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ABSTRACT 
     There are two common methods to generate renewable 
energy by using the power of the sun including photovoltaic and 
solar thermal. By combining these two methods in one system, 
though more electrical energy can be generated but due to 
competing operating requirements new problems emerge. 
Experimental and theoretical studies are required to enhance the 
efficiency of this kind of hybrid systems. To optimize and 
analyze the combined efficiencies in a coupled photovoltaic 
(PV)/thermal concentrating solar collector systems a new 
approach has been introduced and published by Otanicar based 
on a coupled electrical/thermal model.  Developing a Matlab 
code for this model has been described in this paper. The code 
takes solar irradiance, fluid temperature in/out and ambient 
temperature and returns PV efficiency and thermal efficiency as 
well as mass flow rate of the heat transfer fluid. 

 
INTRODUCTION 
     To optimize the overall efficiency of hybrid PV/thermal 
systems at high concentration ratios and temperatures a coupled 
electro-thermal model has been innovated by Otanicar and his 
colleagues (1, 2).  
In their proposed configuration losses in the PV cell due to 
reduced efficiencies at elevated temperatures and the incident 
solar energy below the PV band gap are both harnessed as heat 
(2).  
In other words, they have presented a unique design strategy for 
a hybrid PV/thermal system that only has mild thermal coupling 
which can lead to enhanced efficiency. It has been claimed that 
by creating a fluid filter (Figure 1) that absorbs energy directly 
in the fluid below the band-gap and a PV cell with an active 
cooling strategy combined efficiencies greater than 38% can be 
achieved (1). 
 

Based on the heat fluxes (Figure 2) and electrical efficiency of 
the PV an iterative numerical scheme that involves a coupled 
electro-thermal simulation of the solar energy conversion 
process has been introduced (1, 2). 
Investigating the interaction between PV efficiency and the 
solar thermal collector’s operating parameters is the purpose of 
this iterative numerical scheme (2). 

 

 
 

Figure 1: Using absorbing fluid filter to thermally decoupled 
PV/T hybrid concentrating solar collector (1). 
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Figure 2: PV/thermal hybrid collector schematic for thermal modeling 

(2). 
 

In this project based on the presented iterative numerical 
approach a Matlab code has been developed for this coupled 
photovoltaic/thermal concentrating solar collector model to 
make the analysis and optimizations easier and faster. 
Moreover, a new model for PV efficiency has been applied.  
 
 
Electrical Model  
     There are correlations which represent the temperature 
dependence of the PV module’s electrical efficiency, many of 
them assume a linear form, differing only in the numerical 
values of the relevant parameters which, as expected, are 
material and system dependent (3).  
Equation 1 shows the traditional linear expression for the PV 
electrical efficiency.  

                                       (1) 
The quantities  and  are normally given by the PV 
manufacturer. However, they can be obtained from flash tests in 
which the module’s electrical output is measured at two 
different temperatures for a given solar radiation flux (3). 
A number of equations found in the literature for the efficiency 
of PV cells/modules are shown in Table 1 which contains 
values for the parameters of equation 1 (3). 

 

Table 1: PV efficiency correlation coefficients (3) 

 
 
 
Thermal Model 
     The heat transfer equations which have been driven from the 
model can be seen below through equations number 2 to 15 (1, 
2).  
 

                                                        (2) 
 

                                  (3) 

 
                                                 (4)  

 

                                                (5)  

 
                                             (6) 

 
                                            (7) 

 
                                           (8) 

 

                                              (9) 

 
                                  (10)       

 



 3 Copyright © 20xx by ASME 

                                       (11) 

 
                                                       (12) 

 

                                            (13) 

 
                                        (14) 

 
                                              (15) 

 
The equations 16 to 23 represent the energy balance equations 
for the model. 
 

