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Abstract: This paper provides a review on various PV simulator technologies as well as presents
a novel equivalent photovoltaic (PV) source that was constructed by using un-illuminated solar
panels and a DC power supply that operates in current source mode. The constructed PV source
was used for testing photovoltaic converters and various maximum power point tracking (MPPT)
algorithms required for capturing the maximum possible output power. The mathematical model
and electrical characteristics of the constructed PV source were defined and analyzed in detail in the
paper. The constructed PV source has the advantages of high bandwidth over the switching circuit
based PV simulators. The constructed PV source has been used for testing various power electronics
converters and various control techniques effectively in laboratory environments for researchers and
university students.

Keywords: PV simulator; unilluminated solar panel; DC power supply; photovoltaic inverters;
maximum power point tracking (MPPT)

1. Introduction

The demand for solar energy electricity generation system has been continuously increasing
due to the improvement of solar panel and power conversion technology, particularly with growing
demand for renewable energy across the world. Large amounts of PV electricity are now injected into
utility systems through distribution networks. A solar electricity generation system often comprises
many PV arrays and PV inverters. A PV generation system could be formed by many parallel and
serial connected PV panels to provide sufficient voltage and currents. A PV inverter that is constructed
using power semiconductor devices and microcomputer-based control circuit is used in controlling
the PV system operation so that it can always operate at its maximum power point (MPP) to capture
the maximum possible power under any given solar irradiance. On the other hand, the PV inverters
also convert the dc power generated by PV panel to 50 Hz ac power at an appropriate voltage suitable
for grid connection. PV panels are usually designed with a lifetime of 25 years; however, the PV
inverter’s lifetime is usually less than that due to the failure of its components. Great attention has
been paid to the development of advanced PV inverters to achieve higher efficiency, higher reliability,
lower cost and advanced control algorithms. Advanced power semiconductor devices, high-quality
capacitors, inductors and advanced inverter circuit topologies and control strategies are the keys for
high-quality PV inverters. It is imperative to adequately evaluate the inverter’s efficiency, reliability
and performance to reduce the development period. For the development and experiment test of
photovoltaic converters, repeatable test conditions are very often required to justify their control
algorithms [1]. It would be very difficult to carry out repeatable tests by using outdoor installed PV
panels as the unpredictable atmospheric conditions affect the repeatability of the test conditions and
the high system installation and maintenance cost. Today various PV simulators have been developed
to replace actual outdoor PV panels for testing PV inverters and control algorithms, some of them
have already being commercially available.
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Firstly, this paper reviews various PV simulator techniques, and secondly, it presents a novel
equivalent PV source constructed by connecting unilluminated PV panels and external current source.
The review of various PV simulator techniques such as their configurations, characteristics, hardware
circuits and control algorithms are presented in Section 3. Section 4 presents the mathematical model
and electrical characteristics of the constructed PV source. Test results of the constructed PV source with
a boost dc/dc converter and MPPT algorithms are presented in Sections 5 and 6 presents the conclusion.

2. Mathematical Model of Solar Panels

The equivalent lumped circuit model of solar cells has been widely used for the performance
simulation and prediction for designing, manufacturing and evaluation of PV systems. There are two
main models for PV cells, the first one is a single-diode model based on the modified shocked diode
equation incorporating a diode quality factor to account for the effect of recombination in space-charge
region [2]. Figure 1 shows a single-diode solar cell model. It is represented by a current source in
parallel with a diode and a parallel resistor, as well as a series connected resistor at the output terminal.
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Figure 1. Equivalent circuit of a single-diode solar cell model.

For a solar panel with a number of series-connected PV cells, it is a common practice to assume
that the characteristics of the series cells inside the solar panel are nearly identical [3–5]. A PV panel
model therefore, is considered as a single cell with some multipliers dependent on the number of
series-connected cells in the PV panel. Based on the single-diode model, the I-V characteristic of a PV
panel is given by (1):

Ipv = Iph − Is(e
Vpv+Ipv Rs

nNsVt − 1)−
Vpv + IpvRs

Rsh
(1)

where, Ipv and Vpv are the terminal current and voltage of the PV panel, Iph is the photo current, Is is
the dark saturation current, Rs and Rsh are the series and shunt resistances of the solar panel, n is the
diode quality factor, Ns is the number of series-connected PV cells in the PV panel, Vt is the solar cell
thermal voltage defined as Vt = kT/q, where k is Boltzmann’s constant (1.38 × 10 – 23 J/K), q is the
elementary charge (1.6 × 10 − 19 C), and T is p − n junction temperature in Kelvin.

