as an optimal control problem in which the aim is to
find the optimum cooling flag trajectory. Here, to address all aspects of the problem, the formulation
will be developed in three steps, within the remainder of the current section, as well as in Section 6 and
Figure 7 shows the focus of each section and its relation to the baseline simulation results presented in
Section 4. In the remainder of the current section, key-off cooling is optimally controlled to minimize
Day Park capacity loss, ignoring the other phases of the duty cycle. This solution is expanded in
Section 6 by considering the effects of key-off cooling on the performance attributes of the vehicle in
Day Park and the subsequent phases of the duty cycle. In Section 7, optimization of partial charging
and its integration with optimal key-off cooling is discussed.

To enable a numerical solution for the optimum control problem, the duration of Day Park is
divided to into N intervals of ∆t seconds, and the cooling flag is assumed to be piece-wise constant,
changing only at instances k∆t. Hence, the total capacity loss in Day Park is the sum of the capacity
losses over all N intervals:

[∆C]DPrk = [∆C(xb, u)]Dprk =
N

∑
k = 0

∆Ck (xbk, uk) (5)

The trajectory of the optimum cooling flag (u∗) is the solution of a minimization problem of the
following form

min
u∗

J = min

(
N

∑
k = 0

∆Ck (xbk, uk) + hN

)
(6)
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The first term on the right-hand side (6) of is the arc-cost, which results from progression through
consecutive time intervals, while the second term depends on the state at final time and is referred
to as the terminal cost. The above problem can be solved with dynamic programming (DP) which is
a common method for solving optimal control problems numerically [65–67]. To achieve this, the terms
on the right-hand side of (6).
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Tcabin, Tbatt, and ζ in the state grid were discretized into steps of 1 ◦C, 2% and 2 ◦C, respectively.
For discretization in time, increments of 240 s (4 min) are assumed. It is worth noting that the
boundaries of the state grid act as hard constraints for the solution of DP.

The definition of hN in (6) has a high significance. For an initial examination of the behavior of
the optimization algorithm, consider controlling key-off cooling only to minimize the capacity loss
in Day Park, (without accounting for any subsequent phase of the duty cycle nor other performance
attributes). hN can be defined as a lower SoC limit, for example 40%:

hN =

{
0 i f ζN ≥ 40%
∞ i f ζN < 40%

. (8)

Figure 8 shows the trajectories of the cooling flag as well as the temperature and the
SoC of the battery achieved from solving (6) considering (8) and the initial condition of

xv =
[

21 ◦C, 30 ◦C, 75%
]′

. Since charge is abundant, cooling is applied both to cool the battery and
to spend the excess charge in order to minimize the storage capacity loss, as long as the resulting cycling
ageing does not negate the benefits. Examining Figure 8 and refereeing to Figures 2 and 4, three trends
can be identified. First, during the morning hours when the heat gain from the ambient environment is
comparatively low, a mild level of cooling is applied to maintain the battery in the range of 23 ◦C–25 ◦C.
Second, cooling intensifies when the SoC drops below 70% (at approximately 8 a.m.). This is because
the capacity loss in the battery cells is highest in the SoC range of 50–70%, according to the dataset
implemented in the model [57,58]. Therefore, the cooling decisions are dominated by the tendency
to discharge the battery below 50% SoC. Note that the lower boundary of the battery temperature in
the state grid (i.e., 20 ◦C) is observed. Third, continuing to the afternoon hours when the heat gain
from the ambient environment and cabin is high, it becomes increasingly inefficient to maintain a low
temperature. Therefore, the cooling is targeted at keeping the battery temperature below 40 ◦C.
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cooling in Day Park.

The impact of controlling key-off cooling as above on the battery can be inferred from Table 6.
Key-off cooling has noticeably reduced the storage capacity loss while leading to a small cycling
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capacity loss. The effect of key-off cooling on the subsequent phases of the duty cycle will be discussed
in the following section.

