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Abstract: With the increasingly serious energy crisis and environmental pollution, the short-term
economic environmental hydrothermal scheduling (SEEHTS) problem is becoming more and more
important in modern electrical power systems. In order to handle the SEEHTS problem efficiently,
the parallel multi-objective genetic algorithm (PMOGA) is proposed in the paper. Based on the
Fork/Join parallel framework, PMOGA divides the whole population of individuals into several
subpopulations which will evolve in different cores simultaneously. In this way, PMOGA can
avoid the wastage of computational resources and increase the population diversity. Moreover, the
constraint handling technique is used to handle the complex constraints in SEEHTS, and a selection
strategy based on constraint violation is also employed to ensure the convergence speed and solution
feasibility. The results from a hydrothermal system in different cases indicate that PMOGA can
make the utmost of system resources to significantly improve the computing efficiency and solution
quality. Moreover, PMOGA has competitive performance in SEEHTS when compared with several
other methods reported in the previous literature, providing a new approach for the operation of
hydrothermal systems.

Keywords: parallel computing; economic environmental hydrothermal scheduling; multi-objective
optimization; multi-objective genetic algorithm; constraint handling method

1. Introduction

Along with the rapid development of global economy over the past several decades, the power
demand has increased continuously, and a large amount of hydro and thermal plants have been
successively built to supply sufficient energy [1–3]. However, thermal plants inevitably produce
emissions of pollutants like sulfur oxide and nitrogen oxide, which gives rise to a series of serious
environmental problems and high social economic costs [4–6]. Given to strong awareness about
sustainable development, short-term economic environmental hydrothermal scheduling (SEEHTS) is
becoming one of the most important optimization problems in modern electrical power systems [7].
The main aim of SEEHTS is to choose the optimal operational process in a scheduling period to
minimize the total fuel cost and pollutant emission cost simultaneously, while satisfying a group of
equality and inequality constraints imposed on the system, including generation limits of hydro and
thermal plants, storage and discharge limits and hydraulic balance of hydro plants, and load balance.
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Hence, due to the coupling characteristics in constraints and the competitiveness between objectives,
SEEHTS becomes a high-dimensional multi-objective constrained optimization problem [7,8].

Many researchers have been applying every effort to develop efficient optimization algorithms
to solve the SEEHTS problem. These methods can be roughly divided into two categories: one is
single-objective optimization algorithms and the other is multi-objective optimization algorithms [9].
The former methods usually use the method of weighting, target or constraints conversion to transform
the SEEHTS into a single-objective problem, then use standard mathematical methods, like linear
programming or nonlinear programming to solve it. Although a great deal of computation can be
avoided in most cases, there are such issues as sensitivity to transformation coefficients, high memory
requirements, and difficulty to obtain compromise solution sets in one trial [10].

On the other hand, the latter mainly use multi-objective evolutionary algorithms (MOEAs)
such as the multi-objective genetic algorithm (MOGA), multi-objective particle swarm optimization,
multi-objective gravitational search algorithm, and multi-objective differential evolution to handle
the SEEHTS problem [11,12]. The MOEAs have no strict requirements on the continuity and
differentiability of optimization problems, and usually are able to obtain Pareto solution sets rather
than one solution in a single run [13]. However, due to the stochastic optimization mechanism, MOEAs
may suffer from the problems of premature convergence and solution volatility [14–16]. Sometimes,
the satisfactory Pareto solutions cannot be obtained. In addition, when the problem scale reaches a
certain large degree, the population diversity and computation cost will be intolerable [17–19]. Thus,
there is some space to improve MOEAs for the SEEHTS problem. In general, we can modify the search
mechanism of MOEAs or use advanced computer technologies to alleviate these defects [20,21]. Here,
parallel technologies are used to enhance the performance of MOEAs.

Recently, with the increasing popularity of multi-core technology, multi-core processors have
become the standard configuration of personal computers, workstations and servers, providing
the essential hardware conditions for the implementation of parallelization [22,23]. For parallel
computation in multi-core computers, the large computational task is divided into several smaller
subtasks to be concurrently executed in different cores [20], which can help shorten the computing
time and improve the resource utilization efficiency [24]. Nowadays, multi-core parallel computing
technology is a hot research area achieving great success in the fields of scientific research and
engineering practice [21,25]. However, to our knowledge, there are a few reports about using the
multi-core parallel technology to solve the SEEHTS problem. Therefore, it is of great importance to
develop parallel optimization algorithms for the SEEHTS problem, and in the paper, we focus on the
multi-core parallelization of MOEAs to solve the complicated SEEHTS problem.

