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Abstract: To explore the influence of tip clearance on pressure fluctuation in a low specific speed
mixed-flow pump, tip clearances δ of 0.25 mm, 0.75 mm and 1.00 mm, along with no tip clearance,
were selected. The reliability of the simulation was verified by comparison with the experimental
data of external characteristics and fluctuation in the guide vane passage. Through ANSYS-CFX,
MATLAB code and fast Fourier transform (FFT) algorithm, pressure fluctuation characteristics in
this pump were obtained. The results show that pressure fluctuation exists in all conditions due to
the rotor-stator interaction. Under the no tip clearance and tip clearance conditions, the maximum
fluctuation value was located near the guide inlet and impeller outlet, respectively. Clearance
leakage had less influence on pressure fluctuation at the impeller inlet and central regions within a
certain range of the clearance; beyond this range, fluctuations in the whole flow passage increased
significantly, while the clearance variation had less effect on fluctuation in the guide vane. When the
tip clearance value was 1.00 mm, pressure fluctuation of the shroud at the impeller inlet section
suddenly increases, which was closely related to the obvious leakage vortexes and a larger low
pressure area.

Keywords: low specific speed; mixed-flow pump; tip clearance; pressure fluctuation; rotor-stator
interaction

1. Introduction

Mixed-flow pumps are a compromise between centrifugal and axial flow pumps. The features of
compact structure, easy starting, and high efficiency make them suitable for use in farmland irrigation,
waterlogging drainage, sewage treatment, power plant cooling, and similar activities [1–3]. Due to the
clearance between blade and shroud, some fluid will flow through the clearance from the working
surface due to higher pressure than at the back surface, the tip loss caused by disturbance in the
mainstream; meanwhile, leakage fluid through the clearance will cause volumetric loss [4].

In recent years, research has been conducted on the influence of tip clearance on performance [5,6],
pressure fluctuation [7–9] and internal flow of pumps [10,11], but the subjects have mainly been
centrifugal pumps and axial pumps. For mixed-flow pumps, related research has mainly concentrated
on the influence of clearance size on performance parameters and tip-leakage. In the first aspect,
Bing et al. [12] determined by experiment that when clearance variation is static, the efficiency of
a mixed-flow pump will increase suddenly with flow rate increases. Kim et al. [13] explored the effect
of tip clearance on head and hydraulic efficiency of a mixed-flow pump and found that the existence
of tip clearance could improve the “saddle” phenomenon of head-flow characteristic. For tip-leakage
flow, a study on the dynamic characteristics of rotating stall by Li et al. [14] showed that vortexes
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were generated between the tip-leakage through clearance from the pressure surface to the suction
surface and the mainstream, and flow separation occurs in the suction surface if flow rate decreases.
In an analysis of a shrouded mixed-flow pump with different tip clearances by Goto [15], tip-leakage
flow displaced wake flow and increased the stall margin, however, the strong tip-leakage reverse flow
thickened the casing of the boundary layer and developed a passage vortex. In Li et al.’s analysis [16]
of the influence of tip clearance on pressure fluctuation in a mixed-flow pump, a large eddy simulation
of pressure fluctuation at the shroud of the pump under small flow rate condition was performed,
finding that the pressure fluctuation average near the wall region of the impeller decreases gradually
as tip clearance gradually increases.

The specific speed of a traditional mixed-flow pump is between 300 and 700, due to the limitations
of design methods, and the efficiency-head characteristic curve is prone to the saddle phenomenon [13];
meanwhile, less research or experiments have been conducted on mixed-flow pumps with specific
speed less than 300; these specific speed centrifugal pumps are commonly used (the specific speed of
a traditional centrifugal pump is between 30 and 300). However, a traditional centrifugal pump has
some shortcomings, i.e., it is prone to the hump phenomenon and its high efficiency area is narrow [17].
In this study, unsteady flow simulation and test experiments were conducted on the internal flow of
a mixed-flow pump with a specific speed of 149, where it was determined that the pump not only
has the advantage of a high efficiency area, but also avoids the saddle phenomenon of a traditional
mixed-flow pump. The results were processed with FFT and MATLAB 2012 (MathWorks Inc., Natick,
MA, USA), and the characteristics of pressure fluctuation and internal flow in the impeller and guide
vane were explored at different tip clearances and different flow rate conditions to obtain a more
comprehensive understanding of tip clearance influence on pressure fluctuation in such pumps.