The second one is the double-diode model, which can simulate the space-charge recombination
effect by incorporating a separate current component with its own exponential voltage
dependence [2,6].

Figure 2 shows a double-diode solar cell model. It is represented by a current source in parallel
with a diode and a parallel resistor, as well as a series connected resistor at the output terminal.
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For a solar panel with a number of series-connected PV cells, the I-V characteristic based on the
double-diode model is given by (2):

Ipv = Iph − Is1(e
Vpv+Ipv Rs

n1 NsVt − 1)− Is2(e
Vpv+Ipv Rs

n2 NsVt − 1)−
Vpv + IpvRs

Rsh
(2)

where, Is1 is the dark saturation current due to diffusion mechanism, Is2 is the dark saturation current
due to carrier recombination in space-charge region, n1 is the diode quality factor for diffusion current,
n2 is the diode quality factor for generation-recombination current, the other parameters are the same
as in Equation (1) [4].

In practice, the double-diode model can be further simplified by approximating n1 = 1 and n2 = 2
based on Shockley’s diffusion theory [2,6]. The simplified I-V characteristics for the double-diode
model is given in Equation (3):

Ipv = Iph − Is1(e
Vpv+Ipv Rs

NsVt − 1)− Is2(e
Vpv+Ipv Rs

2NsVt − 1)−
Vpv + IpvRs

Rsh
(3)

The single-diode model was found not very accurate in describing cell behavior under low
illumination conditions [2,4,6]. Research shows that estimated series resistance values could be
negative using solar module characteristics collected at low solar illuminations [6]. It has been shown
that the double-diode model is a more accurate model in presenting the solar panel behavior as
compared with the single-diode models particularly at low irradiation levels, as it is able to simulate
the space-charge recombination effect by incorporating a separate current component with its own
exponential voltage dependence [2,4].

Comparing Equation (3) with Equation (2), there are only five unknown parameters (Rs, Rsh, Is1,
Is2, and Iph) in Equation (3) which need to be determined based on the available data provided from
PV panel’s datasheets. Details of the determination of the five parameters were described in [4].

The short circuit current of the solar panel can be calculated by setting Vpv = 0 and neglecting the
current through the diode: as expressed in Equation (4):

Isc =
Iph

Rs
Rsh

+ 1
≈ Iph (4)

The short-circuit current is approximately equal to the photo- generated current. To achieve the
maximum possible output power of a solar panel, the solar panel should be operated at a suitable
voltage level at which it can generate its maximum output power. The voltage and current at the MPP
can be solved based on Equation (5):

dP
dV

∣∣∣∣
VMPP ,IMPP

=
d(Vpv Ipv)

dV

∣∣∣∣
VMPP ,IMPP

= 0 (5)

where, VMPP, IMPP represents the output voltage and output current of the solar panel respectively [7].
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3. Review of PV Simulator Techniques

To meet the requirement of research on photovoltaic power generation systems, various
photovoltaic simulators have been developed over the past decade. Reference [8] presented a simple
photovoltaic simulator that was constructed by a dc voltage power supply and a series connected
variable resistor as shown in Figure 3. The open circuit voltage of the simulator is determined by
setting the dc power supply maximum output voltage. The short-circuit current depends on the power
supply voltage setting and the resistance of the variable resistor. The slope of emulated I-V curve
was reduced due to the series connected resistor as shown in Figure 3. The main disadvantage of this
type of PV simulator is the low efficiency (maximum 50%) due to power loss in the series resistor at
the output.
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Research in [9,10] present a solar simulator implemented by amplifying the small current and
voltage of a photo-diode using an analog technique. The block diagram of the main experiment circuit
is shown in Figure 4.
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In Figure 4, the voltage of the p-n photo-diode is amplified by the DC power amplifier,
the operational point of the photo-sensor is controlled by the DC bias controller based on the feedback
signals of the current sensors. It was confirmed that each voltage gain and the current gain of the circuit
is independently adjustable, and the circuit amplifies the I-V output of the photo-diode successfully.
The output current Ipv was controlled by the current feedback control circuit, which was proportional
to the photo-diode current Iph Therefore, if the operating point at the output of the PV simulator
changes to another point by the changes of the load, the corresponding output current can be amplified
and set to a new point on the I-V curve.

