
energies

Article

Reducing WCET Overestimations by Correcting
Errors in Loop Bound Constraints

Fanqi Meng 1,2 and Xiaohong Su 1,*
1 School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China;

mengfanqi@neepu.edu.cn
2 School of Information Engineering, Northeast Electric Power University, Jilin 132012, China
* Correspondence: sxh@hit.edu.cn; Tel.: +86-0451-8641-2824

Received: 12 November 2017; Accepted: 12 December 2017; Published: 12 December 2017

Abstract: In order to reduce overestimations of worst-case execution time (WCET), in this article,
we firstly report a kind of specific WCET overestimation caused by non-orthogonal nested loops.
Then, we propose a novel correction approach which has three basic steps. The first step is to locate
the worst-case execution path (WCEP) in the control flow graph and then map it onto source code.
The second step is to identify non-orthogonal nested loops from the WCEP by means of an abstract
syntax tree. The last step is to recursively calculate the WCET errors caused by the loose loop bound
constraints, and then subtract the total errors from the overestimations. The novelty lies in the fact that
the WCET correction is only conducted on the non-branching part of WCEP, thus avoiding potential
safety risks caused by possible WCEP switches. Experimental results show that our approach reduces
the specific WCET overestimation by an average of more than 82%, and 100% of corrected WCET
is no less than the actual WCET. Thus, our approach is not only effective but also safe. It will help
developers to design energy-efficient and safe real-time systems.

Keywords: real-time system; software safety; WCET analysis; worst-case execution path; loop bound

1. Introduction

Programs in a real-time systems should be executed as fast as possible. However, the execution
speed can severely affect the system’s energy consumption [1,2]. For a battery-powered real-time
system, since the energy is limited, a tradeoff between energy consumption and execution time is
necessary [3]. But the precondition is that the execution time of all programs should meet the related
deadline constraints. Otherwise it may lead to casualty, environmental damage, property loss and
other disasters. In order to ensure safety, one primary task during designing such real-time systems is
to accurately estimate the program’s worst-case execution time (WCET). WCET estimations are key
parameters for the evaluation of software safety and the optimization of energy consumption.

A program’s WCET conventionally refers to the upper execution time bound B on a processor
X with normal voltage and frequency [4]. Since WCET is influenced by many factors, such as
inputs and control flow structure of the program, architecture and initial status of the processor,
it is nearly impossible to obtain the actual value. Therefore, developers have to estimate WCET by
measurement or analysis [5]. Conventionally, WCET measurement is an unsafe approach [6]. WCET
analysis [7] calculates WCET through analyzing the control flow of the program. Due to using abstract
interpretation [8] for modeling hardware (i.e., micro-architecture), calculated WCET is positively larger
than the actual WCET. Therefore, WCET analysis is a safe approach.

For WCET analysis, overestimation is unavoidable and is even beneficial to ensure safety.
However, from the perspective of software development, unreasonable WCET overestimation would
seriously underestimate program performance, cause unnecessary optimization, raise development

Energies 2017, 10, 2113; doi:10.3390/en10122113 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en10122113
http://www.mdpi.com/journal/energies

Energies 2017, 10, 2113 2 of 18

costs and even delay system delivery. From the perspective of task scheduling, it would waste a lot of
system resources or energies, and even cause scheduling failure due to illusory resource scarcity.

In order to obtain a tighter WCET estimation, we propose a novel approach to reduce a
kind of specific WCET overestimation. The overestimation occurs on the programs which contain
non-orthogonal nested loops and their loop bounds cannot be expressed by integral constraints.
So, the correction approach we proposed has three basic steps. The first step is to locate worst-case
execution path (WCEP) in control flow graphs and then map it onto source code. The second step is to
identify the non-orthogonal nested loops from the WCEP by means of an abstract syntax tree. The last
step is to recursively calculate the WCET errors caused by the loose loop bound constraints, and then
subtract the total errors from the overestimations. The novelty lies in the fact that the WCET correction
is only conducted on the non-branching parts of the WCEP. The benefits are twofold: firstly, it saves
overhead; code outside WCEP is excluded since it does not make contributions to WCET; secondly,
it is safe because no WCEP switch was (or will be) triggered.

The remainder of this paper is organized as follows. Section 2 gives a brief review of related
work; Section 3 analyzes the reasons for the WCET overestimations; Section 4 demonstrates the specific
situation which causes the WCET overestimations; Section 5 proposes the approach to WCET correction
and then proves the safety of its kernel algorithm; Section 6 experimentally demonstrates the safety
and effectiveness of the whole approach, and discusses the threats to the validity of the experimental
results; the paper is concluded by Section 7.

2. Related Work

Reducing WCET overestimation is essential to obtain a more precise WCET estimation. Many
techniques, such as virtual inlining and virtual unrolling (VIVU) [9,10], multilayer persistence
analysis [11,12], dead code elimination and infeasible path detection [13,14], can increase the accuracy
of WCET analysis. Since our research is closely related to loop bounds, this section introduces related
work mainly surrounding the computation of loop bounds.

Loop bound computation already has many research achievements. These approaches
usually employ model checking [15], pattern matching [16], symbolic execution [17,18], abstract
interpretation [19], or other techniques to obtain precise loop bounds. For example, Maroneze [20] and
Blazy et al. [21] proposed a novel approach which has three steps: loop extraction, program slicing
and bound calculation. With the help of CompCert compiler, the approach can handle loop nesting
and compute safe over-approximation bounds on the register transfer language (RTL) intermediate
representation. Sewell et al. [22] developed a translation–validation apparatus, based on which
some source-level information missing in the binary can be used again. Thus, their approach can
automatically determine high-assurance loop bounds. Pavel et al. [23] presented a new algorithm
based on symbolic execution to compute more precise loop bounds for nested loops. The algorithm
sums the bounds for the inner loop over all iterations of the outer, thus produced bounds are tighter
than other approaches.

Tighter loop bounds undoubtedly make the WCET estimation more accurate. But to the best
of our knowledge, any single approach cannot automatically handle all forms of loops. Therefore,
the loop bound sometimes has to be provided by programmers. Aiming at this situation, our approach
can generate references to max iteration counts for programmers by code instrumentation. However,
improving loop bound computation cannot solve the specific WCET overestimation because the
overestimation is caused by the inherent shortcoming of IPET-based WCET calculation rather than
loop bound computation.

