
 1 Copyright © 20xx by ASME

DEVELOPING A MATLAB CODE FOR PARAMETRIC ANALYSIS OF A MODELLED
COUPLED PHOTOVOLTAIC/THERMAL CONCENTRATING SOLAR COLLECTOR

FOR ELECTRICITY GENERATION

 Mahdi Kiani
 Ph.D. Student

 Tulsa, OK, USA

ABSTRACT
 There are two common methods to generate renewable
energy by using the power of the sun including photovoltaic and
solar thermal. By combining these two methods in one system,
though more electrical energy can be generated but due to
competing operating requirements new problems emerge.
Experimental and theoretical studies are required to enhance the
efficiency of this kind of hybrid systems. To optimize and
analyze the combined efficiencies in a coupled photovoltaic
(PV)/thermal concentrating solar collector systems a new
approach has been introduced and published by Otanicar based
on a coupled electrical/thermal model. Developing a Matlab
code for this model has been described in this paper. The code
takes solar irradiance, fluid temperature in/out and ambient
temperature and returns PV efficiency and thermal efficiency as
well as mass flow rate of the heat transfer fluid.

INTRODUCTION
 To optimize the overall efficiency of hybrid PV/thermal
systems at high concentration ratios and temperatures a coupled
electro-thermal model has been innovated by Otanicar and his
colleagues (1, 2).
In their proposed configuration losses in the PV cell due to
reduced efficiencies at elevated temperatures and the incident
solar energy below the PV band gap are both harnessed as heat
(2).
In other words, they have presented a unique design strategy for
a hybrid PV/thermal system that only has mild thermal coupling
which can lead to enhanced efficiency. It has been claimed that
by creating a fluid filter (Figure 1) that absorbs energy directly
in the fluid below the band-gap and a PV cell with an active
cooling strategy combined efficiencies greater than 38% can be
achieved (1).

Based on the heat fluxes (Figure 2) and electrical efficiency of
the PV an iterative numerical scheme that involves a coupled
electro-thermal simulation of the solar energy conversion
process has been introduced (1, 2).
Investigating the interaction between PV efficiency and the
solar thermal collector’s operating parameters is the purpose of
this iterative numerical scheme (2).

Figure 1: Using absorbing fluid filter to thermally decoupled
PV/T hybrid concentrating solar collector (1).

 2 Copyright © 20xx by ASME

Figure 2: PV/thermal hybrid collector schematic for thermal modeling

(2).

In this project based on the presented iterative numerical
approach a Matlab code has been developed for this coupled
photovoltaic/thermal concentrating solar collector model to
make the analysis and optimizations easier and faster.
Moreover, a new model for PV efficiency has been applied.

Electrical Model
 There are correlations which represent the temperature
dependence of the PV module’s electrical efficiency, many of
them assume a linear form, differing only in the numerical
values of the relevant parameters which, as expected, are
material and system dependent (3).
Equation 1 shows the traditional linear expression for the PV
electrical efficiency.

 (1)
The quantities and are normally given by the PV
manufacturer. However, they can be obtained from flash tests in
which the module’s electrical output is measured at two
different temperatures for a given solar radiation flux (3).
A number of equations found in the literature for the efficiency
of PV cells/modules are shown in Table 1 which contains
values for the parameters of equation 1 (3).

Table 1: PV efficiency correlation coefficients (3)

Thermal Model
 The heat transfer equations which have been driven from the
model can be seen below through equations number 2 to 15 (1,
2).

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

 (10)

 3 Copyright © 20xx by ASME

 (11)

 (12)

 (13)

 (14)

 (15)

The equations 16 to 23 represent the energy balance equations
for the model.

 (16)

 (17)

 (18)

 (19)

 (20)

 (21)

 (22)

 (23)

By substituting the equations of heat fluxes from equations 2

to 15 and PV efficiency from equation 1 into energy balance

equations we get 8 equations and eight unknowns. Thus, there

is a nonlinear system of equations with eight equations and

eight unknowns which should be solved.