The simulator is an amplified photo-diode by using a linear amplifier which was implemented by
analog electronics circuit; its output voltage and current are proportional to the photo-diode voltage
and current. Thus, the electrical characteristics of the PV simulator are completely dominated by the
photo-diode, as a result high bandwidth can be achieved. The results in [9] shows that the open-circuit
voltage and short-circuit current of the PV simulator can reach up to 16 V and 3 A respectively.
The short circuit current of the PV simulator is proportional to the photo-current of the photo-diode
depending on the illumination of external light source while the photo-diode voltage will be zero at
the condition of short-circuit of the simulator output.

As the circuit was built completely by using analog circuits, it has the advantage of having
high bandwidth, hence is suitable for testing PV inverters with high frequency MPPT algorithms.
The drawbacks of the analog circuit-based PV simulator are the low efficiency and therefore a large
heat sink is required. Nonetheless, the circuit shows good response for more than 1 kHz bandwidth
load test, sufficiently fast for evaluating MPPT algorithms and PV inverters. Based on this technique
partial shading effect emulation was conducted by using simulator based on the multiple small-scale
module units as discussed in reference [11]. Based on techniques above, research in [12] presented
a PV simulator which was constructed by using several series connected solar cells to constitute a
mini PV-module to provide the reference signal of the PV simulator as shown in Figure 5. The power
amplifier circuit was the same as shown in Figure 4.
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If the resistances of emulated solar panel are neglected, then the I-V characteristic of the PV
simulator is expressed in Equation (6):

Vpv_emul = NsVT ln(
Iph − Ipv_emul

I0
+ 1) (6)
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Based on Equation (6), an interested low-cost solar PV simulator was implemented in [13] by
using discrete operational amplifiers as shown in Figure 6, where voltage V1 and V2, are the input
voltage of the differential amplifier A1. These are assumed to be proportional to the photo-current Iph
and output current Ipv of the PV simulator respectively. Resistances R1 to R12 are the main parameters
of the PV simulator and need to be set carefully. A3 operated as an inverting half-wave rectifier with
unity gain which inverts the negative input signal to the amplifier A4, to compensate for the difference
between the diode D thermal voltage and the solar cell thermal voltage as well as amplifying the
output. It is a good low-cost solution for implementing PV simulators, however the only disadvantage
is that the effect of the series resistance is not considered. When compared against the experimental
results for the 12 W thin film solar cell, there are 5.4% error for the actual maximum output power and
3.4% error for the open circuit voltage.
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Analog technique based PV simulator has the advantage of high bandwidth and it can provide
fast response for testing high frequency MPPT algorithms [9–13]. However, this type of PV simulator
suffers the disadvantages of low efficiency and large physical size as well as higher manufacturing cost.
To overcome the disadvantages of analog technique based PV simulator, switching mode electronic
circuits based PV simulators were proposed [14]. Figure 7 shows a general block diagram of switching
mode circuit based PV simulator. There are three main parts: the rectifier circuit for supplying dc
voltage to the chopper circuit, the switching mode chopper circuit and the feedback control circuits.
The dc chopper generates the emulated electrical characteristics of the PV panel/arrays to be emulated.
The basic principle of operation is that when the PV simulator is used for testing PV inverters,
the terminal voltage Vpv is regulated continuously by the connected PV inverter. Vpv is also an input
signal for the pre-stored PV panel electrical characteristic to find the corresponding reference current
of their I-V curves. The chopper circuit current controller controls the output current Ipv to track the
reference current Ipv_re f .