3. Reasons for WCET Overestimation

As a classical approach, IPET-based WCET analysis commonly has three basic steps [24]:
(1) Micro-architecture modeling (or called low-level analysis), regarding pipeline, cache, branch predictor
and cycle-accurate timing, etc.; (2) Control-flow Analysis (or called high-level analysis), such as

Energies 2017, 10, 2113 3 of 18

control-flow reconstruction [25,26], loop bound analysis [27,28], etc.; (3) WCET Calculating, using
integral linear programming (ILP) to compute a final result. Figure 1 shows the principle of IPET-based
WCET analysis, including a control-flow graph (CFG) generated by high-level analysis and IPET-based
WCET calculation.

Definition 1. (Control Flow Graph [29]) a control flow graph G = (V, E) in which V is the set of all nodes and
E is the set of all edges. Each node v ∈ V is a basic block, and each edge e ∈ E connects two nodes vi, vj ∈ V.

Figure 1. IPET-based WCET calculation [30].

3.1. Overestimation in Micro-Architecture Modeling

IPET (implicit path enumeration technique) [31,32] is to establish a series of linear constraints for
execution counts of each basic block according to the CFG, and then calculate the maximum execution
time by ILP (see Equation (1)). Note that a basic block is a piece of sequential instructions. Only the
last instruction can be a jump instruction and only the first instruction can be a jump target.

WCET = max∑
B∈

timesB × wcetB (1)

where, B denotes a basic block in the CFG; B denotes the set of all basic blocks; timesB ∈ N is the
execution counts of basic block B; wcetB ∈ N is the WCET of basic block B.

Usually, wcetB can be obtained from the low-level analysis, while timesB needs to be calculated
with some given flow constraints, and the goal is to maximize WCET. From the Equation (1),
it is easy to see that WCET overestimation may come from both micro-architecture modeling and
control-flow analysis.

For micro-architecture modeling abstract interpretation [33–35] has a dominant position. It uses
cache behavior classification (i.e., always hit, always miss, first miss, not classified, etc.) to abstractly
express the actual situation of instruction fetch [36]. The advantage is that state-explosion problems
can be solved. However, since all non-classified cache behaviors are treated as always miss, the fetching
time of many instructions is magnified [37]. Consequently, wcetB is overestimated. It is the most
common reason for WCET overestimation.

Energies 2017, 10, 2113 4 of 18

3.2. Overestimation in Control-Flow Analysis

Normally, timesB can be calculated by using ILP. The calculation needs some flow constraints
which can be generated on the basis of Kirchhoff's law, see Equation (2). In addition, users may have to
manually provide some linear constraints to express loop bounds and any infeasible path information.

∑
B′→B

EB′→B = timesB = ∑
B→B′′

EB→B′′ (2)

where, EB′→B denotes the counts control flow goes through the CFG edge B′ → B(B′ ∈ B); EB→B′′

denotes the counts control flow goes through the CFG edge B→ B′′(B′′ ∈ B).
In this article, loop bound refers to the maximum iteration counts of a loop statement. For a loop

nesting, denoted Louter{Linner}, the loop bound of an inner loop is usually expressed as a constraint
relationship relative to its outer loop. Take the following code as an example (Example 1). Obviously,
the loop bound of outer for loop (denoted Louter) is 5. The loop bound of inner for loop (denoted Linner)
is 25, and it can be expressed as Linner = Louter × 5, since Linner executes five times in every execution
of Louter. However, for non-orthogonal nested loop, the relationship of maximum iteration counts
between inner loop and outer loop is unclear.

Example 1. A loop nesting with an orthogonal nested loop

1 for (int i = 0; i < 5; i++)
2 for (int j = 0; j < 5; j++)
3 { k++; }

Definition 2. (Orthogonal Nested Loop) For a loop nesting Louter{Linner}, if Linner always has the same
execution counts during every execution of Louter, then loop Linner is called an orthogonal nested loop.

For an orthogonal nested loop, its loop control variable is context free. Note that the concept of
non-orthogonal nested loop is opposite to orthogonal nested loop. In this paper, if the iteration counts
of a nested loop (i.e., inner loop) are wholly or partly dependent on the variables modified by the
outside loop, then the inner loop is called “non-orthogonal” nested loop.

Set the following program as an example (Example 2). The maximum iteration counts of inner
while (Line 8) not only depend on control variable i (Line 7, j = i), but also are relevant to the values of
array a. Thus, it is a typical non-orthogonal nested loop.

Example 2. insertsort.c derived from WCET benchmarks
(http://www.mrtc.mdh.se/projects/wcet/benchmarks.html)

1 unsigned int a[11];
2 int main ()
3 { int i, j, temp;
4 a[0] = 0; a[1] = 11; a[2] = 10; a[3] = 9; a[4] = 8; a[5] = 7; a[6] = 6; a[7] = 5; a[8] = 4; a[9] = 3; a[10] = 2;
5 i = 2;
6 while(i <= 10)
7 { j = i;
8 while (a[j] < a[j − 1]) //append condition “j <= 3” or “j <= 5” in Section 3
9 { temp = a[j]; a[j] = a[j − 1]; a[j − 1] = temp; j–; }
10 i++;
11 }
12 return 1;
13 }

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

Energies 2017, 10, 2113 5 of 18

Considering the inner while loop runs at most nine times when the outer while loop runs once,
to ensure safety, a pessimistic constraint Linner ≤ Louter × 9 can be used to express the loop bound of
inner while loop. Since the iteration count of outer while loop is 9, the inequality makes the maximum
iteration counts of inner while loop up to 81. However, the maximum iteration counts of inner while loop
actually are 45, which is 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45. Therefore, a pessimistic constraint results
in a WCET overestimation since timesB of inner while loop is enlarged. To solve this overestimation
problem, an absolute constraint Linner = 45 can be appended according to the global maximum
iteration counts of inner while. Then the WCET overestimation will be reduced.

Definition 3. (Pessimistic Constraint) pessimistic constraint refers to the loop bound of a nested loop statement
expressed as the form Linner ≤ Louter × X, where X = max (ETinner) and ETinner is the execution counts of
the nested loop statement Linner when its outer loop statement Louter runs one time.

Definition 4. (Absolute Constraint) absolute constraint refers to the loop bound of a nested loop statement
expressed as the form Linner = X, where X is the total execution counts of the nested loop statement Linner when
the whole program runs one time.

4. Specific WCET Overestimation

Supposing that the program in Example 2 was merely a part (or a function) of a long and complex
program. For example, rename main () to foo (), and write a new main () which invokes foo () three times
by a loop, see Figure 2. As a result, 45 was no more the global maximum iteration counts of inner
while loop. So the constraint Linner = 45 was no more correct, and it should be Linner = 135. To keep
the useful knowledge of control flow, the local maximum iteration counts can be transformed into a
new relative constraint Linner = Louter × 5. It is because the local maximum iteration counts of outer
while loop are 9, and 45 ÷ 9 = 5. On the basis, since Louter = 9× 3, the actual global maximum iteration
counts of inner while loop will be 9× 3× 5 = 135.