Table 6. Effect of applying key-off cooling as shown in Figure 8 on the battery. Data only represent
Day Park.

Without Key-Off Cooing With Key-Off Cooling

ζ (%) 74.6 58.8
Tbatt (◦C) 39.0 27.8

Cycle count (n) * 0 26.7
Storage ∆C (%) * 1.07 0.40
Cycling ∆C (%) * 0 0.14

* Per summer season.

6. Optimal Control of Key-Off Cooling in View of the Daily Duty Cycle

In view of the daily duty cycle of the vehicle, improving the fuel economy, the battery lifetime
and the thermal comfort can be considered as the objectives of key-off battery cooling. This can be
achieved through minimizing a cost function composed of the weighted sum of three cost terms:
the fuel consumption, the capacity loss and the thermal discomfort index as:

J = λ1v f uel + λ2∆C + λ3 Idiscom f (9)

in which λ = {λ1, λ2, λ3} is the relative weighting of the cost terms. All terms in (9) depend,
among other factors, on how the vehicle is controlled during Trip 2. Since the focus here is on key-off
control, it was assumed that the key-on control strategies of the vehicle were already optimized.
In other words, the powertrain and cooling are optimally controlled in the trips, for any given initial
conditions. This assumption enables defining the cost terms as a function of vehicle states. As shown
in Figure 7c, v f uel can be written as:

v f uel ≡
[
v f uel

]
Trp2

=
[
v f uel

(
xv

(
tDprk

))]
Trp2

, (10)

which states that the fuel consumption in Trip 2 depends on the state of the vehicle after the Day Park,
xv

(
tDprk

)
. Similarly, the capacity loss in Trip 2 depends on xv

(
tDprk

)
. In the Night Park, given that

plugged-in cooling controls the battery temperature, the capacity loss is a function of the remaining
battery SoC after Trip 2, which only depends on xv

(
tDprk

)
. Therefore, ∆C in (9) can be written as:

∆C = [∆C(xb, u)]Dprk +
[
∆C

(
xv

(
tDprk

))]
Trp2

+
[
∆C
(

xv

(
tDprk

))]
Nprk

(11)

where capacity loss in Day Park is replaced from (5). The discomfort index also depends on xv

(
tDprk

)
:

Idiscom f = Idiscom f

(
xv

(
tDprk

))
(12)

The problem described by (9) can be reformulated in form of (6)

min
u∗

J = min

(
λ2

N

∑
k = 0

∆Ck (xbk, uk) + hN

)
(13)
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for which the terminal cost is derived from (10)–(12) as:

hN = λ1

[
v f uel

(
xv

(
tDprk

))]
Trp2

+ λ2

[
∆C

(
xv

(
tDprk

))]
Trp2

+λ2

[
∆C
(

xv

(
tDprk

))]
Nprk

+ λ3 Idiscom f

(
xv

(
tDprk

))
.

(14)

Solving (13) with DP requires a priori knowledge of the terminal cost that results from each value
of xv

(
tDprk

)
within the state grid. In other words, the effect of xv

(
tDprk

)
on the cost terms over Trip 2

and the Night Park should be evaluated in advance. To achieve this, Trip 2 and the Night Park were
simulated for all possible values of xv

(
tDprk

)
as initial state. The cost terms were then evaluated and

mapped onto x
(

tDprk

)
to evaluate (14). As an example, Figure 9 shows the resulting maps for a cabin

temperature of 60 ◦C at the end of Day Park.
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and (d) have been rotated for improved clarity.

Figure 9a shows the fuel consumption in Trip 2, which has a non-zero value. The fuel consumption
gradually increases as the initial SoC reduces below 50% (due to entering CS operation) or as the
battery temperature increases above 45 ◦C (due to reduced electric traction capability).

