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Abstract: Based on Lyapunov theory, this research demonstrates the stability of the sliding surface
in the consensus problem of multi-agent systems. Each agent in this system is represented by the
dynamically uncertain robot, unstructured disturbances, and nonlinear friction, especially when
the dynamic function of agent is unknown. All system states use neural network online weight
tuning algorithms to compensate for the disturbance and uncertainty. Each agent in the system has a
different position, and their trajectory approach to the same target is from each distinct orientation.
In this research, we analyze the design of the sliding surface for this model and demonstrate which
type of sliding surface is the best for the consensus problem. Lastly, simulation results are presented
to certify the correctness and the effectiveness of the proposed control method.

Keywords: Euler–Lagrange System; neural network; consensus; sliding mode control; multi-agent
system

1. Introduction

In recent years, using Sliding Mode Control (SMC) for robotic trajectory control of nonlinear
dynamic properties has received much attention from researchers. SMC is one of the influential
nonlinear controllers for linear and nonlinear systems. In comparison with other nonlinear control
methods. The SMC method is relatively easy to implement, but in nonlinear dynamic systems, there are
many uncertainties, such as disturbance and friction, that are the main reasons for the reduction of
control quality. Therefore, to deal with this problem, the uncertainty of the system is compensated for
by using of sliding mode control combined with a Neural Network (NN), which has been introduced
in [1–7], in which the control algorithm drawnon Lyapunov theorem, the sliding mode control structure,
and the neural network learning algorithm are developed. Therefore, the system stability is ensured,
and the system dynamic performance is enhanced. In addition, other researchers used the optimal
method to extract a rotation rule for a sliding surface against disturbance and variations in [8].

In order to further improve the aforementioned results, in this research, we introduce the control
method for the nonlinear multi-agent system. The most important issue in this research is the consensus
problem in robots, which is the precise control of multiple robots operating at the same time at the
same goal. When working collectively, one robot will be installed as the leader. We only control
the leader robot, and all other robots will receive the control signal from this leader to operate.
In [9,10], the controller has been designed with a sliding mode control for linear multi-agent systems.
A second-order sliding mode protocol has been designed for diminishing the chattering phenomenon.
However, the disadvantage of this method is that it cannot radically reduce the chattering phenomenon
around the sliding surface. In [11–14], a new consensus algorithm combining the concepts of graph
theory and using fuzzy logic for the compensation of uncertainties is introduced to deal with consensus
problems of the nonlinear multi-agent system.
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In this research, in order to model the communication topology between agents, the graph theory
in [6,15] is utilized. For each agent, the nonlinear dynamic model with uncertainty is considered.
In addition, an Artificial Neural Network (ANN) with online learning weights has been built in [16,17]
to solve the disadvantages of the traditional sliding mode control and the weights are adapted to such
a point that the overall system performance is ameliorated. Not with standing that the research [17]
has proposed some significant results for nonlinear multi-agent systems when using sliding mode
control type, the problems of disturbance rejection with uncertainties for the entire system has not
been considered completely in literature.

Motivated by the discussion above, different from the previous works, in this research,
a synergistic combination of Proportional–Integral–Derivative (PID) sliding mode control with neural
networks is proposed to reject disturbances and uncertainties of a nonlinear dynamic system in
the consensus problem of multi-agent systems. Relying on Lyapunov stability theory in [18–28], it is
demonstrated that the proposed control method ensures the outputs of all agents can trace the reference
trajectory under the condition that the communication topology between the agents is described by a
directed graph (Graph theory). In this research, for the first time, the NN in collaboration with PID
sliding mode control [29,30] is implemented to the uncertain nonlinear multi-agent systems for solving
the robust adaptive consensus problem. Simulation studies are carried out to verify the effectiveness
of the proposed control method. The research’ main contributions are threefold:

(i) An adaptive neural network controller is designed to neutralize the disturbance and uncertain
nonlinear dynamics in the multi-agent system. The fact that the proposed approach based on
Lyapunov theory guarantees the system’s stability has been demonstrated.