Solving Systems of Non-linear Equations
 Consider the solution to a system of n non-linear equations
in n unknowns given by
f1(x1, x2,…,xn) = 0
f2(x1,x2,…,xn) = 0
.
.
.
fn(x1,x2,…,xn) = 0
The system can be written in a single expression using vectors,
i.e.
f(x) = 0,
Where the vector x contains the independent variables, and the
vector f contains the functions fi(x):

Newton-Raphson Method to Solve Systems of Non-linear
Equations
 A Newton-Raphson method for solving the system of linear
equations requires the evaluation of a matrix, known as the
Jacobian of the system, which is defined as:

If x = x0 (a vector) represents the first guess for the solution,
successive approximations to the solution are obtained from

With:

A convergence criterion for the solution of a system of non-
linear equation could be, for example, that the maximum of the
absolute values of the functions fi(xn) is smaller than a certain
tolerance ε, i.e.,

Another possibility for convergence is that the magnitude of the
vector f(xn) be smaller than the tolerance, i.e.,

We can also use as convergence criteria the difference between
consecutive values of the solution, i.e.,

Or

The main complication with using Newton-Raphson to solve a
system of non-linear equations is having to define all the
functions ∂fi/∂xj, for i,j = 1,2, …, n, included in the Jacobian.
As the number of equations and unknowns, n, increases, so does
the number of elements in the Jacobian, n2 (4).

Matlab Code
 A Matlab code (annex A) was developed based on the
Newton-Raphson Method to solve the system of equations of
the model. The Solar flux, concentration ratio and heat transfer
fluid temperature at outlet and inlet are the inputs and the code
solves the system of equations for unknown temperatures at
different parts of the system as well as the mass flow rate of the
heat transfer fluid.
The code returns the PV efficiency based on equations 1 and
thermal efficiency through equations 24 as outputs.

 4 Copyright © 20xx by ASME

 (24)

RESULTS AND DISCUSSION
 To make sure if the code is robust and fast enough to solve
variety of cases, some potential cases were considered and the
code was run (Table 2). Elapsed time after running the code is
in the order of 0.0008 seconds that means the code is fast
enough to solve the system of equations for input different
conditions.

Table 2: PV and thermal efficiencies as well as mass flow rate at
different input conditions (G=900.7 [W/m^2])

Effect of Initial Guess
 To investigate if the initial guess affects the final results the
code was run using different initial guesses for the last case in
table 2. Table 3 shows the different initial guesses which have
been applied to code for this case. Same final answers for each
variable as well as PV and thermal efficiencies for each initial
guess were obtained and just the number of iteration which
leads to convergence is different for different initial guesses. It
should be mentioned that the code does not converge for some
initial guesses like sixth guess in table 3.

Table 3: Different Initial guesses and number of iteration to converge
Variable Tg3a Tg3b Tg2a Tg2b m· Tg1a Tg1b TPV #

Iteration
First Guess 300 301 302 303 0.1 304 305 306 5

Second Guess 30 30 30 30 1 30 30 30 6
Third Guess 700 700 700 700 10 700 700 700 6
Forth Guess 1 700 100 7000 100 50 12 9 7
Fifth Guess 26 56 690 25 10 456 125 89 6
Sixth Guess 256 179 90 15 100 56 690 800 No

Seventh Guess 300 300 300 300 10 400 690 800 8

Convergence
 As it can be seen in table 3 the code converges after 5 to 8
iterations dependent on initial guess. The used convergence
criterion for this code is shown as below:

The value of epsilon is 1×10-10, which means the absolute value
of each of the energy balance equations, after substituting the
obtained value of each related variable, should be less than
1×10-10 to get convergence. Figure 3 illustrates the convergence
of the nonlinear system of equations for each heat balance
equation related to case seven in table 3.

Figure 3: Convergence of heat balance equations.