Figure 2. Modification of Example 2.

Definition 5. (Relative Constraint) relative constraint refers to the loop bound of a nested loop statement
expressed as the form Linner = Louter × X, where X = Xinner ÷ Xouter and Xinner, Xouter respectively is the
execution counts of the nested loop statement Linner and the outer loop statement Louter when some function
runs one time.

Table 1 shows the WCET estimations obtained by using different constraints. Note that the
experimental tool is Chronos (http://www.comp.nus.edu.sg/~rpembed/chronos/). Target processor
is simple without cache and other complex architecture. The optimization level of compiler is O1.
The experimental results on “insertsort” show that the relative constraint (Col. 3) has the same effect
as the absolute constraint (Col. 4). They all reduce the overestimation caused by the pessimistic
constraint (Col. 2).

http://www.comp.nus.edu.sg/~rpembed/chronos/

Energies 2017, 10, 2113 6 of 18

Table 1. WCET estimations obtained by using different constraints (unit: cycle).

Programs Pessimistic Relative Absolute Measurement

insertsort 1863 1107 1107 1103
insertsort01 468 324 228 161
insertsort02 756 468 340 291

However, not all non-orthogonal nested loops can transform their local maximum iteration
counts into a relative integral constraint. For example, respectively replace the conditional expression
“a[j] < a[j − 1]” of second while loop in Example 2 with “j <= 3 && a[j] < a[j − 1]” and “j <= 5 && a[j] <
a[j − 1]” to generate two new programs, named insertsort01 and insertsort02. For insertsort01, the local
maximum iteration counts of second loop are three. For insertsort02, the local maximum iteration
counts of second loop are ten. Both of them are not an integral multiple of their outer loop. The first
one is 3/9, and the second one is 10/9.

In this situation, since WCET calculation relies on ILP, and ILP only handles integral constraint, a
potential WCET overestimation emerges. Take insertsort01 as an example, one is the integer which
is bigger than and the closest to the actual constraint value 3/9. Thus, the relative constraint for
the second loop can be expressed as Linner ≤ Louter × 1. Consequently, estimating WCET with the
constraint generates an overestimation, see second row in Table 1 (324 > 228). Note that, for insertsort01,
pessimistic constraint is Linner ≤ Louter × 2 since inner loop statement runs at most 2 times when outer
loop statement runs once; absolute constraint is Linner = 3 since the global maximum iteration counts
of inner loop are 3. For insertsort02, pessimistic constraint is Linner ≤ Louter × 4, relative constraint is
Linner ≤ Louter × 2, and absolute constraint is Linner = 10.

This kind of overestimation is neither caused by imprecise micro-architecture analysis nor
brought by unfaithful control-flow analysis. It is an inherent imperfection of IPET-based WCET
calculation. To overcome the disadvantage, at least quickly find and partly correct the overestimation,
the general existence conditions of the specific WCET overestimations are firstly proposed. Without
loss of generality, the programs which have the specific WCET overestimations need to satisfy the
following conditions:

Firstly, NL ∩WCEP 6= ∅. Where NL denotes the set of all non-orthogonal nested loops in a
program P, and WCEP denotes the set of all statements which lie in the WCEP of P. This condition
means that there is at least one non-orthogonal nested loop in the WCEP.

Secondly, only relative constraint is available. Many reasons can result in this situation, such as,
the program is long and complex, and/or the development is not yet completed. Thus, it is hard to
analyze the global maximum iteration counts. However, if the outer loop is orthogonal, like “for (int 0;
5; i++)”, local maximum iteration counts of the inner non-orthogonal nested loop can be analyzed and
obtained, for instance, by using program slicing [21].

Thirdly, Linner % Louter 6= 0. Where Louter and Linner respectively denote the local loop bounds of
the outer and inner loop statements. Note that % is an unsigned modulo operator.

5. Reducing Unreasonable Overestimation

To fundamentally eliminate the specific unreasonable WCET overestimation, the program must
not have at least one of the above three conditions. However, it is unrealistic because the structure and
the features of a program are mainly determined by the realistic demands. The code should directly
reflect the program’s function. Intentionally changing the code’s structure to destroy the conditions
will reduce the readability, or even bring bugs into the code. Therefore, in this article we do not
research how to fundamentally eliminate the overestimation, but try our best to safely and effectively
reduce the overestimation by improving the WCET calculation.

Energies 2017, 10, 2113 7 of 18

5.1. The Correction Example

In order to more clearly introduce the algorithm, firstly, the issue is simplified as: the program P
only has one loop nesting whose depth is 2, and the non-orthogonal nested loop is not contained by
any branch statement. Example 3 can reduce the WCET overestimation of P.

Example 3. Reducing WCET overestimation for one non-orthogonal nested loop

Input: Program P with an non-orthogonal loop nesting Louter {Linner}
Output: Corrected WCET
1: t1← dLinner ÷ Loutere
2: Set Constraint For Inner Loop (Linner = Louter × t1)
3: WCET1←WCET Analyse (P)
4: t2← dLinner ÷ Loutere+ 1
5: Set Constraint For Inner Loop (Linner = Louter × t2)
6: WCET2←WCET Analyse (P)
7: error← b(WCET2−WCET1)÷ Louterc
8: overestimation← (Louter × t1− Linner)× error
9: WCET ←WCET1− overestimation

10: Return WCET

Make insertsort01 mentioned in Section 4 as an example to explain the algorithm. Louter = 9 and
Linner = 3, thus t1 = 1 and t2 = 2. Since the constraints Linner = Louter × 1 and Linner = Louter × 2 are
the same as the constraints used in Section 4, we can see from Table 1 that WCET1 is 324 (Relative)
and WCET2 is 468 (Pessimistic). Then error will be 16 and the corrected WCET will be 228. Note that
the result is the same as the result obtained by using the absolute constraint Linner = 3. Using the
algorithm, the WCET overestimation in insertsort02 can also be reduced.

The reducing effects on insertsort01 and insertsort02 are shown in Figure 3. The two reduced
WCET values are safe because both of them are no less than the WCET calculated from the absolute
constraints. However, the result may be unsafe when the restrictions presupposed at the beginning of
this section are removed, see insertsort03 in Figure 3.

Figure 3. WCET estimations obtained by using different constraints.