Figure 9b shows the capacity loss in Trip 2. When the initial SoC is in the range of approximately
50–80%, the capacity loss decreases with any increase in the SoC (due to lower current throughput at
higher voltage), but increases with temperature. Below 50% SoC, the capacity loss map is noisy since
any small change in the SoC or the battery temperature can alter the sequence of supervisory rules
triggered in Trip 2, changing the current throughput and the temperature.

Figure 9c shows the discomfort index which is high when the battery is initially hot, and low
when the trip starts with a low battery temperature.
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Figure 9d shows the capacity loss in Night Park. The shape of this map is driven by the dataset
used in propagating the ageing model. In calculating this map, the variation in the duration of charge
with the remaining battery SoC is neglected for simplicity.

Results: Effect of Key-Off Cooling on the Performance Attributes

Figure 10 shows the result of simulating the duty cycle with the optimum key-off cooling flag
achieved through solving (13) with four different choices for the weighting vector λ. For each λ,
the 24-h profile of the battery temperature and SoC are given alongside the profile of the cabin
temperature and the engine torque in Trip 2.Energies 2017, 10, 2058 16 of 28 
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Figure 10b-1,b-2 are related to minimization of the thermal discomfort. Figure 10b-1 shows that 
the battery is cooled and maintained at approximately 21 °C, well before Trip 2 starts. Consequently, 
the key-on cooling in Trip 2 has been shifted backward by 400 s, making the cabin temperature similar 
to that of the conventional vehicle, suggesting improved thermal comfort. Battery cooling initiates 
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Figure 10. Result of optimizing key-off cooling of the battery for different weightings of objectives
(a-1,a-2) λ = {1, 0, 0}; (b-1,b-2) λ = {0, 1, 0}; (c-1,c-2) λ = {0, 0, 1}; and (d-1,d-2) λ = {0.3, 0.3, 0.3}.
Annotations: left hand side figures (marked ‘1’) show the daily profile of the battery temperature (blue)
and the SoC (red). In right-hand side figures (marked “2”), the cabin temperature in Trip 2 is plotted in
blue, with solid line for optimized PHEV, with a dashed line for baseline PHEV, and with a dotted line
for the conventional vehicle. Also the engine torque in Trip 2 is plotted in red.
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Figure 10a-1,a-2 are related to the scenario in which minimizing fuel consumption is the only
objective. In this solution, the temperature of the battery is allowed to rise during Day Park but
(key-off) cooling starts just before Trip 2, precooling the battery to approximately 42 ◦C. Comparing
the profile of engine torque in Trip 2 with the baseline scenario (Figure 5b) suggests that this degree of
precooling has eliminated the unwanted operation in hybrid mode in the initial part of the trip.

Figure 10b-1,b-2 are related to minimization of the thermal discomfort. Figure 10b-1 shows that
the battery is cooled and maintained at approximately 21 ◦C, well before Trip 2 starts. Consequently,
the key-on cooling in Trip 2 has been shifted backward by 400 s, making the cabin temperature similar
to that of the conventional vehicle, suggesting improved thermal comfort. Battery cooling initiates
after approximately 400 s into Trip 2, leading to a slight rise in the cabin temperature.

In Figure 10c-1,c-2 minimization of the capacity loss is considered as the only objective. In this
solution, key-off cooling has been intensely applied to maintain a low battery temperature. This has
consumed approximately 50% of the battery charge and has forced the vehicle to operate in CS mode
for most of Trip 2, suggesting high fuel consumption. As a result of the low battery temperature in
Day Park, the cabin temperature has improved in the first 250 s of the trip. Note that this solution
highlights a trade-off between minimizing the capacity loss on the one hand, and minimizing fuel
consumption and discomfort on the other hand.

When all three objectives are considered simultaneously, a solution similar to that shown in
Figure 10d-1,d-2 can be expected. Here, key-off cooling has limited the temperature of the battery
during Day Park. Furthermore, sufficient energy has been allocated to precool the battery to 21 ◦C,
which has eliminated the unwanted operation in hybrid mode and has improved the thermal comfort,
in Trip 2.