Real Case Study
 To investigate if the code is efficient and fast when the real
conditions are applied; based on the US typical meteorological
year data sets for insolation at Tulsa international airport some
direct normal incident (DNI) radiations were selected to run the
code. Table 4 shows the selected conditions as well as obtained
data. For all cases the temperature of the heat transfer fluid at
inlet was considered as equal as ambient temperature which is
298 K.

DNI
(W/m^2)

C
(-)

T-HTF-OUT
(K)

PV
Efficiency

(%)

Thermal
Efficiency

(%)

Iterati
on
(#)

Elapsed
Time
(s)

377 200 500 14.04 47.47 4 0.018995
364 200 500 14.07 47.45 4 0.019000
46 200 500 14.87 43.15 4 0.000638
46 50 500 14.96 28.42 4 0.019001
46 50 400 14.97 38.81 4 0.019251
415 200 500 13.95 47.52 4 0.019791
415 1 500 14.94 0 4 0.019052

CONCLUSIONS

1. The Newton-Raphson Method can be applied to solve
the system of nonlinear equations which governs the
coupled photovoltaic/thermal concentrating solar
collector for electricity generation.

2. The developed code is fast and applicable in different
input conditions.

3. The code returns the PV efficiency and thermal
efficiency as well as the mass flow rate of the heat
transfer fluid of the modeled system.

NOMENCLATURE

 5 Copyright © 20xx by ASME

ACKNOWLEDGMENTS
I would like to appreciate my professor Dr. Todd Otanicar

for his instructions and recommendations during
accomplishment of this project.

REFERENCES
1. Todd P. Ihtesham Chowdhury, Ravi Prasher and

Patrick E. Phelan, “Band-Gap Tuned Direct
Absorption for a Hybrid Concentrating Solar
Photovoltaic/Thermal System”, Journal of Solar
Energy Engineering, NOVEMBER 2011, Vol. 133 /
041014-1.

2. Todd P. Ihtesham Chowdhury, Patrick E. Phelan and
Ravi Prasher, “Parametric analysis of a coupled
photovoltaic/thermal concentrating solar collector for
electricity generation”, JOURNAL OF APPLIED
PHYSICS 108, 114907 _2010.

3. E. Skoplaki, J.A. Palyvos, “On the temperature
dependence of photovoltaic module electrical
performance: A review of efficiency/power
correlations”, Solar Energy 83 (2009) 614–624.

4. Gilberto E. Urroz, “Solution of non-linear equations”,
September 2004.

 6 Copyright © 20xx by ASME

ANNEX A

tic
% Calculating the PV efficiency and thermal efficiency for the PV(C-Si)/Thermal systems.

clc
clear

% INPUTS:

% Ambient Temperature [K]
Tamb=298;
% Fluid Temperature In [K]
Thtfin=298;
% Fluid Temperature Out [K]
Thtfout=500;
%Concentration Ratio [-]
C=100;
% Solar Flux [W/m^2]
G=415;

% SOLAR CELL Efficeiny PARAMETERS:

%Reference Temperature [K]
Tref=298;
%Module's Electrical Efficiency at Reference Temperature [-]
Eref=0.15;
%Temperature Coefficient [1/K]
Bref=0.0041;

%Thermal/Radiative Properties:

%Wind Heat Transfer Coefficient [[W/(m^2 *K)]
hwind=10;
%Ambient Temperature [K]
Tamb=298;
%Emissivity of Glass 3 []
eg3=0.9;
%Stefan-Boltzmann Constant [W/(m^2*K^4)]
s=5.6704E-08;
%Thermal Conductivity of Glass [W/(m*K)]
Kg=0.8;
%Thickness of Glass 3 [m]
dg3=0.003;
%Heat Transfer Coefficient Between Glass 2 and 3 [[W/(m^2 *K)]
h=0;
%Thickness of Glass 2 [m]
dg2=0.003;
%Nusselt Number []
Nu=8.23;
%Thickness of Heat Transfer Fluid [m]
dhtf=0.2;
%Tranmissivity of Heat Transfer Fluid []