Note that, insertsort03 is derived from program “insertsort”. Its structure is simply shown as
Example 4. The loop nesting is moved into then part of a branch. The same or indifferent parts are
omitted. Program insertsort03 has two mutually exclusive paths: path1 = <1,2,3,6> and path2 = <1,4,5,6>.
In fact, the correct WCEP is path2. However, since a relative constraint Linner ≤ Louter × 1 has to be used
for the loop at line 3, the WCEP switches to path1 from path2. Then the WCET correction is conducted
on path1, and finally the reduced WCET becomes less than the correct WCET which belongs to path2.
That is the reason why the above method may be unsafe when the non-orthogonal nested loop lies in a
branch statement. To handle the more common cases, Section 5.2 introduces the whole process of the
WCET corrections.

Energies 2017, 10, 2113 8 of 18

Example 4. insertsort03.c derived from insertsort

1 if (. . .)
2 while (i <= 10){ j = i;
3 while (j <= 3 && a[j] < a[j − 1]) { . . . } . . . }
4 else //the correct WCEP
5 { . . . }
6 . . .

5.2. The Whole Process

To avoid a wrong correction caused by WCEP switch during reducing WCET overestimation,
the correction is limited to the non-branching part of WCEP. Note that the non-branching part refers
to the code (i.e., the non-orthogonal nested loop) which does not belong to any branch statement.
It means that the non-branching part of WCEP is a public sub-path that all execution traces must pass.
So, no path switches can happen during reducing WCET overestimation.

The WCET overestimation correction has three stages The first stage is to locate WCEP in CFG
and then map it onto source code. The second stage is to identify the non-orthogonal nested loops in
WCEP by means of abstract syntax tree (AST). The last stage is to recursively calculate the WCET errors
caused by the loose constraint relationships of loop bounds, and reduce the WCET overestimation via
subtracting the total errors. Figure 4 shows the whole process of our WCET correction.

In the first stage, the variable values of ILP (i.e., timesB in Equation (1)) are used to locate
WCEP. For a basic block B, if its execution counts timesB > 0 in the final result, then B belongs
to WCEP. So, it is easy to locate all basic blocks which constitute WCEP. Note that using different
constraints (i.e., pessimistic, relative or absolute) to express the maximum iteration counts of nested
loops may result in different WCEP. However, it is unconsidered since our approach only deals with a
non-branching part, and the part is always the same even in different WCEP.

In the second stage, two ways can achieve identifying nested relations. The first way (showing in
Figure 2) is using the start and end line information. Generally, for two loops (denoted loopx and loopy
respectively), if loopx.start_line < loopy.start_line and loopx.end_line > loopy.end_line, then loopy is nested
by loopx. The second way identifies nested relations with the help of AST. When the nodes of loopy are
children of the node of loopx, then loopx nests loopy.

To identify the non-orthogonal nested loops, and help programmers analyze loop bounds, we
have developed a lightweight syntax analysis tool for C language (supporting C99 standard), called
CParser [38]. Through three basic steps, i.e., lexical analysis, preprocessing and syntax analysis,
CParser not only creates AST, but also identifies non-orthogonal nested loops. Meanwhile, by means
of source code instrumentation, CParser provides referential loop bounds for programmers. Moreover,
CParser has also been used in error locating of C programs [39]. Usually manual analysis is inevitable
to obtain loop bounds since other methods, such as symbolic execution, have many limitations in
availability. Therefore, the referential loop bounds are beneficial for making sure that the loop bounds
provided by programmers are not smaller than the actual values.

It should be noted that, a non-orthogonal nested loop may not necessarily be the object of the
correction unless its local maximum iteration counts are not integral multiples relative to its outer loop.
Meanwhile, orthogonal nested loop must meet the integral multiple relations. So, if the provided local
loop bound for orthogonal nested loops does not meet the integral multiple relations, the annotations
for local maximum iteration counts must be wrong.

In the final stage, if the depth of a loop nesting is more than two, the correction will start from the
innermost loop. For example, for two loop nests Loopx {Loopy} and Loopy {Loopz}, obviously Loopz is the
innermost loop, so our approach corrects Loopy {Loopz} first. Otherwise, it will result in new errors
during Loopx {Loopy} correction.

Energies 2017, 10, 2113 9 of 18

Figure 4. The whole process of WCET overestimation correction.

5.3. The Safety Analysis

If the reduced WCET (denoted RWCET) is no less than the WCET which is calculated by using
absolute constraints (denoted WCET), then the correction algorithm must be safe. For making the
safety analysis easy to be understood, we suppose that the program has a CFG which is simply shown
in Figure 5. It should be pointed out that the correction only affects the total execution time of the basic
block B (denoted WCETB). Therefore, the question is simplified as: if RWCETB ≥ WCETB then the
correction algorithm is safe. Where RWCETB is the total WCET of the basic block B after correction.
According to Equation (1), WCETB = timesB × wcetB. Therefore, if RWCETB ≥ timesB × wcetB then
the algorithm is safe.

Energies 2017, 10, 2113 10 of 18

Figure 5. The control flow graph (CFG) of a program with non-orthogonal nested loop.

For a loop nesting Louter{Linner}, supposing their max execution counts respectively are Tx and
Ty. We firstly prove the safety of the algorithm without considering Cache.

Proof. According to the Example 1, obviously WCET1B = times1B × wcetB = Louter × t1× wcetB =

Tx×
⌈

Ty ÷ Tx
⌉
×wcetB, and WCET2B = times2B×wcetB = Louter× t2×wcetB = Tx× (

⌈
Ty ÷ Tx

⌉
+ 1)

×wcetB, so we have error = b(WCET2B −WCET1B)÷ Txc = wcetB, and overestimation = (Louter ×
t1− Linner)× error = (Tx ×

⌈
Ty ÷ Tx

⌉
− Ty)× wcetB.

Obviously,
RWCETB = WCET1B − overestimation
= Tx ×

⌈
Ty ÷ Tx

⌉
× wcetB − (Tx ×

⌈
Ty ÷ Tx

⌉
− Ty)× wcetB

= Ty × wcetB

.

Since timesB = Ty, now we have RWCETB = timesB × wcetB = WCETB, which completes
the proof. �

When considering cache, the basic block B has two kinds of execution time: wcetB−hit for Cache
hit and wcetB−miss for cache miss. So WCETB = timesB−hit × wcetB−hit + timesB−miss × wcetB−miss.
According to the classification of cache behaviors, the safety is analyzed from three aspects. Firstly, if B
is always hit, then timesB−miss = 0. Thus WCETB = timesB−hit ×wcetB−hit. The proof under this case is
the same with the previous one, so we don’t repeat it. Secondly, if B is always miss, then timesB−hit = 0.
Therefore WCETB = timesB−miss × wcetB−miss. The proof under this case is also the same with the
previous one. Thirdly, if B is first miss, then it has two cases. If Ty ≥ Tx, then timesB−miss = Tx

and timesB−hit = Ty − Tx, so WCETB = Tx × wcetB−miss + (Ty − Tx) × wcetB−hit; if Ty < Tx, then
timesB−miss = Ty and timesB−hit = 0, so WCETB = Ty × wcetB−miss. Following is the proof in the
third case.