The basic requirement for the chopper circuit is that it should be able to sweep the entire voltage
range of the PV source to be emulated, hence the dc input voltage needs to be higher than the
open-circuit voltage of the PV source to be emulated [15]. Figure 8 shows a simplified chopper circuit
based PV simulator that was implemented by using buck dc/dc converter [4,14–29].
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A topology of a power electronics circuit intended for emulating higher power rating PV system
is presented in [18]. The entire voltage range of the PV simulator is between 0 to 650 V, the output
current can vary between 0 to 7 A and the nominal power rating can reach up to 4.4 kW. The circuit
topology presented in Figure 9 comprises of a three-phase rectifier, a full-bridge PWM inverter with
two high-frequency transformers and two output rectifiers in a series configuration to provide a higher
output voltage. The advantages of this topology are the higher power ratings as well as full galvanic
isolation [18].

To test PV inverters with high switching frequency, it is necessary that the PV simulator should
be designed with high bandwidth to allow actual PV panel/array emulation possible. Therefore,
high-speed and sophisticated real-time control circuit is required for PV simulator to provide high
crossover frequency so that the PV simulator can act like real PV source. The switching frequency
usually is about ten times the crossover frequency for the linear control principles to be effective for
the control systems [16,17]. As discussed in [16], a buck dc/dc converter based PV simulator was
presented and a switching frequency of 100 kHz was chosen for the buck dc/dc converter to achieve a
crossover frequency of 10 kHz.
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In reference [22] a three-phase two-stage high-efficiency PV simulator was presented, in which a
three-phase dc–dc interleaved buck converter was employed to emulate the electrical characteristics of
a solar panel/array. As interleaved buck converter technique was employed, the output current
ripples was reduced to 50%. The experimental results showed that the PV simulator with a
bandwidth of 200 Hz was achieved and able to provide a fast response time to meet various MPPT
algorithm requirements.

In addition, a high-efficiency PV simulator based on resonant dc/dc converter was also discussed
in [4], in which zero-current switching technique was employed during the switching operation of the
converter to improve the efficiency. With the LLC resonant technique applied the output impedance of
the converter can be controlled to any value from zero to infinity without any shunt or series connected
resistance. Hence the efficiency of the proposed PV emulator was increased significantly.

To emulate a PV panel/array it is essential to have the measured electrical characteristics from the
datasheet (such as their I-V curves and temperature effects), which can be prestored in look-up table of
the control system of the PV simulator system with reference to [5,30–32] or calculated in real time by
using the I-V Equation (1) as discussed in [23,33–35]. The circuit connection for the PV simulator can
be seen in Figure 8.

However, the drawback of look-up table based techniques is that the control system will require
large memory capacity for storing the large amount of data to represent I-V curves. Due to the
large memory storage required it is difficult to implement look-up table for low-cost PV simulators
employing simple microcontroller. Nonetheless, the main advantage of implementing look-up table
based PV simulator is that it can considerably improve the operational speed of the PV emulator [5].
In contrary, equation based approach requires less memory space, however to accurately model I-V
curves higher order equations are needed which can lead to increase of computational time as well as
the requirement of high-speed microprocessor.

To overcome the above-mentioned drawbacks of the look-up table and the equation based
techniques, an actual solar cell based PV simulator was presented in [22], where, the reference current
signal of current controller was generated by a solar cell in real-time by supplying a scaled voltage to
the solar cell. The block diagram is shown in Figure 10.

In Figure 10, the analog scaling circuit-2 was designed to output a small voltage Vpv_cell in
proportional the actual PV terminal voltage, which is then applied to the illuminated PV cell to
generate a current Ipv_cell , that was used as the reference current Ipv_cell for the current controller of PV
simulator. Comparing to the look-up table method, this method is more accurate, fast and flexible.
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4. Mathematical Model of the Constructed PV Source

In this paper, an emulated PV source is constructed by using an un-illuminated PV panel and an
external current source for testing PV inverters and MPPT algorithms in the laboratory. The circuit
connection of the constructed PV source is shown in Figure 11.
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The equivalent circuit of the constructed emulated PV source is shown in Figure 12, where Ics

represents the current source current generated by the external dc power supply, Dbp represents the
bypass diode installed in the PV panel. The role the bypass diode is to avoid avalanche breakdown
and hot spots during partial shading [4,31,32]. As partial shading was not investigated in the paper so
the effect of the diode on the PV source was not considered.
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From Figure 11, the current source current is divided into two parts, one current Ip is injected
back to the PV panel through the internal series resistance, another current is the output current of the
constructed PV source, which is expressed as Equation (7):

Ipv = Ics − Ip (7)

To simplify the description of I-V relationship of the equivalent PV source, only single-diode
model was used to describe the electrical characteristics of the emulated PV source.