2. Research Object

2.1. Numerical Model

The three dimensional geometric model of the whole flow passage constructed with UG NX6.0
(Siemens PLM Inc., Nuremberg, Germany) is shown in Figure 1. It includes four parts: inlet pipe,
outlet pipe, impeller, and guide vane. The main parameters of the mixed-flow pump are as follows:
impeller diameter D is 150 mm, impeller blade number Z1 is 6, guide vane number Z2 is 8, design flow
rate Qd is 1.39 m3/min, design speed n is 2000 r/min, design head H is 14.59 m, and power P is 5.5 kW.
Then, according to Formula (1) [4], we can determine that the specific speed of this pump is 149:

ns =
3.65n

√
qv

H3/4 (1)

where n is rotational speed (r/min); qv is flow rates, qv = Qd/60 (m3/s); H is design head (m).
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2.2. Test System

The pump was designed and tested by Kubota and the Harbin Institute of Large Electrical
Machinery, respectively. Figures 2 and 3 are the test system and test model, respectively. Here, clear
water was used as the working medium so as to observe the flow states in the passage. Due to the
technical limitations, it is impossible to know the pressure frequency characteristic by arranging
sensors in rotating impellers. Therefore, the sensors in this study were only deployed on stationary
parts and the trail points in the guide vane, as shown in Figure 4, where ps, ss and hs denote pressure
surface, suction surface, and hub surface, respectively. The pressure information was collected with
different rotational speeds and different flow rate conditions, and according to Formula (2), the sensor
converted electric signal to pressure signal.

P = α · ∆e× 10−6 (2)

where α is the correction coefficient and α = 0.188 × 10−6, ∆e is the signal output value of the sensor.
Table 1 lists the test results of hub central points Hi (i = 5–8) with different rotational speeds and
different flow rate conditions in five stable periods. It can be seen that the pressure average value at the
guide vane hub gradually increases along with the flow direction, while the standard deviation and
relative standard deviation gradually decrease. The pressure standard deviation and relative standard
deviation are calculated as:

S =

√√√√ 1
N

N

∑
i=1

[
Pi(t)− Pi

]2 (3)

RS =
S
Pi

(4)

where Pi(t) is the pressure at time t, while Pi is the time pressure average.
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2.3. Computational Domain and Mesh

Separate meshes were generated for the inlet pipe, outlet pipe, impeller, and guide vane. The first
two parts were generated by ICEM_CFD 14.0 (SAS IP, Inc., Pittsburgh, PA, USA), while the latter two
parts were created with TurboGrid 14.0 (SAS IP, Inc., Pittsburgh, PA, USA). Further, H and J topology
structures were adopted for the impeller and the guide vane, and an O-grid was generated around
the blades [18]. The y+ values of the wall mesh of the impeller and guide vane are between 20 and 30,
which satisfies the requirements of the shear stress transport (SST) turbulence model for y+ values [19];
meanwhile, by controlling the mesh ratio in the software of Turbogrid, we can make the mesh density
increase gradually from the shroud region to the clearance region. The mesh for the whole computation
domain is shown in Figures 5 and 6, which also show the mesh independence of the mesh system at
the design condition. The selected mesh number for the whole domain is determined as 3,624,513, and
the element numbers and node numbers of each part of the computation domain are shown in Table 2.
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Table 2. Mesh numbers in each part of the computation domain.

Mesh Information Inlet Pipe Impeller Guide Vane Outlet Pipe Total

Element 293,930 202,720 × 6 200,124 × 8 513,271 3,624,513
Node 303,552 1,311,786 1,731,312 529,160 3,875,810

3. Numerical Methods

3.1. Governing Equations

The conservation equations of mass and momentum for incompressible flow are written in
Cartesian coordinates and can be written as:

∂ui

∂xi
= 0 (5)

∂ui

∂t
+

∂(uiuj)

∂xj
= − 1

ρ

∂p
∂xi

+
∂
[
(µ+ µt)

(
∂ui
∂xj

+
∂uj
∂xi

)]
∂xj

+ fi (6)

where fi is Coriolis force (N); ρ is fluid density (kg/m3); u is relative velocity (m/s); p is pressure
(Pa); µ is viscosity of the fluid (Pa·s); µt is turbulent viscosity (Pa·s). The turbulence is modeled by a
SST model which combines k-ε and k-ω models, where the k-ω model is adopted near the wall, while
the k-ε model is adopted between the mainstream and outside of the boundary layer; this not only
has high accuracy in predicting flow separation under an adverse pressure gradient [7], but also has
certain applicability in the numerical description for the trajectory of the leakage vortex [20]. Here,
the eddy viscosity is computed by:

µt =
ρa1k

max(a1ω, SF2)
(7)

also:
F2 = tan h(arg2

2) (8)

arg2 = max

(
2
√

k
β′ωy

,
500ν

y2ω

)
(9)

where a1 and β′ were model constants and a1 = 5/9, β′ = 0.09; S is the invariant measure of the strain
rate; and k andω are the turbulence kinetic energy and turbulence frequency, respectively.
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3.2. Boundary Conditions and Numerical Solution

At the inlet of the computation domain, velocity was specified according to experimental values
and the turbulence intensity was set as 5%; at the outlet, free outflow conditions were adopted; at all
wall boundaries, a non-slip condition of viscous fluid was used, and the logarithmic wall function
approach was applied in the near wall region. A transient rotor-stator approach was adopted for
data exchange in the rotor-stator interaction region (namely the impeller/inlet pipe interface and
the impeller/guide vane interface). The unsteady simulation begins with the initial field of steady
simulation results, and the unsteady solution settings are listed in Table 3.

Table 3. Unsteady solution setting. RMS: Root Mean Square.

Parameters Value

Time step 0.0002 s
Total time 0.3 s

Maximum iteration number per time step 20
Convergence criteria RMS residual < 1 × 10–4

Advection scheme High resolution
Turbulence numerics High resolution

Transient scheme Second-order backward Euler

3.3. Monitoring Points Setting

To obtain the characteristics of pressure fluctuation in the mixed-flow pump, four and
five monitoring sections were set in the impeller and guide vane from inlet to outlet, respectively,
and denoted as i (where i = 1–9). Where Si, Ci, and Hi (where i = 1–9) denote the central points on the
section from the shroud to hub, as shown in Figure 7.
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4. Results and Discussion

4.1. Performance Prediction and Validation

To verify the reliability of the numerical model, the unsteady internal flow of the pump was
simulated at eight flow rate conditions. The comparison of numerical results (δ = 0.25 mm is design
tip clearance) and experimental results are listed in Figure 8. The efficiency, head and power curves
from the simulation agree well with the experimental results, which demonstrates that the numerical
approach is reliable. Meanwhile, the pump not only has the advantage of a high efficiency area,
but also avoids the saddle phenomenon of a traditional mixed-flow pump, which illustrates that the
design method of the mixed-flow pump is reasonable.
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Table 4 lists the values of efficiency and head in different flow rate and clearance conditions.
It shows that the efficiency at design flow rate is the highest, regardless of the clearance value.
Meanwhile, the efficiency and head decrease with the increase of tip clearance, which demonstrates
that 0.25 mm is the best size herein to get lowest energy loss. For the cases with the clearance size
smaller than 0.25 mm, we can estimate that the energy loss will be reduced because of the attenuated
tip-leakage. However, the velocity gradient in the clearance region will also increase with a smaller
clearance size, which might enhance the rotor-stator interaction as well as the pressure fluctuation.
On this issue, detailed investigation will be made in our future study.

Table 4. Performance prediction from numerical simulation.

Conditions 0.75Qd 1Qd 1.25Qd

Clearance
δ/mm

Efficiency
η/%

Head
H/m

Efficiency
η/%

Head
H/m

Efficiency
η/%

Head
H/m

0.25 77.70 16.25 84.78 14.47 82.00 11.93
0.75 73.44 15.28 79.43 12.92 73.50 9.90
1.00 71.64 14.65 76.54 12.04 69.70 9.03

4.2. Influence of Tip Clearance on Pressure Fluctuation in the Impeller

The pressure fluctuation coefficient of points S1–S4 in the middle of the shroud of the section from
the impeller inlet to outlet at different tip clearances in design condition is presented in Table 5. Here,
the pressure fluctuation coefficient is defined as:

Cp =
S

ρgHd
× 100% (10)

where ρ is fluid density; Hd is design head; S is standard deviation of pressure fluctuation, as shown
in Formula (3).

Table 5. Pressure fluctuation coefficients of points S1–S4 in the impeller(%).