(ii) The parametric uncertainties are estimated.
(iii) The consensus algorithms are modified to solve formation control problems of multi-agent systems.

The remnant of this research is structured as follows. Some backgrounds of sliding mode control
theory, graph theory and tracking control of the Euler–Lagrange system with the artificial neural
network are presented in Section 2. Stability analysis and design neural network controller are
introduced in Section 3. Numerical simulation of the multi-agent system is introduced in Section 4,
and lastly in Section 5, some conclusions are presented.

Notation: Throughout this research, ‖ · ‖ stands for Euclidean norm of vectors and induced norm
of matrices. Sign (.) denotes the sign function. Rn and Rn×m denote the n-dimensional Euclidean space
and the set of n × m real matrices, respectively.

2. Problem Formulation

2.1. Sliding Mode Control

This subsection will present some preliminary knowledge for sliding mode control theory.
For more detail, the interested readers may refer to [31–33].

As is well-known, sliding mode control combined with an online learning neural network is a
very robust method for controlling of uncertain nonlinear systems. This research focuses on choosing
the sliding surface in the consensus problem when we have some agents with different positions but
they have the same mission. Because each agent has a different position, consequently to approach the
object they must have distinct desired trajectories.

Define a general sliding surface as follows:

s(t) = e(t) + Λ1
de(t)

dt
+ . . . + Λn−1

dn−1e(t)
dtn−1 (1)

where s(t) denotes a sliding surface, e = q− qd denotes error of the real trajectory and desired trajectory,
Λi = (Λ1, Λ2, . . . , Λn−1) with i = 1, 2, . . . , n− 1 denote coefficients. When s(t=0) = 0, in order to ensure
that lim

t→0
e(t) = 0, we must choose the coefficients Λi of characteristic polynomial as follows:
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Λ(z) = 1 + Λ1z + . . . + Λn−1zn−1 (2)

where Λ(z) is a Hurwitz polynomial with real coefficients. All the coefficients of Λ(z) should be the
same sign. In this case, we assume that Λk > 0, for k = 1, 2, . . . , n− 1.

Usually, with agents have nonlinear dynamic properties [34], a sliding surface usually
is chosen in Proportional–Derivative (PD) or Proportional–Integral–Derivative (PID) forms.
The (Proportional–Integral) PI sliding surface isn’t chosen because it is very difficult to control the
stability of system, and the transition time is long.

According to the design principles in [31,32], using the sign function, the sliding surface
respectively will be the following:

Sliding surface with PD form:
s =

.
e + Λe (3)

Sliding surface with PID form:

s =
.
e + Λ1e + Λ2

∫ t

0
edt (4)

where s = [s1, s2, . . . , sn]
T and Λ1, Λ2 are diagonal positive definite matrices. e denotes error between

the reference signal and the output signal.

Remark 1. The selection of the sliding surface type will be determined by the feature of the control objects.
As pointed in [33], for the control of uncertain systems with multi-input-multi-output system, a sliding mode
control method with high-order is developed. The PD sliding mode control method (3) is suitable for the control
of a robot manipulator which a feature is the uncertain nonlinear system [1,31]. In order to reduce the chattering
efficiently, enhance the control performance, disturbance rejection and system stability in [1,31], the PID sliding
mode control method (4) is proposed in [32]. In the other research [12], a general sliding surface (1) is presented
for the consensus problem of high-order nonlinear systems.

2.2. Tracking control of Euler–Lagrange System with an Artificial Neural Network

Consider a general n degree of freedom rigid manipulator, which considers the disturbances and
friction, the Euler–Lagrange equation [16,17,25] is represented in the form

D(q)q̈ + C(q,
.
q)

.
q + G(q) + Fr

.
q + τd = τ (5)

where D(q) ∈ Rnxn represents a symmetric and positive definite matrix. C(q,
.
q) ∈ Rn denotes the

centrifugal and Coriolis forces. Fr(
.
q) ∈ Rn denotes friction. G(q) ∈ Rn represents the gravity forces.

τd ∈ Rn denotes a general nonlinear disturbance. τ ∈ Rn denotes the torque input controls vector.
q,

.
q, q̈ ∈ Rn represent the angle, velocity and acceleration vector of link, respectively.

