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Abstract: In this study, a 2D hydrate dissociation simulator has been improved and verified to be
valid in numerical simulations of the gas production behavior using depressurization combined
with a well-wall heating method. A series of numerical simulations were performed and the
results showed that well-wall heating had an influence enhancing the depressurization-induced gas
production, but the influence was limited, and it was even gradually weakened with the increase
of well-wall heating temperature. Meanwhile, the results of the sensitivity analysis demonstrated
the gas production depended on the initial hydrate saturation, initial pressure and the thermal
boundary conditions. The supply of heat for hydrate dissociation mainly originates from the thermal
boundaries, which control the hydrate dissociation and gas production by depressurization combined
with well-wall heating. However, the effect of initial temperature on the gas production could be
nearly negligible under depressurization conditions combined with well-wall heating.

Keywords: methane hydrate; gas production; depressurization; well-wall heating; numerical
simulation

1. Introduction

In worldwide marine deposits and permafrost areas, a large amount of potentially producible
natural gas is enclosed in ice-like solid hydrate reservoirs [1]. The natural gas hydrate resource
has been considered as a potential strategic energy resource for the future [2,3]. Several efficient
and feasible gas recovery methods for in-situ CH4 recovery from the hydrate reservoirs have been
proposed, such as hot water injection [4,5], in situ combustion [6,7], depressurization [8–11], inhibitor
injection [12,13], CO2 replacement [14,15] and the combined methods [16–20]. Using these technologies,
extensive research on natural gas production from hydrate in field trials has been conducted within
the last decade [21–25]. Natural gas has been successfully extracted by injection of hot water and by
depressurization at the permafrost reservoir of the Mallik site in Northwest Canada [21]. The first
offshore production test has been carried out in the Nankai Trough, Japan, the technical feasibility of
the depressurization technique is confirmed [24] and this method appears to be the most promising
and economic one [3,26].

The depressurization method is based on hydrates dissociation by reducing the wellbore pressure
below the hydrate phase equilibrium pressure at a specified temperature, without any extra heat
source introduced into the natural gas hydrate reservoir [27,28]. The depressurization-induced hydrate
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dissociation is limited by heat transfer [17,29]. The results of experimental and numerical simulations
have shown that in the process of the gas production by depressurization, the temperatures can
significantly be reduced so as to the pore water probably freezes and the hydrate reforms [9,16,30–32].
Either the freezing pore water or the hydrate reformation can plug the flow channels, reducing the
permeability of the hydrate reservoirs and further reducing the gas production [33,34]. In order to avoid
the pore water freeze and the hydrate reformation, the depressurization combining with well-wall
heating method has been proposed [17]. To assess the efficiency of the combined method, it is necessary
to obtain a number of dissociation data and information in advanced.

Numerical analysis is an effective approach in modeling and simulating hydrate dissociation
in porous media, many numerical models have been systematically developed to simulate natural
gas production from hydrates and predict the possible behaviors [8,26,29,35–39]. Sung et al. [35]
developed a three-dimensional, multi-phase flow finite-difference numerical model to evaluate the
gas recovery performances with Kim-Bishnoi kinetic dissociation model. Their study characterized
the flow factors and the flow mechanism under the conditions of increased in situ permeability.
Based on the experimental results, Masuda et al. [40] developed a 3D two-phase (gas-water)
flow, finite-difference numerical simulator to model hydrate dissociation by depressurization.
In this simulator, the Kim-Bishnoi Equation was used to determine the dissociation rate and the
permeability of hydrate-bearing sandstone was firstly assumed to be the function of hydrate saturation.
Sun and Mohanty [41] developed a fully implicit 3D kinetic simulator to simulate formation and
dissociation of methane hydrates in porous media. Four components (hydrate, methane, water,
and salt) and five phases (hydrates, gas, aqueous-phase, ice, and salt precipitate) were considered
in their simulation. The study indicated that increase of initial temperature, introduction of salt
component into the system, and decrease of outlet pressure have a greater effect on hydrate dissociation.
Moridis et al. [42] escalated the equation-of-state CH4-Hydrate module (EOSHYDR) to a new code
named TOUGH-Fx/Hydrate. By solving the coupled equations of mass and heat transfer, kinetic
model, flow equations, this code can model the flow of gas and water, the non-isothermal gas release,
phase behavior and heat transfer in natural gas hydrate-bearing complex geological media at any field
class of hydrate accumulations. Reagan et al. [43] carried out numerical simulations on Class 2 and
Class 3 hydrate production research for investigating the gas hydrate dissociation by depressurization
with the numerical model TOUGH-Fx/Hydrate. Through the simulations, the model was verified to be
valid for the simulation results being highly consistent with real field test, and the study also identified
that the efficiency of depressurization-based on production strategies depend on the migration of
fluids. In our previous investigations, a 2D axisymmetric finite-difference, fully implicit model was
developed to investigate the gas production behavior of hydrate dissociation by depressurization in
hydrate-bearing porous media [34,39]. Here, the numerical model is improved to clarify the hydrate
dissociation characteristics of the depressurization combining with well-wall heating method in a
cylindrical system. The sensitivity analysis and the gas production behavior are numerically studied
by a fully coupled numerical code.