 7 Copyright © 20xx by ASME

tf=0.407;
%Absorptivity of Heat Transfer Fluid []
ahtf=1-tf;
%Emissivity of Glass []
eg=0.9;
%Emissivity of P.V. []
ep=0.35;
%Tranmissivity of Glass 2 []
tg2=0.9;
%Tranmissivity of Glass 3 []
tg3=0.9;
%Heat Transfer Coefficient Between P.V. and Glass 1 [[W/(m^2 *K)]
h1pv=0;
%Thickness of Glass 1 [m]
dg1=0.003;
%Tranmissivity of system []
tsys=tg2*tg3*tg3;
%Absorptivity of P.V. []
apv=0.8;
%Heat Transfer Coefficient Between air and P.V. [[W/(m^2 *K)]
hins=1000;
%Thickness Between Glass 2 and 3 [m]:
dg23=0.025;

N=100;
epsilon=1e-10;
maxval=10000;

%First guess
x0=[300; 300; 300; 300; 1; 300; 300; 300];

x=x0;

while (N>0)

Tg3a=x(1,1);
Tg3b=x(2,1);
Tg2a=x(3,1);
Tg2b=x(4,1);
m=x(5,1);
Tg1a=x(6,1);
Tg1b=x(7,1);
Tpv=x(8,1);

%Defining the Function EBE:
ebe1=tf*tsys*apv*C*G*(1-(Eref*(1-Bref*(Tpv-Tref))))-1/(1/eg+1/ep-1)*s*(Tpv^4-Tg1b^4)-h1pv*(Tpv-Tg1b)-
hins*(Tpv-Tamb);
ebe2=1/(1/eg+1/ep-1)*s*(Tpv^4-Tg1b^4)+h1pv*(Tpv-Tg1b)+Kg/dg1*(Tg1a-Tg1b);
ebe3=Nu*(-0.0000819477*((Thtfout+Thtfin)/2-273)-0.000000192257*((Thtfout+Thtfin)/2-
273)^2+0.000000000025034*((Thtfout+Thtfin)/2-273)^3-0.0000000000000072974*((Thtfout+Thtfin)/2-
273)^4+0.137743)/dhtf*(Tg1a-(Thtfout+Thtfin)/2)+1/(1/eg+1/ep-1)*s*(Tpv^4-Tg2a^4)+Kg/dg1*(Tg1a-Tg1b);
ebe4=Nu*(-0.0000819477*((Thtfout+Thtfin)/2-273)-0.000000192257*((Thtfout+Thtfin)/2-
273)^2+0.000000000025034*((Thtfout+Thtfin)/2-273)^3-0.0000000000000072974*((Thtfout+Thtfin)/2-
273)^4+0.137743)/dhtf*(Tg1a-(Thtfout+Thtfin)/2)+tg2*tg3*(1-tf)*C*G+(1-tf)/(1/eg+1/ep-1)*s*(Tpv^4-Tg2a4̂)-

 8 Copyright © 20xx by ASME

Nu*(-0.0000819477*((Thtfout+Thtfin)/2-273)-0.000000192257*((Thtfout+Thtfin)/2-
273)^2+0.000000000025034*((Thtfout+Thtfin)/2-273)^3-0.0000000000000072974*((Thtfout+Thtfin)/2-
273)^4+0.137743)/dhtf*((Thtfout+Thtfin)/2-Tg2b)-m*1000*(0.002414*((Thtfout+Thtfin)/2-
273)+0.0000059591*((Thtfout+Thtfin)/2-273)^2-0.000000029879*((Thtfout+Thtfin)/2-
273)^3+0.000000000044172*((Thtfout+Thtfin)/2-273)^4+1.498)*(Thtfout-Thtfin);
ebe5=Nu*(-0.0000819477*((Thtfout+Thtfin)/2-273)-0.000000192257*((Thtfout+Thtfin)/2-
273)^2+0.000000000025034*((Thtfout+Thtfin)/2-273)^3-0.0000000000000072974*((Thtfout+Thtfin)/2-
273)^4+0.137743)/dhtf*((Thtfout+Thtfin)/2-Tg2b)+(1-ahtf)/(1/eg+1/ep-1)*s*(Tpv^4-Tg2a^4)+Kg/dg2*(Tg2a-
Tg2b);
ebe6=h*(Tg2a-Tg3b)+eg/(2-eg)*s*(Tg2a^4-Tg3b^4)+Kg/dg2*(Tg2a-Tg2b);
ebe7=h*(Tg2a-Tg3b)+eg/(2-eg)*s*(Tg2a^4-Tg3b^4)+Kg/dg3*(Tg3a-Tg3b);
ebe8=hwind*(Tg3a-Tamb)+eg3*s*(Tg3a^4-Tamb^4)+Kg/dg3*(Tg3a-Tg3b);