Property 1. The inertia matrix D(q) is symmetric and uniformly positive definite, and satisfying

∀s ∈ Rn, gsTs ≤ sT Ds ≤ gsTs

where g and g are known positive constants.

Property 2. The Coriolis and centrifugal matrix C(q,
.
q) can be appropriately determined such that (

.
D− 2C) is

skew-symmetric, it is easy to verify that sT(
.

D− 2C)s = 0, ∀s 6= 0 .

In Equation (5), we let
F(q,

.
q, q̈, t) = Fr

.
q + τd (6)
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and
τ0 = D(q)q̈ + C(q,

.
q)

.
q + G(q) (7)

Now, Equation (6) is rewritten as

τ = τ0 + F(q,
.
q, q̈, t) (8)

In the nonlinear dynamic systems, disturbance and friction are the main reasons to reduce the
control quality. Consequently, to improve the control quality, in this research, we define an artificial
neural network for the purposes of compensation in (6).

In studies on robust adaptive control, NN in [5] are mostly used for the unknown nonlinearities
as approximation models because of their inherent capabilities of approximation. A simple artificial
neural network structure for approximating function may be rewritten as

F(q,
.
q, q̈, t) = F(s) = Wσ + ε (9)

where ε denotes the error of the approximation, and ε is the limit of ε, (|ε| ≤ ε). σ denotes the acting
Gaussian function.

We denote the weights wji to construct an approximated neural network, consequently the
Equation (9) could be rewritten as

F(s) =
n

∑
j=1

wjiσi + ε i = 1, 2, . . . , n (10)

The acting Gaussian function is described as

σi = exp

(
− si − ci

λ2
i

)
(11)

where Si = [Si1, Si2, . . . , Sin]T denotes the input to the Radial Basis Function (RBF) network,
ci = [c1, c2, . . . , cn]T is the centers of the basic function and λi is the widths of the basic function,
freely chosen.

Remark 2. It is noted that similar to the ANN presented in [25–27,32], the ANN structure above is developed
(refer to Equations (6) and (9)–(11)). However, it applies to the consensus problem of uncertain nonlinear
multi-agent systems is more complex and is not easy to verify. Additionally, current disturbances are also
created from the communication topology among each agent during the movement. This problem can be solved
by appropriately selecting an ANN with online learning weights where the number of the neuron on each layer
of the ANN, ci and λi could be free to find a suitable value.

2.3. Graph Theory and the Laplacian Matrix

A graph theory is applied to represent the transmission relationship among agents, which is
called Communication Graph. If the number of agents is m, the graph G includes of a node set
γ = {ν1, ν2, . . . , νm}, an edge set ς ⊆ γ × γ and a weighted adjacent matrix A = [δi,j] ∈ Rm×m, where
δi,j > 0 means that agent i can acquire the information from agent j, otherwise δi,j = 0. The adjacent
matrix A is a symmetric matrix and defined as δi,j = δj,i. Associated with A, the Laplacian matrix is
introduced by L = [lij] ∈ Rm×m, where [ljj] = ∑m

j=1,j 6=i δij and lij = δi,j, i 6= j.
We determine a limited set including hCommunication Graphs G∗ = {G1, G2, . . . , Gh} such that

all hCommunication Graphshave the same node set (γ1 = γ2 = . . . = γh = γ). But the edge set for
each hCommunication Graphs is different (ς1 6= ς2 6= . . . 6= ςh), which results in a different weighted
adjacent matrix for each Communication Graphs, specifically, A1 6= A2 6= . . . 6= Ah. Accordingly,
the Laplacian matrix associated with each i ∈ {1, 2, . . . , h} Communication Graphs, named Li, will also
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be dissimilar. We must notethat all hCommunication Graphs are connected. Thus, Li is a positive
semi-definite matrix ∀i ∈ {1, 2, . . . , h}.

Lemma 1. Zerois a simple eigenvalue of L if and only if graph G has a directed spanning tree [35].