2. Mathematical Models

Falser et al. [17] conducted a series of small-scale experimental production tests on cylindrical
samples with a high hydrate saturation to investigate the increased gas production from hydrate by
depressurization and simultaneous heating of the production wellbore. The experiment conditions
were summarized in Table 1, which were used as basic data in our numerical investigation of
production behavior of methane hydrate dissociation under depressurization combining with
well-wall heating.

For the simulation, as shown in Figure 1, the cylindrical hydrate-bearing sediment sample has
a diameter of 180 mm and a height of 206 mm, the 2D axisymmetric sample is equally divided into
nine blocks in the axial direction and 15 blocks in the radial direction. The production well as well as
the well-wall heating is defined on the left of the axis of the sample. A no-slip boundary condition is
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assumed for all the walls and the right side of the axis. The boundary temperature keeps constant.
The physical parameters used in the numerical simulation are listed in Table 2.

Table 1. Properties of hydrate bearing sample from Falser et al. [17].

Variable Value Variable Value

Sample length, L (mm) 206 Sample diameter, R (mm) 180
Initial pressure, P0 (MPa) 14.44 Initial temperature, T0 (K) 282.2

Heating temperature Twell (K) 288.15 Boundary temperature, Tb (K) 282.2
Intrinsic porosity, φ0 0.378 Absolute permeability, k0 (mD) 350

Hydrate saturation, Sh0 0.42 Environment temperature, TE (K) 282.2
Water saturation, Sw0 0.50 Bottom-hole pressure, ∆PBHP (MPa) 5.95

Gas saturation, Sg0 0.08 Permeability reduction exponent, N 10
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Figure 1. Schematics of the (a) simulated region; and (b) the computational grid of hydrate dissociation. 
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2.60 (sand) 0.90 (hydrate) 1.0 (water) 
7.8 (steel) 16 (methane, g/mol) 

Cory parameters nw = 4 ngas = 2 

Viscosity (T = 293K), μ (Pa s) 0.001 (water) 1.25 × 10−5 (methane) 
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Table 2. Physical parameters used in the numerical simulation.

Variable Value

Specific heat capacity (T = 293 K), Cp (J·kg−1·K−1)
800 (sand) 2010 (hydrate) 4189 (water)
500 (steel) 2157 (methane) -

Thermal conductivity, k (W·m−1·K−1)
3.92 (sand) 0.62 (hydrate) 0.56 (water)
16 (steel) 0.034 (methane) -

Density, ρ (g/cm3)
2.60 (sand) 0.90 (hydrate) 1.0 (water)
7.8 (steel) 16 (methane, g/mol)

Cory parameters nw = 4 ngas = 2

Viscosity (T = 293 K), µ (Pa·s) 0.001 (water) 1.25 × 10−5 (methane)
Phase equilibrium pressure, Pe (kPa) 1.15 × e49.3185−9459/T