The evolution of the cost terms in the results presented in Figure 10 are given in Table 7.
When minimization of the capacity loss is set as the only objective, key-off cooling improves the
battery lifetime to 8.5 years (from 6.3 years in the baseline scenario), although fuel consumption
inevitably increases. When all objectives are accounted for, the fuel consumption and the discomfort
index are minimized (to their lower bounds), and still, a significant improvement in the battery lifetime
is achieved. The solutions obtained above with different weighting of the cost terms fall on the Pareto
of optimality that governs the optimum trade-off between the objectives.

Table 7. Breakdown of cost terms for different solutions of Equation (13). The capacity loss and the
fuel consumption figures are quoted per season.

Solution
[∆C]Dprk [∆C]Trp2 [∆C]Nprk

Batt.
EoL

[
vfuel

]
Trp2

Idiscomf

(%) (%) (%) (years>) (L) (-)

Baseline 1.07 0.16 1.364 6.3 67.5 59
Minimization of v f uel : λ = {1, 0, 0} 1.07 0.17 0.98 6.8 41.7 56
Minimization of ∆C: λ = {0, 1, 0} 0.47 0.18 0.69 8.5 121.3 21

Minimization of Idiscom f : λ = {0, 0, 1} 0.87 0.16 0.90 7.3 41.7 6
Trade-off solution: λ = {0.3, 0.3, 0.3} 0.62 0.17 0.77 8.0 41.7 6

An important observation from Table 7 is that a part of the gain in battery lifetime that is achieved
by key-off cooling is a result of the lower capacity loss in Night Park. Key-off cooling increases the
cycling component of the capacity loss in Night Park, given that the battery will receive more charge
to compensate for the extra spent energy. Temperature variations are negligible as plugged-in cooling
is applied in Night Park. Therefore, the reduction in Night Park capacity loss is due to lower storage
capacity loss enabled by the lower storage SoC. Recall from Section 4 that the vehicle has approximately
40% excess charge over its summer duty cycle. This highlights an opportunity for achieving further
improvements in the battery lifetime through partial charging as it will result in lower storage ageing
without the need for extra cycling. Since the ability to perform key-off cooling depends on the available
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battery charge, it is necessary to integrate the optimization of partial charging and key-off cooling to
maximize their benefit for the battery. This will be addressed in the following section.

7. Integrated Control of Partial Charging and Key-Off Cooling in View of the Daily Duty Cycle

In previous sections, it was assumed that the battery was fully charged every day (ζmax = 95%).
Partial charging refers to optimizing ζmax. Since ζmax is equivalent to initial SoC for every repeat of the
duty cycle (ζ0 = ζmax), partial charging affects the fuel consumption and capacity loss in Trip 1:([

v f uel

]
Trp1

, [∆C]Trp1

)
∝ ζmax. (15)

So they should be included when propagating the cost function (9). Therefore, to optimize partial
charging and key-off cooling, a minimization of the following form is required:

min
u∗ , ζ∗max

J = min

(
λ1

[
v f uel

]
Trp1

+ λ2 [∆C]Trp1 + λ2

N

∑
k = 0

∆Ck (xbk, uk) + hN

)
, (16)

where ζ∗max denotes the optimum level of charge. hN in the above equation is of the same form as
(14) but since partial charging affects the cycling component of capacity loss in Night Park, [∆C]Nprk
should be calculated as:

[∆C]Nprk =
[
∆Cstor

(
xv

(
tDprk

))]
+
[
∆Ccyc

(
ζmax, xv

(
tDprk

))]
(17)

leading to:
hN = λ1

[
v f uel

(
xv

(
tDprk

))]
Trp2

+ λ2

[
∆C

(
xv

(
tDprk

))]
Trp2

+λ3 Idiscom f

(
xv

(
tDprk

))
+ λ2

[
∆Cstor

(
xv

(
tDprk

))]
+λ2

[
∆Ccyc

(
ζmax, xv

(
tDprk

))]
.