       (16) 
 

                                                  (17) 
 

                                                    (18) 
 

          (19) 
 

                                (20) 
 

                                                      (21) 
 

                                                      (22) 
 

                                                    (23) 
 

By substituting the equations of heat fluxes from equations 2 

to 15 and PV efficiency from equation 1 into energy balance 

equations we get 8 equations and eight unknowns. Thus, there 

is a nonlinear system of equations with eight equations and 

eight unknowns which should be solved.  

 

Solving Systems of Non-linear Equations 
     Consider the solution to a system of n non-linear equations 
in n unknowns given by 
f1(x1, x2,…,xn) = 0 
f2(x1,x2,…,xn) = 0 
. 
. 
. 
fn(x1,x2,…,xn) = 0 
The system can be written in a single expression using vectors, 
i.e. 
f(x) = 0, 
Where the vector x contains the independent variables, and the 
vector f contains the functions fi(x): 

 
 

Newton-Raphson Method to Solve Systems of Non-linear 
Equations 
     A Newton-Raphson method for solving the system of linear 
equations requires the evaluation of a matrix, known as the 
Jacobian of the system, which is defined as: 

 
If x = x0 (a vector) represents the first guess for the solution, 
successive approximations to the solution are obtained from 

 
With: 

 
A convergence criterion for the solution of a system of non-
linear equation could be, for example, that the maximum of the 
absolute values of the functions fi(xn) is smaller than a certain 
tolerance ε, i.e., 

 
Another possibility for convergence is that the magnitude of the 
vector f(xn) be smaller than the tolerance, i.e., 

 
We can also use as convergence criteria the difference between 
consecutive values of the solution, i.e., 

 
Or 

 
The main complication with using Newton-Raphson to solve a 
system of non-linear equations is having to define all the 
functions ∂fi/∂xj, for i,j = 1,2, …, n, included in the Jacobian. 
As the number of equations and unknowns, n, increases, so does 
the number of elements in the Jacobian, n2 (4). 
 
Matlab Code 
     A Matlab code (annex A) was developed based on the 
Newton-Raphson Method to solve the system of equations of 
the model. The Solar flux, concentration ratio and heat transfer 
fluid temperature at outlet and inlet are the inputs and the code 
solves the system of equations for unknown temperatures at 
different parts of the system as well as the mass flow rate of the 
heat transfer fluid.    
The code returns the PV efficiency based on equations 1 and 
thermal efficiency through equations 24 as outputs.  
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                                                               (24) 

 
RESULTS AND DISCUSSION 
     To make sure if the code is robust and fast enough to solve 
variety of cases, some potential cases were considered and the 
code was run (Table 2). Elapsed time after running the code is 
in the order of 0.0008 seconds that means the code is fast 
enough to solve the system of equations for input different 
conditions.  
 

Table 2: PV and thermal efficiencies as well as mass flow rate at 
different input conditions (G=900.7 [W/m^2]) 

 
 
 
Effect of Initial Guess 
     To investigate if the initial guess affects the final results the 
code was run using different initial guesses for the last case in 
table 2. Table 3 shows the different initial guesses which have 
been applied to code for this case. Same final answers for each 
variable as well as PV and thermal efficiencies for each initial 
guess were obtained and just the number of iteration which 
leads to convergence is different for different initial guesses. It 
should be mentioned that the code does not converge for some 
initial guesses like sixth guess in table 3. 
 
Table 3: Different Initial guesses and number of iteration to converge 
Variable Tg3a Tg3b Tg2a Tg2b m· Tg1a Tg1b TPV # 

Iteration 
First Guess 300 301 302 303 0.1 304 305 306 5 

Second Guess 30 30 30 30 1 30 30 30 6 
Third Guess 700 700 700 700 10 700 700 700 6 
Forth Guess 1 700 100 7000 100 50 12 9 7 
Fifth Guess 26 56 690 25 10 456 125 89 6 
Sixth Guess 256 179 90 15 100 56 690 800 No 

Seventh Guess 300 300 300 300 10 400 690 800 8 

 
Convergence 
     As it can be seen in table 3 the code converges after 5 to 8 
iterations dependent on initial guess. The used convergence 
criterion for this code is shown as below: 

 
The value of epsilon is 1×10-10, which means the absolute value 
of each of the energy balance equations, after substituting the 
obtained value of each related variable, should be less than 
1×10-10 to get convergence. Figure 3 illustrates the convergence 
of the nonlinear system of equations for each heat balance 
equation related to case seven in table 3.   