Proof. According to the Example 1, obviously WCET1B = Tx × wcetB−miss + (Tx ×
⌈

Ty ÷ Tx
⌉
− Tx)×

wcetB−hit, and
WCET2B = Tx × wcetB−miss + (Tx × (

⌈
Ty ÷ Tx

⌉
+ 1)− Tx)× wcetB−hit

= Tx × wcetB−miss + (Tx ×
⌈

Ty ÷ Tx
⌉
)× wcetB−hit

.

So we have error = b(WCET2B −WCET1B)÷ Txc = wcetB−hit, and overestimation = (Louter ×
t1− Linner)× error = (Tx ×

⌈
Ty ÷ Tx

⌉
− Ty)× wcetB−hit.

Obviously,
RWCETB = WCET1B − overestimation
= Tx × wcetB−miss + (Tx ×

⌈
Ty ÷ Tx

⌉
− Tx)× wcetB−hit − (Tx ×

⌈
Ty ÷ Tx

⌉
− Ty)× wcetB−hit

= Tx × wcetB−miss + (Ty − Tx)× wcetB−hit.
If Ty ≥ Tx, then RWCETB = Tx × wcetB−miss + (Ty − Tx)× wcetB−hit = WCETB;

If Ty < Tx, then
RWCETB −WCETB = Tx × wcetB−miss + (Ty − Tx)× wcetB−hit − Ty × wcetB−miss
= (Tx − Ty)× wcetB−miss − (Tx − Ty)× wcetB−hit
= (Tx − Ty)× (wcetB−miss − wcetB−hit)

Since Tx − Ty > 0 and wcetB−miss − wcetB−hit > 0, we have RWCETB −WCETB > 0 �

Energies 2017, 10, 2113 11 of 18

Summing up the above, RWCETB ≥ WCETB is always true. Therefore, the WCET correction
algorithm is safe. Note that the inner loop may have many basic blocks and the processor may have
other configurations, such as data cache and pipeline, but the theory is similar. Thus, the safety, when
considering more details, can also be proved using the same method. However, the algorithm is only
the kernel of the whole correction process. Even if it is safe, it does not mean that the whole process
must be safe since the whole process involves identifying correctable non-orthogonal nested loops and
other details. For example, if a programmer provides wrong loop bounds, any safe approach including
our correction cannot guarantee safety.

6. Evaluation

Generally, WCET estimation is evaluated from two aspects: safety and accuracy. Therefore,
the purpose of this section is to answer the following questions: (1) From a practical perspective,
is the corrected WCET estimation by our approach is still safe?; (2) How about the effectiveness of our
approach in improving the accuracy of WCET overestimation?; (3) Which factors may threaten the
safety and effectiveness of our approach? Questions 1 and 2 are answered in Section 6.3, and Question 3
is discussed in Section 6.4.

6.1. Experimental Setup

Experimental tools: Chronos and CParser. Chronos is a well-known WCET analysis tool, and it can
easily set and change the configuration of micro-architecture. Due to the flexibility, we used Chronos
to analyze programs on different target processors. CParser has been introduced in Section 5.2.

Experimental programs: ten programs shown in Table 2. “Statement” refers to the number of
statements in the program. “NNloop” denotes the number of non-orthogonal nested loops. “Correctable”
expresses the number of the non-orthogonal nested loops which lie in non-branch part of WCEP.
“Depth” indicates the max depth of the “correctable” nested loop.

Compiler was GCC, and the optimization level was O1. The experiments were conducted on a
simple target processor and a complex processor, respectively.

Table 2. Experimental programs.

Programs Statement NNloop Correctable Depth

bsort 34 1 1 2
countnegative 56 1 1 2

filterbank 67 2 2 3
insertsort01 27 1 1 2
insertsort02 27 1 1 2

janne_complex01 20 1 1 2
janne_complex02 20 1 1 2

ludcmp 75 6 2 3
minver 102 4 2 3
Select * 27 3 0 3

Note: * denotes that no non-orthogonal nested loop lies in non-branch part of WCEP.

6.2. Experimental Results

Table 3 shows the results when the processor is simple. The simple processor has no cache and
branch predictor. Thus, the WCET overestimation only comes from the loose or wrong loop bound
constraints. “Reduced” in Tables 3 and 4 refer to the WCET after the correction.

Energies 2017, 10, 2113 12 of 18

Table 3. WCET obtained from different constraints on simple processor (unit: cycle).

Programs Pessimistic Relative Reduced Absolute

bsort 101,758 6718 5738 5738
countnegative 20,452 19,812 19,572 19,572

filterbank 4,171,890 4,044,910 3,925,870 3,925,870
insertsort01 468 324 228 228
insertsort02 756 468 340 340

janne_complex01 2217 768 630 630
janne_complex02 1390 631 556 556

ludcmp 6074 5944 5840 5240
minver 3558 3492 3405 3318

Table 4 shows the results when the processor is complex. The complex processor has cache,
branch predictor and out-of-order pipeline (see Table 5). Thus, the WCET overestimation is more real.
Note that, when using complex processor, Chronos did not calculate the WCET for program minver.
This is not a rare situation since IPET-based WCET calculation is a NP-hard problem. ILP sometimes
runs very slowly, and it even cannot return a result when the program has a complex structure.

Table 4. WCET obtained from different constraints on complex processor (unit: cycle).

Programs Pessimistic Relative Reduced Absolute

bsort 113,972 14,119 13,060 13,000
countnegative 21,410 20,630 20,338 20,336

filterbank 3,156,240 3,062,040 2,973,728 2,973,720
insertsort01 1262 1115 1017 1007
insertsort02 1445 1262 1179 1134

janne_complex01 3967 2013 1827 1827
janne_complex02 2853 1829 1736 1733

ludcmp 20,810 20,705 20,621 20,065
minver no result no result no result no result

Table 5. The configuration of the complex processor.

Item Value

Pipeline parameters out of order
Superscalarity 2

Instruction Fetch Queue Size 4
Reorder Buffer Size 16

Instruction Cache Parameters Enable
Number of Sets 16

Block Size 16
Cache Associativity 2

Branch Prediction Parameters Enable
Branch History Table Size 32

Branch History Register Width 2

6.3. Analysis

6.3.1. Safety

A reduced WCET (denoted Rwcet) is safe only when Rwcet ≥ Cwcet. Where Cwcet denotes the
correct WCET calculated by using absolute constraints. Table 6 shows the difference values obtained
from Rwcet-Cwcet on different processors.