(18)

For every choice of ζmax, the minimization in (16) reduces to optimal control of key-off battery
cooling described by (13). which can be solved with DP, as done previously. By iterating over different
choices for ζmax, the combination of the level of charge and the key-off cooling flag trajectory that
solves (16) can be determined. It is worth noting that solving (16) only requires one evaluation of
the arc-cost term for the grid of the vehicle states in Day Park, since the arc-cost term is independent
of the initial conditions of Day Park (hence it is independent of ζmax). Therefore, the computation
is inexpensive.

The simulated annealing (SA) algorithm [68], which has been regularly applied to parametric
optimization of HEV control strategies [69,70], is used to find ζ∗max. Figure 11 shows the flowchart of
the process.
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Results: Effect of Partial Charging and Key-Off Cooling on the Performance Attributes

Figure 12 shows the progress of the SA algorithm when (16)–(18) have been weighted with
λ = {0.2, 0.5, 0.3}. The search space is again limited to 40% ≤ ζmax ≤ 95% (with resolution of 0.5%)
to accelerate convergence. The high weights assigned to fuel economy and thermal comfort make it
imperative that the battery is sufficiently charged to deliver maximum CD operation in both trips,
as well as an intense key-off precooling. This effectively limits the window of SoC that is available for
partial charging, so the choice is between higher charge that enables more key-off cooling, or lower
charge that only supports the CD operation and precooling.

Figure 12a shows the values of ζmax for each iteration, suggesting that the search space has been
thoroughly sampled. The algorithm has converged to ζmax = 89% after 93 iterations. Figure 12b shows
that the best achieved (normalized) value of J which is first attained at Iteration 50 (ζmax = 89%).
For Iterations 1, 50, 59, 71, and 75 (with respective ζmax of 95%, 89%, 70%, 57%, and 42%) the breakdown
of the normalized components of J are compared with the baseline scenario (full charging and
no key-off cooling, see Section 4) in Figure 12c. Note that the fuel consumption in trip 1 has
remained unchanged in these iterations, due to the 40% limit set on the minimum level of charge.
Besides, the capacity loss in the two trips is small and relatively unaffected by the level of charge,
as expected. Figure 12d shows the histogram of the battery temperature in Day Park for Iterations
1, 50, 59, 71, and 75 with the baseline. The battery temperature is higher when the level of charge is
lower, since less key-off cooling is applied. Therefore, in Iteration 50 (89% charge, optimum solution),
the battery temperature is higher than in iteration 1, but it is still much lower than the baseline.
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breakdown of cost terms for 6 distinct iterations, and (d) histogram of battery temperature in Day Park.

Figure 13 shows the result of simulating the duty cycle with the optimum level of charge and the
key-off cooling flag trajectory achieved through the process explained above. Comparing the profile
of the battery temperature in Figure 13 with the case of key-off cooling for the fully charged battery
(Figure 10d-1,d-2) shows that temperatures above 30 ◦C have been more frequently allowed in Day
Park, as less key-off cooling has been possible with a partially charged battery. The profiles of engine
torque and cabin temperature have been unaffected by partial charging since the battery is precooled
to 21 ◦C, as was the case with the fully-charged battery.
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More details about the result shown in Figure 13 are given in Table 8 (Row 3), where they are
compared with the baseline results (Row 1) and the results of key-off cooling optimization which was
shown in Figure 10d-1,d-2 (Row 2). Integrated partial charging and key-off cooling, through reducing
the capacity loss in Day Park and Night Park, has enabled a longer battery lifetime compared to key-off
cooling alone. This comparison confirms the benefits of the proposed method. The fact that despite
the higher battery temperature, partial charging has reduced the capacity loss in Day Park indicates
that partial charging compensates for the higher temperature. Furthermore, as was previously seen
in Figure 13, partial charging has not negatively affected the thermal comfort and fuel economy
improvements that key-off cooling enables.