Cumulative gas production after 90min, Vgas (SL) 17 (experimental result of ∆P6) [17]
Cumulative gas production after 90min, Vgas (SL) 53 (experimental result of ∆P6 + ∆T) [17]

In our hydrate dissociation model, some assumptions have been made [8,27,28,34,39]: (1) the
methane hydrate is deemed as sI type hydrate; (2) the methane gas produced from hydrate does not
dissolve in water; (3) hydrate is assumed to accumulate in the pore space [34]; (4) gas-liquid two phase
flow accords with Darcy’s law; (5) the hydrate-bearing sediments are homogeneous and the solid
phase (i.e., hydrate and porous media) is incompressible and stagnant.
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2.1. Mass Conservation Equations

The cylindrical geometry is adopted in our mathematical models to present the relationships
of the mass, the heat transfer and the hydrate dissociation reaction kinetics. The behavior of gas
production and the pressure profile, the temperature profile are predicted in the process of hydrate
dissociation and gas production under depressurization combining with well-wall heating.

The mass conservation Equations (1)–(3) describe the mass balance of gas, water and hydrate:

− 1
r

∂

∂r
(
rρgνgr

)
− ∂

∂x
(
ρgνgx

)
+

.
qg +

.
mg =

∂
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(
φρgSg

)
(1)

− 1
r

∂

∂r
(rρwνwr)−

∂
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(ρwνwx) +

.
qw +

.
mw =

∂

∂t
(φρwSw) (2)

.
mh =

∂

∂t
(φρhSh) (3)

where the subscripts “g”, “h” and “w” refer to gas phase, hydrate phase and water phase, “r” represents
the radial distance and “x” denotes the axis direction distance. ν represents the Darcy velocity, ρ is
the density, φ is the porosity of the hydrate-bearing sediments, and S means the saturation, which is
defined as the fraction of the total pore volume in hydrate-bearing medium,

.
m represents the mass

rate produced from hydrate dissociation per unit volume,
.
q represents the mass rate in terms of

injection/production per unit volume. In this paper, the water phase is assumed to be incompressible,
and the methane gas is assumed to meet the Pen-Robinson Equation of state.

The saturation of three components (gas, water and hydrate) follows the next relationship:

Sg + Sw + Sh = 1 (4)

The Darcy velocities of gas and water in the mass conservation Equations (1) and (2) are described
by the following equation, and the gravity force is ignored due to the laboratory-scale size in this study:

vi = −
Kkri
µi
∇Pi (i = g, w) (5)

where µi is the viscosity of the phase i, Pi is the pressure of the phase i, the relative permeability krw

and krg are calculated using the Corey’s model and expressed as follows:

krw =


Sw

Sw + Sg
− Swr

1− Swr − Sgr


nw

(6)

krg =


Sg

Sw + Sg
− Sgr

1− Swr − Sgr


ng

(7)

where nw = 4, ng = 2, (as shown in Table 2) and the residual water saturation and gas saturation are
given as Swr = 0.2 and Sgr = 0.3.

In Equation (5), K is the absolutely permeability of hydrate-bearing porous media, which was
firstly described in Masuda et al.’s model [40]. In the following Equation (8), K0 is the original
permeability without hydrate. N is a parameter called as the permeability reduction index, depending
on the pore structure:

K = K0(1− Sh)
N (8)
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2.2. Energy Conservation Equations

In the energy conservation Equation (9), the following terms in turn are considered: such as
heat conductive, convective heat transfer, heat input/output due to the injection/production of gas
and water (

.
qg and

.
qw), heat of hydrate dissociation

.
qh and heat transfer from surrounding

.
qin. In the

right hand side of equation is the change in terms of the enthalpy of the sand phase, hydrate phase,
gas phase and water phase:

1
r

∂
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rkc

∂T
∂r

)
+ ∂
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(
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∂T
∂x

)
− 1

r
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− ∂
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+

.
qg Hg +

.
qw Hw +

.
qh +

.
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[
(1− φ)ρsHs + φ

(
ShρhHh + SgρgHg + Swρw Hw

)] (9)

kc = (1− φ)ks + φ
(
khSh + kwSw + kgSg

)
(10)

In Equation (9), hi is the enthalpy for different phase i, and the subscript “s” means the sand phase.
T is the local temperature, kc is a function of local composition of the medium and represents the heat
conductivity of hydrate-bearing sediments as expressed in Equation (10).