EBE=[ebe1; ebe2; ebe3; ebe4; ebe5; ebe6; ebe7; ebe8];

J(1,1)=0;
J(1,2)=0;
J(1,3)=0;
J(1,4)=0;
J(1,5)=0;
J(1,6)=0;
J(1,7)=h1pv + (4*Tg1b^3*s)/(1/eg + 1/ep - 1);
J(1,8)=Bref*C*Eref*G*apv*tf*tsys - hins - (4*Tpv^3*s)/(1/eg + 1/ep - 1) - h1pv;
J(2,1)=0;
J(2,2)=0;
J(2,3)=0;
J(2,4)=0;
J(2,5)=0;
J(2,6)=Kg/dg1;
J(2,7)=- h1pv - Kg/dg1 - (4*Tg1b^3*s)/(1/eg + 1/ep - 1);
J(2,8)=h1pv + (4*Tpv^3*s)/(1/eg + 1/ep - 1);
J(3,1)=0;
J(3,2)=0;
J(3,3)=-(4*Tg2a^3*s)/(1/eg + 1/ep - 1);
J(3,4)=0;
J(3,5)=0;
J(3,6)=Kg/dg1 - (Nu*((6046672997316513*Thtfin)/147573952589676412928 +
(6046672997316513*Thtfout)/147573952589676412928 + (7263264103176555*(Thtfin/2 + Thtfout/2 -
273)^2)/37778931862957161709568 - (242113991745861*(Thtfin/2 + Thtfout/2 -
273)^3)/9671406556917033397649408 + (4625276745052741*(Thtfin/2 + Thtfout/2 -
273)^4)/633825300114114700748351602688 - 11814381204047307441/73786976294838206464))/dhtf;
J(3,7)=-Kg/dg1;
J(3,8)=(4*Tpv^3*s)/(1/eg + 1/ep - 1);
J(4,1)=0;
J(4,2)=0;
J(4,3)=(4*Tg2a^3*s*(tf - 1))/(1/eg + 1/ep - 1);
J(4,4)=-(Nu*((6046672997316513*Thtfin)/147573952589676412928 +
(6046672997316513*Thtfout)/147573952589676412928 + (7263264103176555*(Thtfin/2 + Thtfout/2 -
273)^2)/37778931862957161709568 - (242113991745861*(Thtfin/2 + Thtfout/2 -
273)^3)/9671406556917033397649408 + (4625276745052741*(Thtfin/2 + Thtfout/2 -
273)^4)/633825300114114700748351602688 - 11814381204047307441/73786976294838206464))/dhtf;
J(4,5)=1000*(Thtfin - Thtfout)*((5566305024241857*Thtfin)/4611686018427387904 +
(5566305024241857*Thtfout)/4611686018427387904 + (3517631763508563*(Thtfin/2 + Thtfout/2 -
273)^2)/590295810358705651712 - (1128796705133297*(Thtfin/2 + Thtfout/2 -