 
Figure 3: Convergence of heat balance equations. 

 
 
Real Case Study 
     To investigate if the code is efficient and fast when the real 
conditions are applied; based on the US typical meteorological 
year data sets for insolation at Tulsa international airport some 
direct normal incident (DNI) radiations were selected to run the 
code. Table 4 shows the selected conditions as well as obtained 
data. For all cases the temperature of the heat transfer fluid at 
inlet was considered as equal as ambient temperature which is 
298 K.  
 

DNI 
(W/m^2) 

C 
(-) 

T-HTF-OUT 
(K) 

PV  
Efficiency 

(%) 

Thermal 
Efficiency 

(%) 

Iterati
on  
(#) 

Elapsed 
Time 
(s) 

377 200 500 14.04 47.47 4 0.018995 
364 200 500 14.07 47.45 4 0.019000 
46 200 500 14.87 43.15 4 0.000638 
46 50 500 14.96 28.42 4 0.019001 
46 50 400 14.97 38.81 4 0.019251 
415 200 500 13.95 47.52 4 0.019791 
415 1 500 14.94 0 4 0.019052 

 
 
CONCLUSIONS  

1. The Newton-Raphson Method can be applied to solve 
the system of nonlinear equations which governs the 
coupled photovoltaic/thermal concentrating solar 
collector for electricity generation. 

2. The developed code is fast and applicable in different 
input conditions. 

3. The code returns the PV efficiency and thermal 
efficiency as well as the mass flow rate of the heat 
transfer fluid of the modeled system. 
 

NOMENCLATURE 
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ANNEX A 
 
 

tic 
% Calculating the PV efficiency and thermal efficiency for the PV(C-Si)/Thermal systems. 
  
clc 
clear 
  
% INPUTS: 
  
% Ambient Temperature [K] 
Tamb=298; 
% Fluid  Temperature In [K] 
Thtfin=298; 
% Fluid  Temperature Out [K] 
Thtfout=500; 
%Concentration Ratio [-] 
C=100; 
% Solar Flux [W/m^2] 
G=415; 
  
% SOLAR CELL Efficeiny PARAMETERS:  
  
%Reference Temperature [K] 
Tref=298; 
%Module's Electrical Efficiency at Reference Temperature [-] 
Eref=0.15; 
%Temperature Coefficient [1/K]  
Bref=0.0041; 
  
%Thermal/Radiative Properties: 
  
%Wind Heat Transfer Coefficient [[W/( m^2 *K)] 
hwind=10; 
%Ambient Temperature [K] 
Tamb=298; 
%Emissivity of Glass 3 [ ] 
eg3=0.9; 
%Stefan-Boltzmann Constant [W/(m^2*K^4)] 
s=5.6704E-08; 
%Thermal Conductivity of Glass [W/(m*K)] 
Kg=0.8; 
%Thickness of Glass 3 [m] 
dg3=0.003; 
%Heat Transfer Coefficient Between Glass 2 and 3 [[W/( m^2 *K)] 
h=0; 
%Thickness of Glass 2 [m] 
dg2=0.003; 
%Nusselt Number [ ] 
Nu=8.23; 
%Thickness of Heat Transfer Fluid [m] 
dhtf=0.2; 
%Tranmissivity of Heat Transfer Fluid [ ] 
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tf=0.407; 
%Absorptivity of Heat Transfer Fluid [ ] 
ahtf=1-tf; 
%Emissivity of Glass [ ] 
eg=0.9; 
%Emissivity of P.V. [ ] 
ep=0.35; 
%Tranmissivity of Glass 2 [ ] 
tg2=0.9; 
%Tranmissivity of Glass 3 [ ] 
tg3=0.9; 
%Heat Transfer Coefficient Between P.V. and Glass 1 [[W/( m^2 *K)]  
h1pv=0; 
%Thickness of Glass 1 [m] 
dg1=0.003; 
%Tranmissivity of system [ ] 
tsys=tg2*tg3*tg3; 
%Absorptivity of P.V. [ ] 
apv=0.8; 
%Heat Transfer Coefficient Between air and P.V. [[W/( m^2 *K)] 
hins=1000; 
%Thickness Between Glass 2 and 3 [m]: 
dg23=0.025; 
  