Table 8. Breakdown of cost terms for the solution of Problems (13) and (16). Due to imposing
a minimum charge of 40%, the impact of charge optimization on the vehicle in Trip 1 is negligible,
and the associated cost terms are not quoted in the table.

Row Solution
ımax [∆C]prk [∆C]trp2 [∆C]nprk Batt. EoL

[
vfuel

]
trp2

Idiscomf

(%) (%) (%) (%) (years) (L) –

1
Baseline:
without key-off cooling
or partial charging

95 1.07 0.16 1.34 6.3 67.5 59

2 optimized key-off cooling
(Figure 10d-1,d-2) 95 0.62 0.17 0.75 8.0 41.7 6

3
optimized partial charging
+key-off cooling
(Figure 13)

89 0.61 0.17 0.70 8.2 41.7 6

4
optimized partial charging
+key-off cooling
λ = {0.5, 0.5, 0}

68 0.47 0.18 0.61 8.7 41.7 49

5 lowest possible charge
without key-off cooling 55 0.58 0.17 0.58 8.5 67.5 59

Table 8 also includes details of two additional cases:

• Row 4 represents the solution of (16) considering only the fuel economy and the battery lifetime
(i.e., λ = {0.5, 0.5, 0}), which leaves a wider widow of SoC for partial charging, at the expense
of poor thermal comfort. Therefore, the battery is only charged to 68%. This still allows some
key-off cooling, although less than was seen in Figure 13. As Table 8 suggests, the combination of
lower battery charge and some key-off cooling improves the battery lifetime to 8.7 years.

• Row 5 represents the case in which the battery is minimized (to 55% which is the limit of the excess
charge) but key-off cooling is not applied. In this case, the battery lifetime is improved to 8.5 years,
which is less than the 8.7 years that can be achieved with partial charging and key-off cooling if
thermal comfort is neglected. Note that lack of key-off cooling leads to high fuel consumption
and thermal discomfort in this case.

Comparing the above cases proves that combining partial charging and key-off cooling is more
beneficial than applying partial charging or key-off cooling alone, unless a significant compromise on
fuel consumption is acceptable.

Solving (16) with alternative weighting vectors does not necessarily lead to distinct results.
Solving (16) for fuel consumption alone (λ = {1, 0, 0}) has non-unique solutions. This is because
any sufficiently high level of charge (approximately above 57%) combined with any key-off cooling
flag trajectories that sufficiently pre-cools the battery for Trip 2 will lead to equal fuel consumption.
Similarly, solving (16) for thermal discomfort alone (λ = {0, 0, 1}) does not have a unique solution.
On the other hand, solving (16) for the capacity loss alone (λ = {0, 1, 0}) leads to the lowest possible
level of charge at the expense of high fuel consumption, as can be inferred from the results of Iteration
75 in Figure 12.
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8. Applicability to EVs

To adapt the methods proposed in this paper for EVs, it will be sufficient to choose a cost function
that matches the characteristics of a fully electric powertrain. That is, fuel consumption in Equation (9)
should be replaced with measures of acceleration and distance travelled (equivalent to the EDR in EVs).
For any drive cycle, the difference between the achieved and demanded acceleration and distance,
respectively denoted as ∆a and ∆d, can be used to form the following cost function:

J = min
(

λ1(∆a + ∆d) + λ2 ∆C + λ3 Idiscom f

)
. (19)

Equation (19) can be implemented in the form of Equations (13) and (14) for the key-off cooling
problem, and in the form of Equations (16)–(18) for the integrated partial charging and key-off cooling
problem. It is worth noting that given the generality of other assumptions in this paper and the
similarity of battery technologies commonly used in these vehicles, the overall benefit of key-off
cooling and partial charging will be unaffected by the vehicle type.