Without sunlight illumination the PV panel will generate zero photo-current, i.e., Iph = 0, the I-V
equation of the PV simulator will be expressed by Equation (8):

Ipv = Ics − Ip = Ics − Is(e
Vpv−Ip Rs

NsVt − 1)− Ish

Vpv = IpvRs + nVt ln Ip−Ish+Is
Is

Ish =
Vpv−IpRs

Rsh

(8)

where, Ipv and Vpv are the PV simulator’s output current and voltage, respectively. The electrical
characteristics of the constructed PV source are completely determined by the solar panel’s physical
properties while the photo-current is provided by the external current source. For a given Ics,
the current injected into the un-illuminated PV source is represented by Equation (9):

Ip = Ics − IPV (9)

If one assumes that all solar panels have the same leakage current, Ish, going through the parallel
resistance and the same dark saturation current Is, the output voltage Vpv, of the multi-panel based
emulated PV source is expressed by eq. (10)

Vpv =
k

∑
m=1

Vpm = Ip

(
M

∑
k=1

Rsk

)
+ Vt

(
M

∑
k=1

Nsk

)
· ln

Ip − Ish + Is

Is
(10)

The proposed emulated PV source can also be constructed using multiple series-connected PV
panels to provide a high output voltage and power test conditions. Figure 13 shows the circuit
connection of the proposed PV source with multiple series-connected PV panels.
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Starting from the Equation (7), one can derive the current of the multi-panel based PV simulator as:

Ipv = Ics − Is(e

Vpv−Ip ·
M
∑

k=1
Rsk

Vt ·
M
∑

k=1
Nsk − 1)− Ish (11)

where, Rsk and Nsk are the series resistance and the number of cells connected in series for the k-th PV
panel. If all the series connected panels are identical and have the same injected current Ip, Equation
(11) can be further simplified as Equation (12):

Ipv = Ics − Is(e
Vpv−Ip ·m·Rs

Vt ·m·Ns − 1)− Ish (12)

where m represents the number of solar panels connected in series.

5. Experimental Setup for Testing PV Inverter and MPPT Algorithms

Experimental setup is shown in Figure 11. The solar panels used in the setup is 175 W commercial
PV panels STP175S-24/Ac from SUNTEC [36]. The parameters of the PV panel under standard test
conditions (STC) (i.e., irradiance 1000 W/m2, module temperature 25 ◦C, AM = 1.5), are given in
Table 1. The details of the characteristics of the solar panel can be found in [36].

Table 1. The parameters of the PV panel STP175S-24/Ac at STC [36].

Rated Maximum Power 175 Watts

Current at the maximum power point 4.95 Amp
Voltage at the maximum power point 35.2 Volts

Short circuit current 5.2 Amp
Open circuit voltage 44.2 Volts

Normal operating cell temperature 50 ◦C

A 1800 W DC power supply is connected in parallel with the solar panel. The photocurrent of
the PV panel in an indoor environment is very low and is assumed as zero. The dc power supply is
operated in a current source mode. Three different configurations of the proposed PV source were
constructed and tested with single solar panel test, two solar panels in series connection test as well as
three solar panels in series connection test. Figure 14 shows measured electrical characteristics of the
proposed emulated PV source with single solar panel at different excitement currents.

Figure 15 shows the electrical characteristic comparison of the constructed PV source with an
excitement current Ics = 5.20 A (corresponding to 1000 W/m2 at 25 ◦C STC). There is a small shift for
the I-V and P-V curves between the constructed PV source and the actual solar panel when compared
(see the datasheet given in [36]). The shift point starts after the point of (Vpv = 30 V, Ipv = 5.187 A),
before the maximum power point (MPP), at which the emulated PV source output current starts
reducing rapidly. From Equation (9) the current injected into the solar panel increases with the drop
of the output current from the emulated PV source. The difference is approximately determined by
the product of the solar panel’s series resistance and the current injected into the solar panel from the
external current source, i.e., ∆V = Ip × Rs as shown in Figure 11.