The heat of hydrate dissociation
.
qh can be calculated using the following expression:

.
qh =

.
mh∆HD (11)

where ∆HD presents the enthalpy change in hydrate dissociation, and can be defined as follows:

.
mg Hg +

.
mwHw +

.
mh Hh =

.
mh∆HD (12)

∆HD = 446.12× 103 − 132.638T (13)

dHi =
∂Hi
∂T

dT +
∂Hi
∂Pi

dPi = CpidT + σidPi (i = h, g, w) (14)

dHs =
∂Hs

∂T
dT = CPsdT (15)

In Equations (14) and (15), Cpi is the heat capacity, σi is the throttling coefficient for different phase
i (i = h, g, w). The throttle coefficient of methane σg can be given as the Equation (16), based on the data
of Tester [44]:

σg =

(
∂Hg

∂Pg

)
T
≈ −1.5× 10−4 (16)

2.3. Kinetics Equations

According to the hydrate decomposition reaction, we can obtain the relationships as the
following Equations:

.
mh =

.
mg

Nh Mw + Mg

Mg
(17)

.
mw =

.
mg

Nh Mw

Mg
(18)

where Nh are the coefficients of the decomposition reaction.
Based on the Kim-Bishnoi model of hydrate kinetics [45], the produced gas from hydrate can be

calculated as follows:
.

mg = kd Mg As( fe − f ) (19)

where f and fe are defined as gas fugacity and reaction balance fugacity, and in numerical simulation
they are usually replaced by local gas pressure Pg and equilibrium pressure Pe, respectively.
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In Equation (19), As is described as the interface area between hydrate and fluid phases, and it
can be estimated by Amyx’s method [46] as follows:

As =

√
φ3

e
2K

(20)

φe = φ(1− Sh) (21)

2.4. Initial and Boundary Conditions

In this study, the depressurization well as well as the location of well-wall heating is defined on
the left of the simulated region, as shown in Figure 1. The on-slip boundary conditions are assumed
for all the walls and the right side of the simulated region. The boundary condition for the ends of the
simulated core is adiabatic. The initial conditions for the simulation are all shown in Table 1.

3. Comparison of Numerical Simulation with Experiment Data

In this work, the fully implicit numerical technique is used to simulate the hydrate dissociation
in hydrate-bearing porous media under depressurization combined with well-wall heating.
The numerical results of the cumulative gas production, the temperature and pressure vs. time
are compared with the experimental results obtained by Falser et al. [17]. Tables 1 and 2 summarize the
parameters used in this study. The cumulative gas production, the temperature and pressure obtained
in the experiment and simulation with the numerical code are shown in Figures 2–4, respectively.
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dissociation of ∆P6 + ∆T in the production period.

Figure 2 shows that the comparison between the cumulative gas production obtained from the
simulation and the experiment for two different hydrate dissociation cases. The two cases include:
(1) the production pressure is depressurized to 5.95 MPa (approximately 6 MPa) without heating
on production well walls, marked as ∆P6, (2) depressurizing to 6 MPa and heating the well-wall
from 282 to 288 K, marked as ∆P6 + ∆T. All produced gas volumes are given in liters at standard
conditions (SL). We can see that the numerical results (subscript n) support the production trends with
the experimental data obtained from Falser et al. [17], the cumulative gas production after 90 min
obtained from the numerical simulation is 15 and 58 SL for ∆P6 and ∆P6 + ∆T, respectively; while the
experimental result is 17 SL for ∆P6 and 53 SL for ∆P6 + ∆T (as shown in Table 2), and the mismatch
can be attributed to the lack of some key experimental data, for example, the specific surface area of
hydrate dissociation and the permeability are determined by empirical formulas, the actual distribution
of hydrate is heterogeneous. The uncertain experimental data may have a significant effect on the
numerical simulation of the process of hydrate dissociation.