δ
Points S1 S2 S3 S4

0 mm 0.17 0.19 0.23 0.53
0.25 mm 0.21 0.26 0.35 4.08
0.75 mm 0.85 0.49 0.33 4.38
1.00 mm 3.09 2.61 2.30 4.58
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As shown in Table 5, on the whole, the pressure fluctuation coefficients of the points in the
middle of the section shroud increase gradually from inlet to outlet of the impeller passage at different
tip clearances, while pressure fluctuation of the center points of the shroud near the impeller outlet
increases significantly. The pressure fluctuation coefficient of point S4 at δ = 0.25 mm, 0.75 mm and
1.00 mm conditions are 7.70, 8.26 and 8.64 times the values of the no clearance condition, respectively.
On the one hand, this is caused by the rotor-stator interaction between the rotor impeller and stator
guide vane, on the other hand, because of tip-leakage, the flow near the shroud of the impeller outlet
becomes more disordered. Meanwhile, pressure fluctuation at corresponding points in the middle of
the section shroud increase as the tip clearance increases, while pressure fluctuation of corresponding
points suddenly increases when the clearance exceeds 0.75 mm, which results from the existence
of clearance between the impeller blades and the shroud (which leads to fluid leakage), while the
structure of the tip-leakage vortex—which is formed by the mix between the separation vortex caused
by leakage flow and the mainstream near the blade suction surface—may seriously affect the flow
state in mainstream [21], and hence generate larger pressure fluctuation.

The pressure fluctuation of point S4 at all four clearances in one period is presented in Figure 9.
The pressure average of point S4 decreases as the tip clearance increases, and eight peaks and valleys
occur in one circle at the no clearance condition, while six occur with tip clearance, which accords
with the blade numbers of the guide vane and impeller, respectively. Through fast Fourier transform
(FFT), the corresponding frequency domain diagram is shown in Figure 10. The domain frequency of
pressure fluctuation of point S4 is 8 fn and 6 fn at no clearance and clearance conditions, respectively
(corresponding to Figure 10), and the fluctuation amplitude for dominant frequency at δ = 0.25 mm,
0.75 mm and 1.00 mm conditions is 6.95, 7.89 and 8.44 times the no clearance condition, respectively.
There are also N × 6 fn frequencies (where N a is positive integer) at the tip clearance condition, which
results from the action of periodic rotating of the impeller blades (Z1 = 6); moreover, when the tip
clearance increases to a certain value, i.e., 1.00 mm, there are other frequencies with smaller amplitudes,
which is closely related to the more disordered flow state caused by larger tip-leakage near the shroud.

In order to further study the influence of clearance on flow state near the shroud, streamlines
distribution near the shroud at δ = 0.25 mm and 1.00 mm at the design condition is presented in
Figure 11. Here, when δ = 0.25 mm, since the clearance is smaller, the leakage loss is smaller which
leads to less disturbance to the mainstream of the impeller passage and the leakage vortex is not
obvious. When clearance increases to 1.00 mm, the leakage vortex is obviously caused by tip-leakage,
and almost disappears at about three-quarters of the chord length of the impeller passage after the
interaction between the leakage vortex and mainstream.
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The velocity vector and pressure distributions of the central hub-to-shroud surface of the impeller
passage when δ = 0.25 mm and 1.00 mm are shown in Figures 12 and 13. From Figures 12a and 13a,
when clearance δ = 0.25 mm, flow separation happens near the tip clearance, the disturbance of the
tip-leakage leads to an imbalance between the fluid inertia force within the boundary layer and the
inverse pressure gradient, with corresponding pressure distribution of the axial surface as shown
in Figure 13a. In addition, the clearance effect on the flow state of the mainstream on the central
hub-to-shroud surface of the impeller passage is smaller. When clearance increases to 1.00 mm, flow
separation near the shroud further intensifies, and a larger vortex and a larger range high speed zone
appear at the impeller inlet (Figure 12b). As shown in Figure 13b, a larger range low pressure zone
appears in the corresponding region, which leads to the degradation of cavitation performance.

From the above analysis, the existence of clearance between the impeller blades and the shroud
leads to fluid leakage, and then flow separation occurs near the shroud. As clearance increases,
flow separation is stronger and the leakage vortex is more obvious, resulting in stronger pressure
fluctuation therein. Meanwhile, when clearance is 1.00 mm, pressure fluctuation of point S1 (the central
monitoring point on the shroud of the impeller inlet section) suddenly increases, which is closely
related to obvious leakage vortexes and a larger low pressure area (Figures 12b and 13b).
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4.3. Influence of Tip Clearance on Pressure Fluctuation in the Guide Vane