9. Discussion

The analyses presented in this paper demonstrate the ability of the proposed methods in
controlling key-off cooling and partial charging, and maximizing their effectiveness in mitigating the
negative impacts of hot climate conditions on the battery of electrified vehicles. Application of key-off
cooling that is proposed in this paper is an important enhancement to the current state-of-the-art of
combining key-on and plugged-in cooling [20,34,39]. Key-off cooling expands the scope of battery
cooling, and enables maintaining a low battery temperature throughout the day, as well as performing
precooling regardless of whether an external power source is available. Further, integration of partial
charging and key-off cooling that is proposed in this paper enhances the current state-of-the-art of
optimized charging without considering its benefit relative to cooling.

The battery lifetime improvement that is enabled by key-off cooling and partial charging serves
the greater fulfilment of warranty targets across wider geographical locations, resulting in off-cycle
credit for the manufacturer [71]. The improvements achieved in the fuel economy through key-off
precooling can be similarly evaluated. Any improvement in the passengers’ thermal comfort through
key-off precooling contributes to higher acceptability of electrified vehicles. Realizing the benefits of
the methods proposed here will require the implementation of additional control algorithms in the
vehicle. Nevertheless, this will be more cost effective than any alternatives such as using advanced
insulation technologies and over-sizing the battery [72] which need to be applied to the whole fleet
while the issue only affects the subset of the fleet that operate in hot climate conditions.

The opportunity for applying key-off cooling and partial charging without affecting the electric
range of the vehicle depends on the availability of excess battery charge over the duty cycle.
The assumptions of this work represent the common subset of all battery size and duty cycle
combinations that leave some excess battery charge. When little or no excess charge is available,
defining the relative importance of fuel economy, battery lifetime, and thermal comfort in controlling
key-off cooling becomes more critical. Addressing such circumstances requires a separate analysis,
but it is evident that the methodology proposed in this work will produce the ‘optimum’ results.

The methodology proposed in this paper relies on a priori knowledge of the ambient conditions
and the duty cycle. When such a priori knowledge is absent, the relevant functionalities can be
implemented through a rule-based algorithm inferred from offline simulation of a range of ambient
conditions and duty cycle combinations. In a more advanced setting, weather forecasts, route planning
technologies and interaction with parking management systems can provide the information needed
for online optimal control of key-off cooling and partial charging.
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10. Future Work

The simulation results presented in this paper are promising and suggest that applying key-off
cooling through the proposed methodology can enable significant improvements in the performance
attributes of PHEVs and EVs in hot climates. One way to enhance the confidence in the analyses is to
employ a comprehensive battery ageing model to calculate the increase in the internal resistance of the
cells, as well as their capacity loss, and update the battery lifetime calculations. This will be carried out
in the feature using the model presented in [73]. Furthermore, experimental validation of the proposed
methodology will be carried out in the future to establish its effectiveness in real life conditions.

Since the purpose of this research is to show the ultimate benefit of key-off battery cooling,
practical considerations such as the additional cost of electrical energy, component wear, and noise
pollution resulting from the operation of the cooling system were neglected. The possible impact of
such considerations on the key-off cooling strategy will be analyzed in the future.

11. Conclusions

The key conclusions that can be drawn from the analyses presented in this paper are as follows:

(1) Three performance attributes of PPHEVs, namely their fuel economy, battery lifetime,
and passengers’ thermal comfort, can be negatively affected by the high battery temperature that
results from hot climate conditions.

(2) Key-off cooling can be applied to reduce this effect, hence reducing the unwanted variability in
the performance attributes of the vehicle with climate conditions.

(3) The control method proposed in this paper maximizes the benefits of key-off cooling,
by accounting for and containing the risks associated with using the battery to support
key-off cooling, i.e., extra fuel consumption and disproportionately high cycling capacity loss.
The formulation proposed for the key-off cooling control problem can be tuned to target
individual, as well as combinations of, the affected performance attributes.