Figure 3 shows the variations of temperature with time at three different positions of the cylindrical
hydrate-bearing sediment sample, and the three measured positions are placed at radial distances
r/rwb = 1, 4, 7 wellbore radii from axis (the absolute distances are 5, 20, 35 mm from the axis). As shown
in Figure 3, the numerical results agree well with the experimental data. The temperature curves of the
depressurization combined with the well-wall heating show the temperature increases from a same
initial temperature, then it decreases to a minimum, and then it will rebound to the environmental
temperature or the heating temperature. This is due to that the hydrate dissociation is an endothermic
process, which causes the temperature near the dissociation area to decrease. However, the heat transfer
from the heating well-wall and the isothermal boundary environments can cause the temperature
to increase.

The simulation and experimental results of pressure variations during the hydrate dissociation of
∆P6 + ∆T are plotted in Figure 4, the numerical results (subscript n) are shown in dashed-dotted lines
and the experimental results are shown in solid lines. The wellbore pressure is kept constant during
the gas production period. The mismatch between the numerical pressure profile and experimental
pressure profile could be attributed to the lack of some key experimental data and the fluctuate
in experimental operation for controlling the depressurization rate. From Figure 4, we can see the
pressure reduces quickly to the wellbore pressure (5.95 MPa) from the initial high pressure (14.44 MPa),
and the larger pressure difference leads to larger dissociation driving force for the hydrate dissociation
in the presence of sufficient and available heat energy at the initial time.
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4. Results and Discussion

Based on the comparison between the numerical results of the cumulative gas production,
the temperature and pressure with the experimental data, Figure 2 indicate that the model is
feasible to simulate the dissociation of methane hydrate under depressurization combining with
well-wall heating.

In this section, we discuss the gas generation rate and temperature distribution of hydrate
dissociated by depressurization combining with well-wall heating. The sensitivities of the initial
hydrate saturation Sh0, the initial temperature T0, the initial pressure P0, and the boundary thermal
conditions to hydrate dissociation have also been investigated.

4.1. Different Production Methods

Thermal simulation can be considered as a complement for gas production from hydrates by
depressurization due to the limitation of sufficient and available heat energy in porous media [47].
In this work, the well-wall heating is adopted to combine with the depressurization method, the gas
generation rate and temperature distribution of this method are compared with the cases of other
production methods.

Figure 5 shows the gas generation rates during hydrate dissociation induced by well-wall
heating method, depressurization, and depressurization combining with the well-wall heating method,
respectively. The production period for each numerical simulation is 90 min, the production pressure
is decreased from the initial high pressure (14.44 MPa) to the wellbore pressure (5.95 MPa) for both
the depressurization method and the depressurization combining with well-wall heating method,
the well-wall heating temperature is at 288.15 and 353.15 K for the combined method and the
wall-heating method, respectively. As shown in Figure 5, we can see the gas generation rate of
the combining depressurization with well-wall heating is higher than the case of depressurization
and well-wall heating. Moreover, the gas generation rate of the combined method is better than those
of the other two methods since from the production initial stage to 30 min. It indicates the effect of
both the depressurization and well-wall heating driving forces on methane hydrate dissociation is
quite obvious. Compared to the result of the depressurization method, it is clear that the additional
well-wall heating is helpful to increase the gas production, and can supply much more heat to the
hydrate dissociation.
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For the temperature distribution of different production methods, the temperature distribution
of depressurization combining with well-wall heating is significantly different from the case of
depressurization (as shown in Figure 6). As presented in Table 1, the initial temperature is 282.2 K,
which is same as the boundary temperature. For the temperature distribution of ∆P6, the temperature
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profile is simple. Like the temperature varieties at radial distances r/rwb = 1 for a 90 min production
period, the temperature decreases from 282.2 K to the minimum temperature 279.4 K, due to hydrate
dissociation. Simultaneously, the temperature profiles at r/rwb = 4, 7, respectively, decline accordingly
as the hydrate dissociation goes on.Energies 2017, 10, 161 9 of 16 
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Comparing with the temperature distribution of ∆P6, the temperature distribution of ∆P6 + ∆T
has a rapidly rise due to the additional thermal input, as shown in Figure 6. It seems that the rise of the
temperature is caused by the heat transfer from well-wall heating. Simultaneously, the temperatures of
depressurization combining with well-wall heating are different at different radial distances from axis
(r/rwb = 1, 4, 7), and the farther the distance from the well-wall the smaller and slower temperature
increase. It indicates that the thermal conduction of well-wall heating is slow and the heat only
transmits to a small dissociation area from wellbore. In addition, at the same time, the temperatures
of ∆P6 + ∆T (at r/rwb = 1, 4) go up again, in contrast, the temperatures of ∆P6 just decrease because
of hydrate dissociation, which indicates the hydrate dissociation of ∆P6 + ∆T is more faster than the
case of ∆P6, and it presents the well-wall heating improves the gas production of hydrate dissociation
induced by depressurization.