Lemma 2. In [15], the graph G is strongly connected if and only if rank(L) = n − 1.

Lemma 2. On the same row of the Laplacian matrix L, the algebraic cofactors of the elements are equal.

The following are the objectives of this research:

(1) Presenting a sliding mode control suited to uncertain nonlinear multi-agent system (5) such that
it obtains fine transient performance without accurate parameters.

(2) Designing an adaptive neural network controller such that the tracking error e = q − qd
congregates to a predefined little neighborhood of zero in a limited time.

(3) Presenting a consensus or synchronization methods for multi-agent rigid manipulator with
uncertain nonlinear dynamics.

3. Problem Formulation

Typically, the sliding mode control method includes determining the sliding surface as the system
state functions and using finite-time stability theory in [19] to prove that the trajectories of closed-loop
system arrive this surface infinite time. In order to solve the disadvantages in the typical sliding
mode control, a neural network is added. The learning algorithm of neural network and sliding mode
controller are constructed relying on Lyapunov theorem to ensure the stability of the system.

In this section, two kinds of sliding mode control in the forms (3) and (4) are used to demonstrate
the system stability when using the neural network for compensating for the disturbance and uncertain
dynamic system. The analysis result shown in the end of this section will prove that the PD or PID
sliding mode controller is suitable for the consensus problem of multi-agent nonlinear dynamic system.

According to Equations (5) and (6),

q̈ = D−1(q)[τ − C(q,
.
q)

.
q− G(q)− Fr

.
q− τd]

= D−1(q)τ − D−1(q)(C(q,
.
q)

.
q− G(q)− F(q,

.
q, q̈, t)]

(12)

Denoted in [3], we propose a control structure for the agent with nonlinear dynamic properties.
The control system structure is shown as Figure 1. The NN with online learning is used for
compensating the disturbances and friction. The control objective is to make q follow a certain
desired trajectory qd in the presence of system uncertainty and disturbance.

To deal with this problem, we determine a Lyapunov function V(t), and relying on Lyapunov
stability theory, if we make a control law so that the time derivative of V(t) is negative, then the
trajectory of the agent will converge to the sliding surface s = 0 in a finite time and keep them on the
sliding surface.

Choosing the Lyapunov function as below,

V(t) =
1
2
(sT Ds +

n

∑
j=1

wT
j wj) (13)

It can be noted that this function is positive definite V(t) > 0, ∀s 6= 0.
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Differentiating Equation (13) with respect to time, we have

.
V(t) = 1

2 [
.
sT Ds + sT

.
Ds + sT D

.
s +

n
∑

j=1
(

.
wT

j wj + wT
j

.
wj)]

= 1
2 sT

.
Ds + sT D

.
s +

n
∑

j=1
wT

j
.

wj

(14)

According to dynamic Equation (5), both C(q,
.
q) and D(q) satisfy Property 2,

sT(
.

D− 2C)s = 0, ∀s ∈ Rn

↔ sT
.

Ds = 2sTCs
(15)

The matrix (
.

D− 2C) is a symmetric matrix. This characteristic ensures the system unaffected by
the force is defined by C(q,

.
q)

.
q.

Consequently, from (14) and (15) we have

.
V(t) = sTCs + sT D

.
s +

n

∑
j=1

wT
j

.
wj (16)

In the sequel, we consider the following two types of sliding surfaces.
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Figure 1. The controller structure with nonlinear compensation Neural Network (NN).

3.1. PD Type Sliding Mode Control

With this sliding surface type and neural network (10), to track desert trajectory qd of
Euler–Lagrange system (5) with error e = (q− qd)→ 0 , we propose the following control law τ:

τ = Dq̈d + C
.
qd + G− DΛ

.
e− CΛe

−Ks− γ s
‖S‖ + (1 + η)Wσ

(17)

and the learning algorithm
.

wi
.

wi = −ηsσi (18)

where K denotes a symmetric positive matrix, γ, η > 0.

Theorem 1. Consider the Euler–Lagrange system (5), sliding mode control (3), approximating neural network
defined in (10) with Gaussian function is described in (11), the proposed state feedback control law (17) and
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learning algorithm (18). All the system signals are limited and the tracking error congregates to sliding surface s
in the limit time.