Due to the rotor-stator interaction, impeller rotation will have an effect on the flow field of
the guide vane. Figure 14 shows the frequency domain of pressure fluctuation of points H5–H8

(Figure 4) located in the middle of the guide vane section hub at the design condition when tip
clearance δ = 0.25 mm. Overall, the frequency domain of pressure fluctuation from the simulation
agrees well with experimental results, with dominant frequency 6 fn and second dominant frequency
12 fn occurring in both conditions, while more low frequencies appear in the experiment, which may
result from the vibration of the motor and test environment. The fluctuation amplitude for dominant
frequency of points H5–H8 gradually decreases in both conditions, which illustrates that pressure
fluctuation and rotor-stator interaction influence at the hub region of the guide vane are decreased
along the flow direction.
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fluctuation, while “f/fn” denotes the frequency ratio of pressure fluctuation to impeller rotation:
(a) Point H5; (b) Point H6; (c) Point H7; and (d) Point H8.

The pressure fluctuation coefficient of points S5–S9 in the middle of the section shroud, from
the inlet to the outlet of the guide vane passage with different clearances at the design condition,
is presented in Table 6. Pressure fluctuation coefficients of points S5–S9 decrease gradually from
inlet to outlet of the guide vane at all conditions, which illustrates that rotor-stator influence is weak;
meanwhile, pressure fluctuation variation at corresponding points at the shroud region is small at
different clearance conditions, which illustrates that clearance variation has less effect on fluctuation at
the shroud region of the guide vane.

Table 6. Pressure fluctuation coefficients of points in the middle of the guide vane section shroud (%).

δ
Points S5 S6 S7 S8 S9

0 mm 2.10 1.93 1.36 0.73 0.20
0.25 mm 2.34 2.13 1.54 0.82 0.21
0.75 mm 2.53 2.22 1.54 0.75 0.22
1.00 mm 2.72 2.42 1.76 0.80 0.34

Through MATLAB post processing, the distribution of Cp in the guide vane passage was obtained
according to Equation (10). Figure 15 shows the distribution of Cp on the central hub-to-shroud
surface of the guide vane at the design condition. On the whole, pressure fluctuation intensity at these
four clearance conditions decreases from the inlet to outlet of the guide vane passage. The pressure
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fluctuation gradient in the inlet region is also larger than for the central and outlet regions, which
illustrates that the influence of rotor-stator interaction on pressure fluctuation in the guide vane passage
is attenuated along the flow direction. Meanwhile, the pressure fluctuation coefficient in the guide
vane is similar with clearance increases, which illustrates that the clearance variation of an impeller
has less effect on pressure fluctuation in the guide vane for a low specific speed mixed-flow pump.
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4.4. Comparison of Pressure Fluctuation between Impeller and Guide Vane

To obtain a clearer comparison of pressure fluctuation between the impeller and guide vane at
different clearances (Q = Qd) and different flow rates (δ = 1.00 mm) conditions, the pressure fluctuation
distribution of points in the middle of the section is shown in Figures 16 and 17. As shown in Figure 16,
the fluctuation of points C1–C9 is firstly enhanced and then weakened from the impeller inlet to the
guide vane outlet at the first condition; also, fluctuation variation of points C1–C3 decreases when
δ ≤ 0.75 mm, while it increases significantly when δ = 1.00 mm. Then, combined with Table 5 (pressure
fluctuation coefficients of points S1–S4 in the impeller), it can be deduced that clearance leakage has
less influence on fluctuations in the inlet and central regions of the impeller within a certain range of
clearances. Beyond this range, fluctuations in the whole passage will increase significantly. At the
design condition, pressure fluctuation of points C3–C4 is greater than for points C1–C3 with clearance
increases, which results from tip-leakage and rotor-stator interaction. From Figure 14, it can be seen
that clearance variation has less influence on the central points of the guide vane section. Combined
with Table 6 (pressure fluctuation coefficients of points in the middle of the guide vane section shroud),
it can be deduced that clearance variation has less effect on fluctuation in the guide vane. According
to Figure 16, Tables 5 and 6, in both the no tip clearance and tip clearance conditions, the maximum
value of fluctuation locates near the guide inlet (points S5 and C5) and impeller outlet (points S4 and
C4), respectively.