4.2. Sensitivity to the Combining Well-Wall Heating Temperature

In the simulations of the depressurization combining well-wall heating, different well-wall
heating temperatures (298.15, 323.15, and 353.15 K) have been adopted, and the numerical results of gas
generation rate of the depressurization combining with different well-wall heating have been displayed
in Figure 7. The gas generation rate increase with the increase of the combining well-wall heating
temperature, the maximum gas generation rate is 0.94, 0.92, and 0.87 SL/min for the well-wall heating
temperatures of 353.15, 323.15, and 298.15 K, respectively. As discussed in Section 4.1, the combined
method has promoted the gas production. However, as shown in Figure 7, the difference between the
gas generation rate decreases with the increase of well-wall heating temperature. This indicates the
effect of the combined method on gas production gradually weakens with the increase of the well-wall
heating temperature. For the reasons about the negative relationship of the gas production rate with
the well-wall heating temperature, it is most likely due to the fact the production wellbore as well as
the location of the well-wall heating is defined on the left as shown in Figure 1a, which indicates the
heat is transferred from well-wall to the dissociation area, while the multi-phase fluid (gas and water)
flows to the production well in the opposite direction. An amount of heat is actually removed by the
produced gas/water, and its effect on hydrate dissociation diminishes greatly. Thus, a single wellbore
may not be suitable for the gas production from hydrate using the depressurization combining with
higher well-wall heating temperature.
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4.3. Sensitivity to the Initial Hydrate Saturation Sh0

For the case of depressurization combining with well-wall heating method, the evolutions of
the gas generation rate over time with different initial hydrate saturation are plotted in Figure 8.
The initial hydrate saturations are 0.3, 0.4 and 0.5, respectively. The initial water saturation is fixed at
the value. As seen from Figure 8, a lower initial hydrate saturation leads to a higher gas generation
rate, the maximum value of the three initial hydrate saturations (Sh0 = 0.3, 0.4 and 0.5) is 0.92, 0.87 and
0.63 SL/min, respectively. One reason is the lower initial hydrate saturation means a higher initial
gas saturation, and more free gas can be produced easily and quickly once the production wellbore
opens. Another reason is the higher initial effective permeability in the lower Sh0 leads to the faster
depressurization, and hydrate dissociation will be earlier than the case of the higher Sh0 in the gas
production process.
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Moreover, the end time of gas production for each case of Sh0 (0.3, 0.4 and 0.5) is 50, 60 and nearly
90 min, respectively. The lower Sh0 leads to the shorter continued time in a gas production process.
Because of the faster average rate of fluid flow and the lower total quantity of hydrate in porous media
at lower initial saturations.

4.4. Sensitivity to the Initial Pressure P0

The simulations with different initial pressures of 13.44, 14.44 and 15.44 MPa are performed to
investigate the sensitivity of the initial pressure P0 to gas generation rate in the case of depressurization
combining with well-wall heating. The other simulation conditions are same as those listed in
Tables 1 and 2. As shown in Figure 9, the effect of initial pressure on gas generation rate is not
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outstanding as the case of different initial hydrate saturations described in Section 4.3. Under lower
initial pressure, more amount of gas has been generated at the early stage of the gas production process.
It can be explained that the higher initial pressure causes a slower pressure drop, and a lower initial
pressure can quickly reach to the equilibrium pressure Pe. Thus, we can see that the gas generation
rate increases with the decrease of initial pressure, as shown in Figure 9.
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4.5. Sensitivity to the Initial Temperature T0