(4) Integration of partial charging and key-off cooling enhances their individual benefits for the
battery lifetime. The method proposed for integrated optimization of partial charging and
key-off cooling can determine the combination of the level of charge and key-off cooling that
maximizes the battery lifetime. This can be also tuned to achieve a trade-off between fuel economy,
battery lifetime and thermal comfort.

Within the context of the assumptions of this paper, the following observations were made:

• Key-off cooling reduced the seasonal capacity loss of the battery in the Day Park phase by
approximately 42% and this helped improve the battery lifetime from 6.3 years to 8 years.

• Key-off precooling eliminated the impact of battery overheating on the electric drive
capability of the vehicle. This reduced the seasonal fuel consumption by approximately 23%.

• Key-off precooling improved the passengers’ thermal comfort by shifting the key-on cooling
loads in Trip 2 by 400 s, reducing the thermal discomfort index from 59 to 6.

• Integrating partial charging and key-off cooling enabled further improvements in battery
lifetime. By partially charging the battery (to 89% instead of 95%) and applying some key-off
cooling, the battery lifetime was improved by 2.5% compared to when only key-off cooling
was applied (8.2 years, compared to the eight years). When the window of excess charge was
widened by neglecting the thermal comfort attribute, combining partial charging to 68% and
key-off cooling improved the battery lifetime by 9%, compared to when only key-off cooling
was applied (8.7 years compared to eight years). This was more than the improvements
partial charging or key-off cooling can individually enable, unless a significant compromise
in fuel consumption is acceptable.
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Nomenclature

Notation Description Unit
Tcabin average cabin air temperature ◦C
Tbatt battery temperature (bulk) ◦C
Tbatt average battery temperature ◦C
ζ state of charge (SoC) %
i battery current A
τeng engine torque Nm
ζmax maximum SoC (level of battery charge) %
ζ∗max optimum maximum SoC (optimum level of charge) %
ζ average of SoC %
n number of charge-discharge cycles of battery –
C0 Initial battery capacity Ah
∆Cstor storage capacity loss %
∆Ccyc cycling capacity loss %
∆C total capacity loss %
vfuel fuel consumption (fuel consumed) L
Idiscomf discomfort index –
Trp1 Trip 1 (phase of the duty cycle) –
Dprk Day Park (phase of the duty cycle) –
Trp2 Trip 2 (phase of the duty cycle) –
Nprk Night Park (phase of the duty cycle) –
[∆C]Trp1 total capacity loss in trip 1 %
[∆C]Dprk total capacity loss in Day Park %
[∆C]Trp2 total capacity loss in trip 2 %
[∆C]Nprk total capacity loss in Night Park %
[vfuel]Trp1 fuel consumed in Trip 1 L
[vfuel]Trp2 fuel consumed in Trip 2 L
tTrp1 time at end of Trip 1 s
tDprk time at end of Day Park s
tTrp2 time at end of Trip 2 s
tNprk time at end of Night Park s
τeng engine torque Nm
xb state (vector) of the battery: [Tbatt, ζ]

′ –
xv state (vector) of the vehicle: [Tcabin, Tbatt, ζ]

′ –
u key-off cooling flag trajectory –
u∗ optimum trajectory of key-off cooling flag –
J total cost minimized in optimal control problems –
h terminal cost (used in the definition of cost functions) –
λ vector of weights (used in the definition of cost functions) –
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Abbreviations

EV electric vehicle
PHEV plug-in hybrid electric vehicle
PPHEV plug-in parallel hybrid electric vehicle – a class of PHEVs
EDR electric drive range
AC air conditioning (system)
SoC state of charge
CD charge depleting
CS charge sustaining
NEDC The New European Drive Cycle
EoL end of life
DP dynamic programming
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