  
N=100; 
epsilon=1e-10; 
maxval=10000; 
  
%First guess  
x0=[300; 300; 300; 300; 1; 300; 300; 300]; 
  
x=x0; 
  
while (N>0) 
     
Tg3a=x(1,1); 
Tg3b=x(2,1); 
Tg2a=x(3,1); 
Tg2b=x(4,1); 
m=x(5,1); 
Tg1a=x(6,1); 
Tg1b=x(7,1); 
Tpv=x(8,1); 
     
%Defining the Function EBE: 
ebe1=tf*tsys*apv*C*G*(1-(Eref*(1-Bref*(Tpv-Tref))))-1/(1/eg+1/ep-1)*s*(Tpv^4-Tg1b^4)-h1pv*(Tpv-Tg1b)-
hins*(Tpv-Tamb); 
ebe2=1/(1/eg+1/ep-1)*s*(Tpv^4-Tg1b^4)+h1pv*(Tpv-Tg1b)+Kg/dg1*(Tg1a-Tg1b); 
ebe3=Nu*(-0.0000819477*((Thtfout+Thtfin)/2-273)-0.000000192257*((Thtfout+Thtfin)/2-
273)^2+0.000000000025034*((Thtfout+Thtfin)/2-273)^3-0.0000000000000072974*((Thtfout+Thtfin)/2-
273)^4+0.137743)/dhtf*(Tg1a-(Thtfout+Thtfin)/2)+1/(1/eg+1/ep-1)*s*(Tpv^4-Tg2a^4)+Kg/dg1*(Tg1a-Tg1b); 
ebe4=Nu*(-0.0000819477*((Thtfout+Thtfin)/2-273)-0.000000192257*((Thtfout+Thtfin)/2-
273)^2+0.000000000025034*((Thtfout+Thtfin)/2-273)^3-0.0000000000000072974*((Thtfout+Thtfin)/2-
273)^4+0.137743)/dhtf*(Tg1a-(Thtfout+Thtfin)/2)+tg2*tg3*(1-tf)*C*G+(1-tf)/(1/eg+1/ep-1)*s*(Tpv^4-Tg2a4̂)-
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Nu*(-0.0000819477*((Thtfout+Thtfin)/2-273)-0.000000192257*((Thtfout+Thtfin)/2-
273)^2+0.000000000025034*((Thtfout+Thtfin)/2-273)^3-0.0000000000000072974*((Thtfout+Thtfin)/2-
273)^4+0.137743)/dhtf*((Thtfout+Thtfin)/2-Tg2b)-m*1000*(0.002414*((Thtfout+Thtfin)/2-
273)+0.0000059591*((Thtfout+Thtfin)/2-273)^2-0.000000029879*((Thtfout+Thtfin)/2-
273)^3+0.000000000044172*((Thtfout+Thtfin)/2-273)^4+1.498)*(Thtfout-Thtfin); 
ebe5=Nu*(-0.0000819477*((Thtfout+Thtfin)/2-273)-0.000000192257*((Thtfout+Thtfin)/2-
273)^2+0.000000000025034*((Thtfout+Thtfin)/2-273)^3-0.0000000000000072974*((Thtfout+Thtfin)/2-
273)^4+0.137743)/dhtf*((Thtfout+Thtfin)/2-Tg2b)+(1-ahtf)/(1/eg+1/ep-1)*s*(Tpv^4-Tg2a^4)+Kg/dg2*(Tg2a-
Tg2b); 
ebe6=h*(Tg2a-Tg3b)+eg/(2-eg)*s*(Tg2a^4-Tg3b^4)+Kg/dg2*(Tg2a-Tg2b); 
ebe7=h*(Tg2a-Tg3b)+eg/(2-eg)*s*(Tg2a^4-Tg3b^4)+Kg/dg3*(Tg3a-Tg3b); 
ebe8=hwind*(Tg3a-Tamb)+eg3*s*(Tg3a^4-Tamb^4)+Kg/dg3*(Tg3a-Tg3b); 
  