As shown in Figure 17, the fluctuation at points C1–C9 is firstly enhanced and then weakened
from the impeller inlet to guide the vane outlet at the second condition, which demonstrates the effect
of rotor-stator interaction, also firstly enhanced and then weakened. In the impeller, the pressure
fluctuation intensity of points C1–C3 at small flow rate conditions (0.5Qd, 0.75Qd) will be lower than
the design and large flow rate conditions (1.25Qd), while the pressure fluctuation of point C4 increased
significantly at the 0.5Qd condition, which is 1.56, 1.67 and 1.51 times 0.75Qd, Qd and 1.25Qd conditions;
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meanwhile, pressure fluctuation of points C5–C9 is similar at 0.5Qd and 0.75Qd conditions, Qd and
1.25Qd conditions, whilst the pressure fluctuation of point C5 at 0.5Qd and 0.75Qd conditions are higher
than Qd and 1.25Qd conditions, which may be caused by the complex flow state in the rotor-stator region
at small flow rate conditions. According to Reference [14], a more serious rotating stall phenomenon
occurs in the pump, leading to stronger pressure fluctuation (at the impeller outlet) and larger impact
loss (at the guide vane inlet). From Figure 17, the fluctuation order of corresponding points C1–C9

is not obvious at four conditions, i.e., sometimes, fluctuation at Qd and 1.25Qd conditions is greater
than at 0.5Qd and 0.75Qd conditions, which results from the analysis of Figure 17 at δ = 1.00 mm that is
significantly larger than the design clearance 0.25 mm, which leads to larger tip-leakage and energy
loss, thereby, the flow state of the fluid becomes more disordered.
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According to Figure 17, the fluctuation at points C4 (impeller outlet) and C5 (guide vane inlet)
at different flow rate conditions (δ = 1.00 mm) is obviously larger than for other points, so frequency
domain diagrams of points C4 and C5 at different flow rate conditions are presented in Figure 18.



Energies 2017, 10, 148 14 of 16

The dominant frequencies of these two points are all 6 fn at different flow rates, resulting from the
actions of clearance existence and the impeller on the guide vane, as the impeller blade number is 6.
Meanwhile, for point C4, compared with point C5, there are also N × 6 fn frequencies (where N is a
positive integer), which is related to impeller periodic rotation. Moreover, there are more frequencies
at small flow rate conditions (0.5Qd, 0.75Qd) than in design and large flow rate conditions, which are
closely related to the flow separation of small flow rate conditions.
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5. Conclusions

Through numerical calculation, the characteristics of pressure fluctuation in a low specific speed
mixed-flow pump were analyzed at different clearance and flow rate conditions. The results can be
summarized as follows:

(1) Influenced by rotor-stator interaction and tip-leakage, pressure fluctuation occurs in the impeller
passage at different clearance and flow rate conditions. The domain frequency of pressure
fluctuation of point S4 is 8 fn at the no clearance condition, which is in accordance with the guide
vane blade number, while it is 6 fn at the clearance condition, which is in accordance with the
impeller blade number. Moreover, there are also N × 6 fn frequencies (where N is a positive
integer) at clearance conditions.

(2) Due to tip-leakage, flow separation occurs near the shroud, flow separation is stronger and more
obvious leakage vortexes form as clearance increases, resulting in stronger pressure fluctuation
therein. Meanwhile, when clearance δ = 1.00 mm, pressure fluctuation of point S1 (the central
monitoring point on the shroud of the impeller inlet section) suddenly increases, which is closely
related to obvious leakage vortexes and a larger low pressure area.

(3) Tip-leakage has little influence on pressure fluctuation in the impeller inlet and central regions
within a certain range of clearance. Beyond this range, fluctuation in the whole passage will
increase significantly, while clearance variation has less effect on fluctuation in the guide vane.
In both the no tip clearance and tip clearance conditions, the maximum fluctuation values are
located near the guide inlet (points S5 and C5) and impeller outlet (points S4 and C4), respectively.
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Nomenclature

D Impeller diameter S Standard deviation of the fluctuation
Z Blade number fi Coriolis force
Qd Design condition ρ Fluid density
n Impeller speed u Relative velocity
H Head µ Dynamic viscosity
P Shaft power µt Turbulent viscosity
ns Specific speed α1 Model constant
P Static pressure β′ Model constant
α Correction coefficient S Invariant measure of strain rat
∆e Electric signal of the sensor κ Turbulence kinetic energy
ps Pressure surface ω Turbulence frequency
ss Suction surface Cp Pressure coefficient
hs Hub surface F2 Blending function
g Gravitational acceleration fn Frequency ratio of the fluctuation to impeller rotation
Amp Amplitude of the fluctuation
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