 9 Copyright © 20xx by ASME

273)^3)/37778931862957161709568 + (6835285926914227*(Thtfin/2 + Thtfout/2 -
273)^4)/154742504910672534362390528 + 241818944523010822387/288230376151711744000);
J(4,6)=-(Nu*((6046672997316513*Thtfin)/147573952589676412928 +
(6046672997316513*Thtfout)/147573952589676412928 + (7263264103176555*(Thtfin/2 + Thtfout/2 -
273)^2)/37778931862957161709568 - (242113991745861*(Thtfin/2 + Thtfout/2 -
273)^3)/9671406556917033397649408 + (4625276745052741*(Thtfin/2 + Thtfout/2 -
273)^4)/633825300114114700748351602688 - 11814381204047307441/73786976294838206464))/dhtf;
J(4,7)=0;
J(4,8)=-(4*Tpv^3*s*(tf - 1))/(1/eg + 1/ep - 1);
J(5,1)=0;
J(5,2)=0;
J(5,3)=Kg/dg2 + (4*Tg2a^3*s*(ahtf - 1))/(1/eg + 1/ep - 1);
J(5,4)=(Nu*((6046672997316513*Thtfin)/147573952589676412928 +
(6046672997316513*Thtfout)/147573952589676412928 + (7263264103176555*(Thtfin/2 + Thtfout/2 -
273)^2)/37778931862957161709568 - (242113991745861*(Thtfin/2 + Thtfout/2 -
273)^3)/9671406556917033397649408 + (4625276745052741*(Thtfin/2 + Thtfout/2 -
273)^4)/633825300114114700748351602688 - 11814381204047307441/73786976294838206464))/dhtf - Kg/dg2;
J(5,5)=0;
J(5,6)=0;
J(5,7)=0;
J(5,8)=-(4*Tpv^3*s*(ahtf - 1))/(1/eg + 1/ep - 1);
J(6,1)=0;
J(6,2)=(4*Tg3b^3*eg*s)/(eg - 2) - h;
J(6,3)=h + Kg/dg2 - (4*Tg2a^3*eg*s)/(eg - 2);
J(6,4)=-Kg/dg2;
J(6,5)=0;
J(6,6)=0;
J(6,7)=0;
J(6,8)=0;
J(7,1)=Kg/dg3;
J(7,2)=(4*Tg3b^3*eg*s)/(eg - 2) - Kg/dg3 - h;
J(7,3)=h - (4*Tg2a^3*eg*s)/(eg - 2);
J(7,4)=0;
J(7,5)=0;
J(7,6)=0;
J(7,7)=0;
J(7,8)=0;
J(8,1)=hwind + Kg/dg3 + 4*Tg3a^3*eg3*s;
J(8,2)=-Kg/dg3;
J(8,3)=0;
J(8,4)=0;
J(8,5)=0;
J(8,6)=0;
J(8,7)=0;
J(8,8)=0;

if abs(det(J))<epsilon
 error('Jacobian Matrix is Singular-try new x0');
 abort;
end;

xn=x-inv(J)*EBE;
x=xn;
if abs(EBE)<epsilon
 finalanswer=x

 10 Copyright © 20xx by ASME

 iter=100-N
 PVefficiency=Eref*(1-Bref*(finalanswer(8,1)-Tref))
 ThEf=(finalanswer(5,1)*1000*(0.002414*((Thtfout+Thtfin)/2-273)+0.0000059591*((Thtfout+Thtfin)/2-273)^2-
0.000000029879*((Thtfout+Thtfin)/2-273)^3+0.000000000044172*((Thtfout+Thtfin)/2-273)^4+1.498)*(Thtfout-
Thtfin))/(C*G);
 if (0 < ThEf)
 Thermalefficiency =ThEf
 else Thermalefficiency=0
 end
 toc
 return;
end;

if abs(EBE)>maxval
 iter=100-N;
 disp(['iterations=',num2str(iter)]);
 error ('solution divergence');
 abort;
end;

N=N-1;
x=xn;
end;
error('no convergence after 100 iterations.');
abort;