EBE=[ebe1; ebe2; ebe3; ebe4; ebe5; ebe6; ebe7; ebe8]; 
  
J(1,1)=0;  
J(1,2)=0;  
J(1,3)=0;  
J(1,4)=0;  
J(1,5)=0;  
J(1,6)=0;  
J(1,7)=h1pv + (4*Tg1b^3*s)/(1/eg + 1/ep - 1); 
J(1,8)=Bref*C*Eref*G*apv*tf*tsys - hins - (4*Tpv^3*s)/(1/eg + 1/ep - 1) - h1pv; 
J(2,1)=0;  
J(2,2)=0;  
J(2,3)=0;  
J(2,4)=0;  
J(2,5)=0;  
J(2,6)=Kg/dg1;  
J(2,7)=- h1pv - Kg/dg1 - (4*Tg1b^3*s)/(1/eg + 1/ep - 1);  
J(2,8)=h1pv + (4*Tpv^3*s)/(1/eg + 1/ep - 1); 
J(3,1)=0;  
J(3,2)=0;  
J(3,3)=-(4*Tg2a^3*s)/(1/eg + 1/ep - 1);  
J(3,4)=0;  
J(3,5)=0; 
J(3,6)=Kg/dg1 - (Nu*((6046672997316513*Thtfin)/147573952589676412928 + 
(6046672997316513*Thtfout)/147573952589676412928 + (7263264103176555*(Thtfin/2 + Thtfout/2 - 
273)^2)/37778931862957161709568 - (242113991745861*(Thtfin/2 + Thtfout/2 - 
273)^3)/9671406556917033397649408 + (4625276745052741*(Thtfin/2 + Thtfout/2 - 
273)^4)/633825300114114700748351602688 - 11814381204047307441/73786976294838206464))/dhtf;  
J(3,7)=-Kg/dg1; 
J(3,8)=(4*Tpv^3*s)/(1/eg + 1/ep - 1); 
J(4,1)=0; 
J(4,2)=0; 
J(4,3)=(4*Tg2a^3*s*(tf - 1))/(1/eg + 1/ep - 1); 
J(4,4)=-(Nu*((6046672997316513*Thtfin)/147573952589676412928 + 
(6046672997316513*Thtfout)/147573952589676412928 + (7263264103176555*(Thtfin/2 + Thtfout/2 - 
273)^2)/37778931862957161709568 - (242113991745861*(Thtfin/2 + Thtfout/2 - 
273)^3)/9671406556917033397649408 + (4625276745052741*(Thtfin/2 + Thtfout/2 - 
273)^4)/633825300114114700748351602688 - 11814381204047307441/73786976294838206464))/dhtf; 
J(4,5)=1000*(Thtfin - Thtfout)*((5566305024241857*Thtfin)/4611686018427387904 + 
(5566305024241857*Thtfout)/4611686018427387904 + (3517631763508563*(Thtfin/2 + Thtfout/2 - 
273)^2)/590295810358705651712 - (1128796705133297*(Thtfin/2 + Thtfout/2 - 
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273)^3)/37778931862957161709568 + (6835285926914227*(Thtfin/2 + Thtfout/2 - 
273)^4)/154742504910672534362390528 + 241818944523010822387/288230376151711744000); 
J(4,6)=-(Nu*((6046672997316513*Thtfin)/147573952589676412928 + 
(6046672997316513*Thtfout)/147573952589676412928 + (7263264103176555*(Thtfin/2 + Thtfout/2 - 
273)^2)/37778931862957161709568 - (242113991745861*(Thtfin/2 + Thtfout/2 - 