Proof. Substituting the PD sliding surface described in the form (3) to the Equation (16), it can be
obtained that:

.
V(t) = sT [C(

.
e + Λe + D(ë + Λ

.
e)] +

n
∑

j=1
wT

j
.

wj

= sT [C(
.
q− .

qd + Λe) + D(q̈− q̈d + Λ
.
e)] +

n
∑

j=1
wT

j
.

wj

= sT [C(− .
qd + Λe) + D(−q̈d + Λ

.
e) + C

.
q + Dq̈] +

n
∑

j=1
wT

j
.

wj

(19)

�

According to Equations (5) and (6), we have

Dq̈ + C
.
q = τ − G− F(q,

.
q, q̈, t)

= τ − G−Wσ− ε
(20)

By substituting (20) to (19), it is obtained that

.
V(t) = sT [C(− .

qd + Λe) + D(−q̈d + Λ
.
e)+

+τ − G−Wσ− ε] +
n
∑

j=1
wT

j
.

wj
(21)

Replacing τ in (17) and (18) into (21) leads to

.
V(t) = sT [−Ks− γ

s
‖s‖ + ηWσ− ε]− η

n

∑
j=1

wT
j sσj (22)

We have wT
j s = sTwj and from (10) and (11), so the last part in Equation (22) can be rewritten to

the following:

η
n

∑
j=1

wT
j sσj = ηsT

n

∑
j=1

wjσj = ηsTWσ (23)

Therefore Equation (22) becomes

.
V(t) = sT [−Ks− γ s

‖s‖ + ηWσ− ε]− ηsTWσ

= sT [−Ks− γ s
‖s‖ − ε]

(24)

From the Equation (24) we can observe that
.

V(t) < 0 for all s 6= 0 and
.

V(t) = 0 if and only if
s = 0. So, with sliding surface (3), control law (17), learning algorithm (18) and neural network (9),
the agent will be tracking the desired trajectory qd with error e→ 0 .

3.2. PID Type Sliding Mode Control

In this case, to stabilize the Euler–Lagrange system (5), we propose the following control law τ

τ = Dq̈d + C
.
qd + G− D(Λ1

.
e + Λ2e)−

−C(Λ1e + Λ2
∫ t

0 edt)− Ks− γ s
‖S‖ + (1 + η)Wσ

(25)
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Theorem 2. Consider the Euler–Lagrange system (5), sliding mode control (4), approximating neural network
defined in (10) with Gaussian function is described in (11), control law (25) and learning algorithm (18). All the
system signals are limited and the tracking error congregates to sliding surface s in the limit time.

Proof. From (16) and (4), we have

Cs + D
.
s = C(

.
e + Λ1e + Λ2

∫ t
0 edt) + D(ë + Λ1

.
e + Λ2e)

= C(− .
qd + Λ1e + Λ2

∫ t
0 edt)

+D(−q̈d + Λ1
.
e + Λ2e) + C

.
q + Dq̈

(26)

�

Substituting (20) into (26), we have

Cs + D
.
s = C(− .

qd + Λ1e + Λ2
∫ t

0 edt)+
+ D(−q̈d + Λ1

.
e + Λ2e) + τ − G−Wσ− ε

(27)

Replacing (25) into (27), we have

Cs + D
.
s = −Ks− γ

s
‖S‖ + ηWσ− ε (28)

Substituting (28) into (16), yields

.
V(t) = sT(−Ks− γ

s
‖S‖ + ηWσ− ε) +

n

∑
j=1

wT
j

.
wj (29)

From the Equations (10), (11), (18), and (23), Equation (29) is rewritten as

.
V(t) = sT(−Ks− γ s

‖S‖ + ηWσ− ε)− ηWσ

= sT(−Ks− γ s
‖S‖ − ε)

(30)

From the Equation (30) we can observe that
.

V(t) < 0 for all s 6= 0 and
.