Several simulation runs are conducted to investigate the effect of initial temperature on gas
generation rate in the case of depressurization combining with well-wall heating. The initial
temperature varies from 276.2 to 288.2 K, by intervals of 6 K. As shown in Figure 10, the gas generation
rate increases with the initial temperature. This is in contrast with the effect of initial pressure as
described in Section 4.4. Meanwhile, the differences of the gas generation rate with various initial
temperatures are slight and the effect of initial temperature on the gas production behavior could
be nearly negligible, the result is also different with the issue of initial temperature affecting on the
hydrate dissociation using depressurization [16,41]. A high initial temperature do not always have an
important effect on gas production from hydrate using depressurization combining with well-wall
heating, especially after its initial stage. It may be attributed to the additional thermal input from
well-wall heating fulfilling the heat of hydrate dissociation.
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4.6. Sensitivity to the Thermal Boundary Conditions

In this section, in order to evaluate the effects of heat from surrounding boundaries, we perform
a comparison simulation between normal boundary conditions and insulated boundary conditions.
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The normal boundary is T(L, t) = 282 K, while ∂T(L, t)/∂L = 0 is used for the insulated boundary
conditions. Based Equation (10), the averaged heat conductivity is around 2.81 W·m−1·K−1 for
this simulation.

Figure 11 shows the variations of the gas generation rate and the cumulative gas production
under different boundary conditions. It’s clear that the gas production behaviors depend strongly on
the boundary thermal conditions, and the gas generation rate and the cumulative gas production are
greatly reduced under the insulated boundary conditions, even the gas generation rate decreases to
zero in a shorter time. Notably, none hydrates dissociate if it is lack of heat energy, for the reason that the
thermal of well-wall heating only plays a role in a small dissociation area, the amount of heat received
from the well-wall heating is small, and no heat transfers from insulated wall boundary to supply
sufficient heat for hydrate dissociation reaction. Besides, the analysis of temperature distribution in
Figures 3 and 6 (as described in Sections 4.1 and 4.2) also indicate the increase of temperature after
the initial stage is attributed to the heat transfer from surrounding boundaries. Thus, we can see the
heat for hydrate dissociation mainly originates from the boundaries, and the supply of heat from
surrounding boundaries controls the hydrate dissociation and gas production. It also indicates that
the depressurization combining with well-wall heating method may be unfeasible for the hydrate
exploitation in a surrounding with lower temperature.
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5. Conclusions

In this work, a 2D axisymmetric simulator of hydrate dissociation is improved and verified to be
valid in numerical simulation of the gas production behaviors using the depressurization combining
with well-wall heating method. The sensitivities of the well-heating temperature, the initial hydrate
saturation Sh0, the initial temperature T0 and pressure P0, and the boundary thermal conditions to the
gas production have been discussed. On the basis of the presented results, the following conclusions
can be drawn:

(1) The temperature distribution of depressurization combined with well-wall heating is significantly
different from the case of depressurization. In the case of depressurization combined with
well-wall heating, the temperature increases from the same initial temperature, then it decreases
to a minimum, and then it will rebound to the environmental temperature or the heating
temperature. In a word, the temperature shows a rapid increase due to the additional thermal
input, however, the depressurization temperature is decreased from the initial value to
the minimum.

(2) Comparing with the gas production behaviors of the depressurization, well-wall heating and
depressurization combined with well-wall heating method, the well-wall heating is benefit to
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increase the gas production, and the gas generation rate of the depressurization combined with
well-wall heating method is highest, followed by the other cases. Meanwhile, owing to the fact
that the thermal conduction of well-wall heating is slow and the heat transmits only to a small
dissociation area, the influence of the well-wall heating on gas production is limited, even is
gradually weakened with an increasing well-wall heating temperature. A single wellbore may
not be suitable for the gas production from hydrate using the depressurization combined with
higher well-wall heating temperature.