Energies 2017, 10, 2113 13 of 18

Table 6. The difference between reduced WCET and correct WCET (unit: cycle).

Programs Simple Processor Complex Processor

bsort 0 +60
countnegative 0 +2

filterbank 0 +8
insertsort01 0 +10
insertsort02 0 +45

janne_complex01 0 0
janne_complex02 0 +3

ludcmp +600 +556
minver +87 unknown

It clearly shows that reduced WCET of 100% are no less than correct WCET. Therefore, both
the experimental results and the theoretical analysis in Section 5.3 support the conclusion that our
approach including the algorithm and the whole process is safe. Therefore, the answer to Question 1
is affirmative.

6.3.2. Effectiveness

Figure 6 shows the average ratios of different WCET overestimations relative to the correct WCET.
The ratios for pessimistic WCET are up to 259.65% and 128.29%. The ratios for relative WCET are
17.24% and 6.74%. Oppositely, the ratios for reduced WCET are only 1.56% (on simple processor)
and 1.05% (on complex processor). From an overall perspective, our approach has obvious effects on
reducing the WCET overestimations. Note that the ratio of overestimation for a program is calculated
by Equation (3).

overestimationratio =
Owcet− Cwcet

Cwcet
× 100% (3)

where, Cwcet denotes the correct WCET; Owcet can be pessimistic, relative or reduced WCET.

Figure 6. The average ratio of WCET overestimation relative to correct WCET.

Here, we continue to analyze the effects on each program. Equation (4) was used to calculate the
percentage of WCET reduction, where Owcet and Rwcet have the same meaning with Equation (3).
Figures 7 and 8, respectively, show the reductions of WCET overestimations on simple processor and
complex processor.

reduction_percent =
(Owcet− Cwcet)− (Rwcet− Cwcet)

Owcet− Cwcet
× 100% (4)

Energies 2017, 10, 2113 14 of 18

Figure 7. The reductions of WCET overestimations on a simple processor.

Figure 8. The reductions of WCET overestimations on a complex processor.

It can be easily seen that both pessimistic WCET and relative WCET are reduced by our approach.
The percentage of reductions is at least 82% on average. Summing up the above, Question 2 is answered
here: that our approach can obviously reduce the specific WCET overestimations, and thus, increase
the accuracy of WCET estimation.

6.3.3. Efficiency

Since our approach needs to calculate WCET at least twice for reducing the overestimations,
it costs more time than IPET-based WCET estimation. Figure 9 shows the comparisons of the two
methods in time cost.

Energies 2017, 10, 2113 15 of 18

Figure 9. The comparisons of time overhead.

6.4. Discussion

6.4.1. Threat to Safety

The safety of the WCET correction has been proved in Section 5.3 and verified in Section 6.3.1.
The fundamental guarantee of safety is that WCET correction is only conducted on the non-branching
part of WCEP, thus, no WCEP switches happen. In fact, our approach may safely reduce the specific
WCET overestimation even if the non-orthogonal nested loop lies in the branching part of WCEP.
For instance, Table 7 shows the results of WCET correction on program “select”. Note that all
non-orthogonal nested loops lie in branch statements.

Table 7. The results of WCET reduction on program “select” (unit: cycle).

Processor Relative Reduced Absolute Difference

simple 982 966 966 0
complex 12,735 12,713 12,707 +6

The correction is safe because the non-orthogonal nested loops lie in the invariant path [40] of
WCEP. Actually, invariant path is a concept in the field of code optimization for reducing WCET, and it
includes various cases. Therefore, to ensure the absolute safety, our approach did not enlarge the scope
of correction. Obviously, our approach is conservative but safe, and the safety is almost not threatened
by anything (except if the developer provides wrong local max iteration counts).

6.4.2. Threat to Effectiveness

Regarding Question 3, three factors can threaten the validity of the experimental results as well
as the effectiveness of our approach. The first is micro-architecture of target processor. The second is
control flow of the sample program. The third is the optimization level of compiler.

Differences in micro-architecture result in different WCET estimation, and then, the overestimation
is reduced with different percentages. Comparison of Figures 7 and 8 clearly shows that our approach
obviously has different effectiveness in reducing overestimation (for example, program insert02) on
different processors. Therefore, to keep the validity, our experimental results were obtained on two
different types of processors.

For the program ludcmp and minver, since not all non-orthogonal nested loops lie in the
non-branching part of WCEP, our approach can only correct a part of overestimation for ensuring
safety. Theoretically, the more non-orthogonal nested loops lie in branch statements, the less the
percentage of overestimation is reduced. Thus, our experiment tried to adopt samples derived from

Energies 2017, 10, 2113 16 of 18

different benchmark programs for supporting the validity. The number of programs which derived
from the same origin was no more than two.

Compiler optimization is usually used to increase the average performance. However, it does
not always improve WCET with the rise of optimization level. For instance, O2 optimization even
made a larger WCET than O1 optimization on program bsort (see Figure 10). Meanwhile, considering
O2 optimization significantly modified the object code, and thus, accurately mapping WCEP from
object code onto source code became difficult. To avoid excessive optimization, our experiment used
O1 optimization.

Figure 10. The WCET obtained from different optimization levels of compiler (unit: cycle).

7. Conclusions

Classical IPET-based WCET analysis cannot avoid a kind of specific overestimation.
The overestimation comes from neither micro-architecture modeling nor control flow analysis. It occurs
because ILP-based WCET calculations cannot handle non-integer loop bound constraints. To reduce
specific WCET overestimation, three basic existence conditions were proposed, and then a correction
approach was developed. The correction approach firstly locates WCEP in CFG and then maps it onto
source code. Secondly it identifies the non-orthogonal nested loop in the WCEP by means of AST.
Finally, the WCET overestimation is corrected via subtracting the total errors.

The experimental results show that the specific overestimations are reduced more than 82%
on average, and all the corrected WCET estimations are safe. It will help programmers to obtain
more precise WCET estimation, and then design more safe and efficient real-time systems [41–43].
The disadvantage of our approach is that it requires repeatedly analyzing and calculating WCET;
therefore, it is more time-consuming than the IPET-based WCET analysis. In the future, attention
will be focused on multi-core processors. Whether the specific WCET overestimation can also occur
on multi-core processor, and the safety and availability of our approach when target processor is
multi-core are issues that are worthy of further study.