V(t) = 0 if and only if
s = 0. So, with sliding surface (4), control law (25), learning algorithm (18) and neural network (9),
the agent will be tracking the desired trajectory qd with error e→ 0 . Relying on the Lyapunov stability
theorem, it can be acknowledged that the state trajectories are able to reach the sliding surface s = 0 in
a finite time. We can conclude that the nonlinear multi-agent system is asymptotically stable.

Observed the above stability analysis of Euler–Lagrange system, with PD and PID sliding mode
control we choose the control law as (17) and (25), respectively. In traditional problems of robot control,
we often use PD sliding surface combined with a neural network to track the desired trajectory [17].
Nevertheless, the applications of the traditional sliding mode control suffers in practical motion has
disadvantages. The first one is the difficulty in obtaining parameters of the system. The second one is
the consistent existence of high-frequency oscillation in the control input, it is chattering phenomenon.
For diminishing this chattering phenomenon and improve the accuracy of the multi-agent system,
a PID sliding surface with the online learning neural network are presented. With integral part
participated in the sliding surface (4), when e→ 0 , the system brings

∫
edt→ 0 and eliminates the

effects of disturbances and integrated errors, leading to higher accuracy.

Remark 3. In the two cases above analysis, it can be seen from Equations (20)–(22) and (27)–(29) that the
sign of the

.
V(t) in (24) and (30) depend on control law is proposed in (17) and (25). It is also noted in [24],

handling the existence of the residue of the NN approximation is the pupose of constructing a robust controller.
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The proposed controller can manage the unknown upper bounds of the NN approximation error Based on the
robust technique.

Remark 4. A PID sliding mode control using saturated function has been suggested by some researchers in
literature [36–38]. The advantage of this method can be rapidly convergence, but the system stability has not
been proved and chattering still exists. So, in this research, the PID-SMC is not the main controller, it is only a
type of the sliding surface (4) used in the control process.

Remark 5. The consensus problem of multi-agent systems is valuable and very interesting. Many authors have
studied some new models e.g., [20–23,27–29,39,40] and many control approaches are proposed. Their models
can be linear systems or nonlinear systems but almost all of them omit friction and disturbance or if it exists,
then removing it is not focused. To solve these drawbacks, the control method in this paper is presented by
combining neural network with PID-SMC, such that the uncertainty and disturbances of nonlinear multi-agent
dynamic system are thoroughly suppressed as well as the system control performance is improved significantly.
The numerical simulation in the next section will be proved for this conclusion.

4. Numerical Simulations

In this part, based on the findings acquired in the previous sections, we present several simulation
results for illustrating the feasibility and effectiveness of our theoretical outcomes. The PID sliding
mode control problem formulation for multi-agent systems combined with a neural network has been
implemented in Matlab simulation.

The neural network [41] used for identification is as (10), the acting Gaussian function [42] is
described in form (11), where the Gaussian function parameters are as follows:

λ1 = 1, λ2 = 1, c1 = 0.01, c2 = 0.01

The first status for the neural network is

w0,0 =

[
1 1
1 1

]

Learning rate η = 0.1 and γ = 2. Then the input/output responses of the plant of the leader
robot are shown in Figure 2, the responses of the reference model of the neural network controller for
training the leader robot are shown in Figure 3.

In Figure 2, the input is the leader robot input, the output is the leader robot output after being
trained and identified by the neural network.

The reference model is a neural network with the numbers of layers and neurons in each class are
proposed and tested by the authors in Matlab software.
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To prove the effectiveness of the proposed approach, a nonlinear multi-agent consensus example
is given. In the example, the multi-agent system includes five agents, each agent in the system is a
2 Degrees of Freedom (DOFs) rigid manipulator and the dynamic function of agent is unidentified.