(3) For the depressurization combined with well-wall heating method, a lower initial hydrate
saturation leads to a higher gas generation rate, the gas generation rate increases with the
decrease of initial pressure, and in contrast with the effect of initial hydrate saturation and
initial pressure, the effect of initial temperature on the gas production behavior could be nearly
negligible, which is different from the case of other production method.

(4) For the depressurization combined with well-wall heating method, the gas production strongly
depends on the heat originating from the boundaries, the supply of heat from surrounding
boundaries controls the hydrate dissociation and gas production. The depressurization combined
with well-wall heating method may be unfeasible for the hydrate exploitation in a surrounding
with lower temperature.
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Nomenclature

As specific surface area of porous medium bearing gas hydrate (m2)
Cp specific heat capacity (J·kg−1·K−1)
Cps heat capacity of porous media (J·kg−1·K−1)
Cpg heat capacity of gas (J·kg−1·K−1)
Cpw heat capacity of water (J·kg−1·K−1)
Cph heat capacity of hydrate (J·kg−1·K−1)
fe fugacity of gas at the hydrate equilibrium pressure corresponding to the local temperature
f fugacity of gas under the local temperature and pressure
∆HD the enthalpy change in hydrate dissociation (J·kg−1)
Hg enthalpy of gas (J·kg−1)
Hw enthalpy of water (J·kg−1)
Hh enthalpy of hydrate (J·kg−1)
Hs enthalpy of porous media (J·kg−1)
k thermal conductivity (W·m−1·K−1)
kc thermal conductivity coefficient of hydrate-bearing medium (W·m−1·K−1)
kg thermal conductivity coefficient of gas (W·m−1·K−1)
kw thermal conductivity coefficient of water (W·m−1·K−1)
kh thermal conductivity coefficient of hydrate (W·m−1·K−1)
ks thermal conductivity coefficient of porous media (W·m−1·K−1)
K absolute permeability (mD)
K0 original permeability without hydrate (mD)
k0 initial absolute permeability (mD)
kd dissociation rate constant (mol/(m2·Pa·s))
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krg relative permeability of gas phase
krw relative permeability of water phase
L sample length (mm)
.

mg mass rate of gas generated by hydrate dissociation per unit volume (kg/(m3·s))
.

mw mass rate of water generated by hydrate dissociation per unit volume (kg/(m3·s))
.

mh mass rate by hydrate dissociated per unit volume (kg/(m3·s))
Mg molecular weight of gas (kg/kmol)
Mw molecular weight of water (kg/kmol)
Nh hydrate number
nw empirical constant (nw = 4)
ng empirical constant (ng = 2)
N permeability reduction index
P pressure (Pa)
Pe equilibrium pressure (Pa)
Pg gas pressure (Pa)
Pw water pressure (Pa)
P0 initial pressure (Pa)
∆PBHP bottom-hole pressure (Pa)
∆P6 production pressure depressurized to 5.95 MPa
∆P6 + ∆T production pressure depressurized to 5.95 MPa with the well-wall heating
.
qg mass rate in terms of injection/production of gas (kg/(m3·s))
.
qw mass rate in terms of injection/production of water (kg/(m3·s))
.
qh heat of hydrate decomposition unit bulk volume (J/(m3·s))
.
qin heat from the surroundings (J/(m3·s))
R sample diameter (mm)
Sg hydrate saturation
Sw water saturation
Sh gas saturation
Sgr residual gas saturation
Swr irreducible water saturation
T system temperature (K)
T0 initial temperature (K)
Tb boundary temperature (K)
TE environment temperature (K)
Twell well-wall heating temperature (K)
t time (s)
νgr velocity of gas in r-direction (m/s)
νgx velocity of gas in x-direction (m/s)
νwr velocity of water in r-direction (m/s)
νwx velocity of water in x-direction (m/s)
x axial distance
g gas
w water
r radial distance
s porous media
φ porosity
σI throttling coefficient for the i phase
ρg density of gas (kg/m3)
ρw density of water (kg/m3)
µg viscosity of gas (Pa·s)
µw viscosity of water (Pa·s)
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