Acknowledgments: This work was supported by “the 13th Five-Year” National Science and Technology Major
Project of China (Grant No. 2017YFC0702204), the national natural science foundation of China (No. 61672191
and No. 61173021).

Author Contributions: Fanqi Meng and Xiaohong Su conceived and designed the experiments; Fanqi Meng
performed the experiments; Fanqi Meng and Xiaohong Su analyzed the data; Fanqi Meng wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhu, D.; Aydin, H. Reliability-aware energy management for periodic real-time tasks. IEEE Trans. Comput.
2009, 58, 1382–1397.

2. Aydin, H.; Devadas, V.; Zhu, D. System-level energy management for periodic real-time tasks. In Proceedings
of the 27th IEEE International Real-Time Systems Symposium (RTSS’06), Rio de Janeiro, Brazil, 5–8 December
2006; pp. 313–322.

Energies 2017, 10, 2113 17 of 18

3. Zou, C.; Hu, X.; Wei, Z.; Tang, X. Electrothermal dynamics-conscious lithium-ion battery cell-level charging
management via state-monitored predictive control. Energy 2017, 141, 250–259. [CrossRef]

4. Li, X.; Liang, Y.; Mitra, T.; Roychoudhury, A. Chronos: A timing analyzer for embedded software.
Sci. Comput. Program. 2007, 69, 56–67. [CrossRef]

5. Wilhelm, R.; Engblom, J.; Ermedahl, A.; Holsti, N.; Thesing, S.; Whalley, D.; Bernat, G.; Ferdinand, C.;
Heckmann, R.; Mitra, T.; et al. The worst-case execution-time problem—Overview of methods and survey of
tools. ACM Trans. Embed. Comput. Syst. 2008, 7, 36. [CrossRef]

6. Moreno, C.; Fischmeister, S. Accurate Measurement of Small Execution Times—Getting Around
Measurement Errors. IEEE Embed. Syst. Lett. 2017, 9, 17–20. [CrossRef]

7. Reineke, J.; Wilhelm, R. Static Timing Analysis–What is Specific? In Semantics, Logics, and Calculi; Springer:
New York, NY, USA, 2016; pp. 74–87. [CrossRef]

8. Cousot, P.; Cousot, R. Abstract interpretation: A unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In Proceedings of the 4th symposium on Principles of
Programming Languages ACM SIGACT-SIGPLAN, Los Angeles, CA, USA, 17–19 January 1977; pp. 238–252.
[CrossRef]

9. Martin, F.; Alt, M.; Wilhelm, R.; Ferdinand, C. Analysis of loops. In Proceedings of the 7th International
Conference on Compiler Construction, Lisbon, Portugal, 30 March–3 April 1998; pp. 80–94.

10. Ballabriga, C.; Casse, H. Improving the first-miss computation in set-associative instruction Caches.
In Proceedings of the 2008 Euromicro Conference on Real-Time Systems, Prague, Czech Republic,
2–4 July 2008; pp. 341–350. [CrossRef]

11. Ferdinand, C.; Wilhelm, R. On predicting data Cache behavior for real-time systems. In Proceedings of
the ACM Sigplan Workshop on Languages, Compilers, and Tools for Embedded Systems, Montreal, QC,
Canada, 19–20 June 1998; pp. 16–30. [CrossRef]

12. Sen, R.; Srikant, Y.N. WCET estimation for executables in the presence of data Caches. In Proceedings
of the 7th ACM & IEEE International Conference on Embedded Software, Salzburg, Austria,
30 September–3 October 2007; pp. 203–212. [CrossRef]

13. Gustafsson, J.; Ermedahl, A.; Sandberg, C.; Lisper, B. Automatic derivation of loop bounds and infeasible
paths for WCET analysis using abstract execution. In Proceedings of the 27th IEEE International Real-Time
Systems Symposium, Rio De Janeiro, Brazil, 5–8 December 2006; pp. 57–66. [CrossRef]

14. Healy, C.; Whalley, D. Automatic detection and exploitation of branch constraints for timing analysis.
IEEE Trans. Softw. Eng. 2002, 28, 763–781. [CrossRef]

15. Bernard, B.; Gernot, H. Sequoll: A Framework for Model Checking Binaries. In Proceedings of the 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS), Philadelphia, CA, USA,
9–11 April 2013; pp. 97–106. [CrossRef]

16. Knoop, J.; Kovács, L.; Zwirchmayr, J. Symbolic loop bound computation for WCET analysis. In Proceedings of
the International Andrei Ershov Memorial Conference, Novosibirsk, Russia, 27 June–1 July 2011; pp. 227–242.
[CrossRef]

17. Knoop, J.; Kovács, L.; Zwirchmayr, J. Replacing conjectures by positive knowledge: Inferring proven precise
worst-case execution time bounds using symbolic execution. J. Symb. Comput. 2017, 80, 101–124.

18. King, J.C. Symbolic execution and program testing. Commun. ACM 1997, 19, 385–394. [CrossRef]
19. Lokuciejewski, P.; Cordes, D.; Falk, H.; Marwedel, P. A fast and precise static loop analysis based on abstract

interpretation, program slicing and polytope models. In Proceedings of the 7th International Symposium on
Code Generation and Optimization, Seattle, WA, USA, 22–25 March 2009; pp. 136–146. [CrossRef]

20. Maroneze, A.; Blazy, S.; Pichardie, D.; Puaut, I. A Formally Verified WCET Estimation Tool; OASIcs-Open
Access Series in Informatics; Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik: Saarbrücken, Germany,
2014; Volume 39, pp. 11–20. [CrossRef]

21. Blazy, S.; Maroneze, A.; Pichardie, D. Formal verification of loop bound estimation for WCET analysis.
In Working Conference on Verified Software: Theories, Tools, and Experiments; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 281–303. [CrossRef]

22. Sewell, T.; Kam, F.; Heiser, G. Complete, High-Assurance Determination of Loop Bounds and Infeasible
Paths for WCET Analysis. In Proceedings of the 2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), Vienna, Austria, 11–14 April 2016; pp. 1–11. [CrossRef]

http://dx.doi.org/10.1016/j.energy.2017.09.048
http://dx.doi.org/10.1016/j.scico.2007.01.014
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1109/LES.2017.2654160
http://dx.doi.org/10.1007/978-3-319-27810-0_4
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1109/ECRTS.2008.34
http://dx.doi.org/10.1007/BFb0057777
http://dx.doi.org/10.1145/1289927.1289960
http://dx.doi.org/10.1109/RTSS.2006.12
http://dx.doi.org/10.1109/TSE.2002.1027799
http://dx.doi.org/10.1109/RTAS.2013.6531083
http://dx.doi.org/10.1007/978-3-642-29709-0_20
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1109/CGO.2009.17
http://dx.doi.org/10.4230/OASIcs.WCET
http://dx.doi.org/10.1007/978-3-642-54108-7_15
http://dx.doi.org/10.1109/RTAS.2016.7461326