The dynamic equation of 2 DOFs rigid manipulator is represented by Euler–Lagrange
system [13,17] which is described as follows:[

τ1

τ2

]
=

[
D11 D12

D21 D22

][
q̈1

q̈2

]
+

[
C1

C2

][ .
q1.
q2

]
+

[
g1(q1, q2)

g2(q1, q2)

]
(31)

where
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D11(q2) = (m1 + m2)l2
1 + m2l2

2 + 2m2l1l2c2

D12(q2) = D21(q2) = m2l2
2 + m2l1l2c2

D22(q2) = m2l2
2

C1 = −m2l1l2
.
q2s2 − 2m2l1l2

.
q1s2

C2 = m2l1l2
.
q1s2

g1(q1, q2) = (m1 + m2)gl1c1 + m2gl2c12

g2(q1, q2) = m2gl2c12

And c1 = cos(θ1), and c12 = cos(θ1 + θ2). m1, l1, m2, and l2 denotes the mass and lengths of two
links, respectively. θ1 and θ2 denotes the link variables. Dij, Ci, gi, and τi are the matrix and dynamic
torque defined in (5).

Setting the parameters of each manipulator: g = 10 m/s2, m1 = 1 kg, l1 = 1 m, m2 = 1 kg, l2 = 1 m
and substitute them to D11, D12, D22, C1, C2, and g, then substitute to (31), which yields:[

τ1

τ2

]
=

[
3 + 2c2 1 + c2

1 + c2 1

][
q̈1

q̈2

]

+

[
− .

q2s2 − 2q2s2
.
q1s2

][ .
q1.
q2

]
+

[
20c1 + 10c12

10c12

]

Suppose that the information exchanges topology among the agents is given by Figure 4.
From Lemmas 2 and 3, the Graph theory in [17] is applied to obtain the following Laplacian matrix.
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The multi-agent system consists of five agents is illustrated in Figure 5, they have the same
mission to move an object from the initial position to the required position, where qda1, qda2, . . . , qda5
the desired trajectory of agent 1, agent 2, . . . , agent 5, respectively.

We define q1i, q2i, (i = 1, 2, . . . , 5) as the first and second link trajectories of the five agents,
respectively. The initial conditions of the five agents indicated by 1, 2, 3, 4, 5 were set as q11(0) = −4(rad),
q21(0) = pi/2(rad); q12(0) = 1.5(rad), q22(0) = 1(rad); q13(0) = 4.5(rad), q23(0) =4(rad); q14(0) = −2(rad),
q24(0) = −1.5(rad); q15(0) = −5(rad), q25(0) = −5(rad), respectively.

Choose reference motions trajectory as

q1id = q2id = −0.3 cos(πt)

The sliding surface of the five agents are given as follows

s1i =
.
e1i + Λ11e1i + Λ12

∫ t
0 e1idt (e1i = q1i − q1id; i = 1, 2, . . . , 5)

s2i =
.
e2i + Λ21e2i + Λ22

∫ t
0 e2idt (e2i = q2i − q2id; i = 1, 2, . . . , 5)

where

Λ =

[
2 3
3 4

]
Set a friction on each link of the five agents as

Fr(
.
q) =

[
3

.
q1i + 0.02sgn(

.
q1i)

2
.
q2i + 0.02sgn(

.
q2i)

]



Energies 2017, 10, 2127 12 of 15

where sgn(.) denotes the sign function and disturbance as

τd =

[
0.05 sin(20t)
0.1 sin(20t)

]

Model of the 5 agent’s rigid manipulators attached move frames is shown in Figure 5.
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By employing the proposed combining neural network and PID sliding mode control approach
for multi-agent system model described in Figure 5, simulation results were obtained, some of which
are given in Figure 6.
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5. Conclusions

This research presents a synergistic combination of PID type sliding mode control with neural
networks. The neural network parameters and sliding mode term are calculated online with an
intention to guarantee the stability of the system in a closed loop. This control scheme is constructed
for tracking the desired motion trajectory of a multi-agent system, and the disturbance and uncertainty
are rejected. Compare the result when using the control method of PD sliding mode control [17],
we observed the significance of this method is that the stability and robustness against parameter
uncertainties are ensured. In conclusion, some simulation findings are established to demonstrate the
effectiveness of the proposed theoretical methods.

Author Contributions: Minh Nguyen Duc proposed the initial idea. Thang Nguyen Trong and Minh Nguyen Duc
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finalized the article.
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