At the point of the open circuit voltage of the emulated PV source, all the current from the external
current source is injected into the solar panel, this will generate the maximum voltage shift and the
maximum voltage difference ∆Vmax = Ics × Rs. The series resistance of the actual solar panel can also
be estimated by: Rs = ∆Vmax/Ics In Figure 14, for Ics = 5.20 A Vpv_emul_open is 46.26 V and open circuit
voltage of the actual solar panel at STC condition: Vpv_actual_open is around 44.2 V. Therefore, the series
resistance of the actual PV panel is estimated to be 0.39 Ω.
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Figure 15. Comparison of the electrical characteristic between the emulated PV source at Ics = 5.20 A
and the actual solar panel at STC (1000 W/m2, 25 ◦C).

Figure 16 shows the characteristic per-unit curves of the actual PV panel (Suntech power
STP175s-24) [36] at irradiance of 600 W/m2 (simulated based on the model given in [37]). Figure 17
shows the characteristic per-unit curves of the emulated PV source at 3.14 A excitement current from
the external current source, which is equivalent to the short-circuit of the actual PV panel at irradiation
of 600 W/m2.

In Figures 16 and 17 all the curves are presented in per unit, respectively. The base value of
the current and voltage are the corresponding current and voltage at the maximum power point
(MPP) at irradiance of 600 W/m2, i.e., Ipv_base = IMPP = 2.81 A and Vpv_base = VMPP = 35.2 V
respectively. Ipv-p.u. = Ipv/Ipv_base, Vpv-p.u. = Vpv/Vpv_base. The per-unit dynamic and static resistance
values were drawn based on their maximum values, i.e., 1.8 kΩ for dynamic resistance, and 950 Ω
for static resistance, respectively. Please note that the actual dynamic resistance appeared as negative
values across the range of all the operating conditions, for the simplicity of the results presentation,
the dynamic resistance values shown in Figures 16 and 17 are their absolute values.

Due to changes in atmospheric conditions the dynamic resistance of the actual PV panel was
simulated based on the simulation model provided in [37]. It can be seen from Figure 17 that errors
appear with the dynamic resistance, particularly for the values on the left side of the MPP due to the
limited resolution of the measurement meter. More so, the curves shown in Figures 16 and 17 are
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very similar except slightly shift on the right-hand side of MPP because of series resistance of the
solar panel.
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Ics = 3.14 A.

It is worth mentioning that there are effects of the behavior of the small-signal resistance of the PV
generator on the connected power electronics converters as discussed in [38]. It was also noticed earlier
that certain commercial emulators may contain resonances, which may lead to unstable operation of
the interfacing converter as discussed in [39].

The output power and operational voltage measured at the maximum power point (MPP) versus
excitement current Ics, are presented in Figure 18. A linear interpolation method was used to determine
the MPP values (power and voltage) for the Ics values between two adjacent measured points.
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The relationship between excitement current Ics, and the power at MPP is shown in Figure 18. One can
see that the maximum output power value is proportional to the excitement current (increase in this
current corresponds to the increase of the sun irradiance in the outdoor environment). The open-circuit
voltage is also affected by the Ics and it saturates at higher values of Ics. This variation confirms that
MPPT algorithms are essential to control PV inverters to guaranty that a PV source always operates at
its maximum power point for any solar irradiance conditions.Energies 2017, 10, 2075 14 of 20 
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Figure 18. Measured Ics − PMMP and Ics − VMMP curves of the constructed PV source using a single
un-illuminated solar panel.

The correlation between the excitement current and the simulated input irradiance on the PV
panel STP175S-24/Ac are shown in Table 2.

Table 2. Correlation between the excitement current and the simulated input irradiance on the PV
panel STP175S-24/Ac at 25 ◦C.

Excitement Current Ics Simulated Input Solar Irradiation

5.20 Amp 1000 W/m2

4.16 Amp 800 W/m2

3.12 Amp 600 W/m2

2.08 Amp 400 W/m2

1.04 Amp 200 W/m2

Nevertheless, it is worth mentioning that in practice apart from the solar irradiance, temperature
also affects the performance of the solar panel [16]. Figure 19a shows the simulated electrical
characteristics (I-V curves) of the solar panel STP175S-24 with 1000 W/m2 of solar irradiation at three
different temperatures of 25 ◦C, 50 ◦C and 75 ◦C. Figure 19b shows simulated electrical characteristics
(I-V curves) of the emulated PV source at external excitement current of 5.20 (A). The excitement
currents Ics. There are slight changes in the excitement current due to temperature variation. Based
on Equation (13) at difference temperature and solar irradiance, the external excitement current Ics is
calculated as:

Ics = [Isc_25◦C + CT(T − Tre f )]
S

Sre f
(13)

where, Ct is the temperature coefficient of photon current = 1.7 × 10−3 (A/K), T is real cell temperature,
Sre f is the reference irradiance = 1000 (W/m2), Isc is the short circuit current at reference conditions,
which is equal to 5.2 (A) for PV panel used.
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Figure 19. (a) actual I-V curve temperature variation of PV panel (STP175S-24) at STC. (b) emulated
I-V curve temperature variation of the emulated PV source.

From Figure 19, the photo-current slightly increase with increase of temperature. However, there
is a significantly effect of the temperature on the PV panel’s open circuit voltage. From Figure 19a the
open circuit voltage reduced from 44.2 V to 36 when the temperature increases from 25 ◦C to 75 ◦C.

Figures 20 and 21 show the measured P-V and I-V curves of the constructed PV source with
two and three PV panels connected in series, respectively. A boost dc/dc converter with P&O MPPT
algorithm was developed in the laboratory environment. The proposed PV source with a single
PV panel was used in testing the PV inverter and MPPT algorithm. The block diagram and circuit
connection of the constructed PV source interfaced with the boost dc/dc converter and controller as
well as the electronics load is shown in Figure 22.
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Figure 20. Measured I-V and P-V characteristics of the constructed PV source with two PV panels
connected in series.
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Figure 21. Measured I-V and P-V characteristics of the constructed PV source with three PV panels
connected in series.
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Figure 22. (a) circuit connection (b) experiment test set-up of the constructed PV source interfaced with
power electronics converter and load.

Figure 23 shows the test result of the boost dc/dc converter controlled by a P&O-MPPT
algorithm [40] with a perturbation frequency of 200 Hz (time step of 5 ms) and a perturbation voltage
of 0.5 V. The controller was developed using ADMC401 digital signal processor. It was observed
during the test that the terminal voltage of the emulated PV source continuously oscillates around
the maximum power point due to employment of the MPPT algorithm. The measured mean voltage
at MPP is 34.9 V at excitement current Ics = 1 A, which is corroborated with reference to Figure 14.
Test with varied excitement current was also carried out to simulate PV inverter with the variation of
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solar irradiance. Figure 24 shows how the constructed PV source output voltage and output power
changes with the excitement current from the external current source.Energies 2017, 10, 2075 17 of 20 
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6. Conclusions

This manuscript provides a detailed review of various PV simulators previously reported in
the literature. This includes the dc power supply and a series connected variable resistor based
techniques [8], photodiode current and voltage amplifier based techniques in reference [9,10], actual
solar cell amplifier based techniques in reference [11,12], switching-mode power electronic converter
based techniques in reference [4,14–29]. Lookup-table and equation based control techniques were
discussed in reference [23,30,33–35]. Mathematical models of the constructed PV source with single
PV panel and multiple PV panels connected in series were analyzed and presented. The proposed PV
source was constructed in a laboratory environment which provides an effective way of testing PV
inverters and different MPPT algorithms. The system can provide repeatable test conditions, essential
for fast and effective PV inverter development.
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It is important to mention that the proposed emulated PV source was constructed using actual
solar panels with an external power supply, the electrical characteristics is mainly determined by
the connected solar panel. The proposed PV source has the advantage of high bandwidth which is
an essential characteristic for testing high frequency MPPT algorithms. The dc power supply only
provides the excitement current to mimic the photocurrent generated at different solar irradiance.
The disadvantages are that an actual PV panel will be required to simulate the PV devices, it is also not
very convenient to simulate the temperature effect.

Nonetheless, the drawback of the proposed PV source is that the I/V characteristic is slightly
different from the one of the unilluminated panel because of the series resistance of the panel.
The PV panel must be changed if a different panel need to be simulated, this is because only Iph
can be regulated out of the five circuit parameters that define the I-V characteristics of a PV panel
(Rs, Rsh, n, Is and Iph). Proposed simulator is limited in the sense that it is not convenient in testing
temperature effect.
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