Energies 2017, 10, 2113 18 of 18

23. Čadek, P.; Strejček, J.; Trtík, M. Tighter Loop Bound Analysis. International Symposium on Automated Technology
for Verification and Analysis; Springer: New York, NY, USA, 2016; pp. 512–527. [CrossRef]

24. Henry, J.; Asavoae, M.; Monniaux, D.; Maïza, C. How to compute worst-case execution time by
optimization modulo theory and a clever encoding of program semantics. In Proceedings of the 2014 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems, Edinburgh, UK,
12–13 June 2014; pp. 43–52. [CrossRef]

25. Theiling, H. Extracting safe and precise control flow from binaries. In Proceedings of the IEEE 7th
International Conference on Real-Time Computing Systems and Applications, Cheju Island, Korea,
12–14 December 2000; pp. 23–30. [CrossRef]

26. Kinder, J.; Zuleger, F.; Veith, H. An abstract interpretation-based framework for control flow reconstruction
from binaries. In Verification, Model Checking, and Abstract Interpretation; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 214–228. [CrossRef]

27. Healy, C.; Sjödin, M.; Rustagi, V.; Whalley, D.; van Engelen, R. Supporting timing analysis by automatic
bounding of loop iterations. Real Time Syst. 2000, 18, 129–156. [CrossRef]

28. Parsa, S.; Sakhaei-Nia, M. Modeling flow information of loops using compositional condition of controls.
J. Supercomput. 2015, 71, 508–536. [CrossRef]

29. Yousefi, J.; Sedaghat, Y.; Rezaee, M. Masking wrong-successor Control Flow Errors employing data
redundancy. In Proceedings of the 2015 5th International Conference on Computer and Knowledge
Engineering (ICCKE), Mashhad, Iran, 29 October 2015; pp. 201–205.

30. Meng, F.; Su, X.; Qu, Z. Interactive WCET Prediction with Warning for Timeout Risk. Int. J. Pattern Recognit.
Artif. Intell. 2017, 31, 1750012. [CrossRef]

31. Li, Y.T.S.; Malik, S. Performance analysis of embedded software using implicit path enumeration. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 1997, 16, 1477–1487. [CrossRef]

32. Guan, N.; Lv, M.; Yi, W.; Yu, G. WCET analysis with MRU Cache: Challenging LRU for predictability.
ACM Trans. Embed. Comput. Syst. 2014, 13, 123. [CrossRef]

33. Boulanger, J.L. Static Analysis of Software: The Abstract Interpretation; John Wiley & Sons: Hoboken, NJ,
USA, 2013.

34. Cousot, P.; Cousot, R. Abstract interpretation: Past, present and future. In Proceedings of the Joint Meeting of
the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), Vienna, Austria, 14–18 July 2014; p. 2. [CrossRef]

35. Falaschi, M.; Olarte, C.; Palamidessi, C. Abstract interpretation of temporal concurrent constraint programs.
Theory Pract. Log. Program. 2015, 15, 312–357. [CrossRef]

36. Zhang, Z.; Koutsoukos, X. Improving the Precision of Abstract Interpretation Based Cache Persistence
Analysis. In Proceedings of the 16th ACM SIGPLAN/SIGBED Conference on Languages, Compilers and
Tools for Embedded Systems 2015 CD-ROM, Portland, OR, USA, 18–19 June 2015; p. 10. [CrossRef]

37. Meng, F.; Su, X.; Qu, Z. Nonlinear approach for estimating WCET during programming phase. Clust. Comput.
2016, 19, 1449–1459. [CrossRef]

38. Yang, S.; Su, X.; Wang, T.; Peijun, M.A. Design and Implementation of Lexical and Syntax Analysis Tool
CParser for C Language. Intell. Comput. Appl. 2014, 5, 21.

39. Su, X.; Wang, T.; Yang, S.J.; Ma, P.J. Fault localization based on weighted software behavior graph mining.
Chin. J. Comput. 2016, 39, 2175–2188.

40. Meng, F.; Su, X. WCET Optimization Strategy Based on Source Code Refactoring. Available online: https:
//link.springer.com/article/10.1007/s10586-017-1369-3 (accessed on 12 December 2017).

41. Li, G.; Zhang, Y.; Zhang, M.; Zhang, L. The Wind Power Real-Time Diction on the EEMD and SVM of the
MRMR. J. Northeast Electr. Power Univ. 2017, 37, 39–44. [CrossRef]

42. Yang, M.; Huang, B.; Jiang, B.; Lin, S. Real-time Prediction for Wind Power Based on Kalman Filter and
Support Vector Machines. J. Northeast Electr. Power Univ. 2017, 37, 46–51.

43. Yang, M.; Yang, C. Research on Wind Power Real-Time Forecasting Based on Fuzzy Granular Computing.
J. Northeast Electr. Power Univ. 2017, 37, 1–7.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-3-319-46520-3_32
http://dx.doi.org/10.1145/2666357.2597817
http://dx.doi.org/10.1109/RTCSA.2000.896367
http://dx.doi.org/10.1007/978-3-540-93900-9_19
http://dx.doi.org/10.1023/A:1008189014032
http://dx.doi.org/10.1007/s11227-014-1308-5
http://dx.doi.org/10.1142/S0218001417500124
http://dx.doi.org/10.1109/43.664229
http://dx.doi.org/10.1145/2584655
http://dx.doi.org/10.1145/2603088.2603165
http://dx.doi.org/10.1017/S1471068413000641
http://dx.doi.org/10.1145/2670529.2754967
http://dx.doi.org/10.1007/s10586-016-0606-5
https://link.springer.com/article/10.1007/s10586-017-1369-3
https://link.springer.com/article/10.1007/s10586-017-1369-3
http://dx.doi.org/10.1016/j.ijepes.2017.05.011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Reasons for WCET Overestimation
	Overestimation in Micro-Architecture Modeling
	Overestimation in Control-Flow Analysis

	Specific WCET Overestimation
	Reducing Unreasonable Overestimation
	The Correction Example
	The Whole Process
	The Safety Analysis

	Evaluation
	Experimental Setup
	Experimental Results
	Analysis
	Safety
	Effectiveness
	Efficiency

	Discussion
	Threat to Safety
	Threat to Effectiveness

	Conclusions