273)^3)/9671406556917033397649408 + (4625276745052741*(Thtfin/2 + Thtfout/2 - 
273)^4)/633825300114114700748351602688 - 11814381204047307441/73786976294838206464))/dhtf; 
J(4,7)=0; 
J(4,8)=-(4*Tpv^3*s*(tf - 1))/(1/eg + 1/ep - 1); 
J(5,1)=0; 
J(5,2)=0; 
J(5,3)=Kg/dg2 + (4*Tg2a^3*s*(ahtf - 1))/(1/eg + 1/ep - 1); 
J(5,4)=(Nu*((6046672997316513*Thtfin)/147573952589676412928 + 
(6046672997316513*Thtfout)/147573952589676412928 + (7263264103176555*(Thtfin/2 + Thtfout/2 - 
273)^2)/37778931862957161709568 - (242113991745861*(Thtfin/2 + Thtfout/2 - 
273)^3)/9671406556917033397649408 + (4625276745052741*(Thtfin/2 + Thtfout/2 - 
273)^4)/633825300114114700748351602688 - 11814381204047307441/73786976294838206464))/dhtf - Kg/dg2; 
J(5,5)=0; 
J(5,6)=0; 
J(5,7)=0; 
J(5,8)=-(4*Tpv^3*s*(ahtf - 1))/(1/eg + 1/ep - 1); 
J(6,1)=0; 
J(6,2)=(4*Tg3b^3*eg*s)/(eg - 2) - h; 
J(6,3)=h + Kg/dg2 - (4*Tg2a^3*eg*s)/(eg - 2); 
J(6,4)=-Kg/dg2; 
J(6,5)=0; 
J(6,6)=0; 
J(6,7)=0; 
J(6,8)=0; 
J(7,1)=Kg/dg3; 
J(7,2)=(4*Tg3b^3*eg*s)/(eg - 2) - Kg/dg3 - h; 
J(7,3)=h - (4*Tg2a^3*eg*s)/(eg - 2); 
J(7,4)=0; 
J(7,5)=0; 
J(7,6)=0; 
J(7,7)=0; 
J(7,8)=0; 
J(8,1)=hwind + Kg/dg3 + 4*Tg3a^3*eg3*s; 
J(8,2)=-Kg/dg3; 
J(8,3)=0; 
J(8,4)=0; 
J(8,5)=0; 
J(8,6)=0; 
J(8,7)=0; 
J(8,8)=0; 
  
if  abs(det(J))<epsilon  
    error('Jacobian Matrix is Singular-try new x0'); 
    abort; 
end; 
  
xn=x-inv(J)*EBE; 
x=xn; 
if  abs(EBE)<epsilon 
    finalanswer=x 
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    iter=100-N 
    PVefficiency=Eref*(1-Bref*(finalanswer(8,1)-Tref)) 
   ThEf=(finalanswer(5,1)*1000*(0.002414*((Thtfout+Thtfin)/2-273)+0.0000059591*((Thtfout+Thtfin)/2-273)^2-
0.000000029879*((Thtfout+Thtfin)/2-273)^3+0.000000000044172*((Thtfout+Thtfin)/2-273)^4+1.498)*(Thtfout-
Thtfin))/(C*G); 
    if   (0 < ThEf) 
     Thermalefficiency =ThEf 
    else Thermalefficiency=0 
    end 
    toc     
    return;   
end; 
  
if  abs(EBE)>maxval 
    iter=100-N; 
    disp(['iterations=',num2str(iter)]); 
    error ('solution divergence'); 
    abort; 
end; 
  
N=N-1; 
x=xn; 
end; 
error('no convergence after 100 iterations.'); 
abort; 
 
 