To achieve parallel computing, many parallel frameworks have been developed by different
companies or institutions, such as Fork/Join, open multi-processing and message passing interface [21].
Since the parallel framework can have a significant impact on the performance of parallel algorithms,
we should take many factors into consideration when choosing the framework, such as programming
language and operating environment [26,27]. Here, given that our algorithms are encoded in Java
language, for the ease of implementation, the Fork/Join framework is used for the realization of
algorithm parallelization [24,28]. As a standard Java parallel program platform, Fork/Join can help
programmers design parallel optimization algorithms with cross-platform advantages. Based on the
non-dominated sorting genetic algorithm-II (NSGA-II) [17,29–31], the parallel multi-objective genetic
algorithm (PMOGA) which combines the merits of NSGA-II and parallel computing is proposed.
Finally, PMOGA is applied to a mature hydrothermal system consisting of four hydro plants and
three thermal plants. The results from different cases show that the proposed approach has better
convergence speed and Pareto optimal front performance than traditional methods, demonstrating the
effectiveness of our methods.

Moreover, to clearly understand our work, the contributions of this paper can be summarized as:
(1) an optimization model is presented for SEEHTS; (2) a novel PMOGA combining the advantages of
MOGA and parallel techniques is proposed to enhance the computational efficiency and population
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diversity simultaneously; (3) a new heuristic constraint handling method based on the two-stage
proportional adjustment idea is proposed to ensure the feasibility of solutions; and (4) our method
outperforms several other methods, which proves to be an alternative tool for the SEEHTS problem.

The rest of this paper is organized as follows. Section 2 introduces the mathematical model for
the SEEHTS problem. Section 3 presents the proposed PMOGA method. Section 4 gives the details
of PMOGA for the SEEHTS problem. Section 5 provides the experimental results and discussions.
Section 6 presents the conclusions.

2. Problem Formulation

2.1. Object Function

Since the short-term hydrothermal system scheduling minimizes both environmental pollutant
and economic costs simultaneously, the optimization objectives can be described as follows:

min ( feco, femi) (1)

where feco ($) and femi (lb) denote the total economic cost and environmental cost, respectively.

2.1.1. Economic Objective

Generally, the fuel cost for thermal plants can be seen as the sum of a quadratic and a sinusoidal
function representing the valve-point effect. The economic objective is to minimize the total fuel cost
of hydrothermal system over the planning period, which can be described as follows:

min feco =
NT

∑
i=1

J

∑
j=1

fi

(
Pj

Ti

)
=

NT

∑
i=1

J

∑
j=1

{
ai + bi · P

j
Ti + ci ·

(
Pj

Ti

)2
+
∣∣∣di · sin

[
ei ·
(
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Ti − Pj

Ti

)]∣∣∣} (2)

where NT is the number of thermal plants; J is the number of time intervals; Pj
Ti is the power generation

of the i-th thermal plant at the j-th interval in MW; fi

(
Pj

Ti

)
denotes the fuel cost function of the i-th

thermal plant at the j-th interval in $; ai ($/h), bi ($/MWh), ci ($/(MW)2h), di ($/h) and ei (1/MW)
are the fuel coefficients of the i-th thermal plant , respectively; Pmin

Ti is the minimum power of the i-th
thermal plant in MW.

2.1.2. Environmental Objective

Compared to hydropower plants, thermal plants may produce some atmospheric pollution during
power generation. Thus, the environmental objective is to minimize the total emission pollutants of
thermal generators as much as possible, which can be expressed as follows:

min femi =
NT

∑
i=1

J

∑
j=1

ei

(
Pj

Ti

)
=

NT

∑
i=1

J

∑
j=1

{
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j
Ti + γi ·

(
Pj

Ti

)2
+ ηi · exp

(
θi · P

j
Ti

)}
(3)

where ei

(
Pj

Ti

)
is the emission cost function of the i-th thermal plant at the j-th interval in lb. αi (lb/h),

βi (lb/MWh), γi (lb/(MW)2h), ηi (lb/h) and θi (1/MW) are the emission coefficients of the i-th thermal
plant , respectively.

2.2. Constraints

In SEEHTS, a large amount of equality and inequality constraints must be considered, such as
water and load balances, reservoir discharge rates, and technical constraints for hydro or thermal
generators. Besides, for the purposed of persistence, the variable units are the same as those in [32,33].
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2.2.1. Power Balance Constraints

NT

∑
i=1

Pj
Ti +

NH

∑
k=1

Pj
Hk = Pj

D + Pj
L, j ∈ [1, J] (4)

where NH is number of hydro plants in system; Pj
D is the system load at the jth interval in MW; Pj

L is
the power transmission loss at the j-th interval in MW, which is described as follows:

Pj
L =

NT+NH

∑
i=1

NT+NH

∑
m=1

Pj
i · B

m
2i · P

j
m+

NT+NH

∑
i=1

B1i · P
j
i + B0, j ∈ [1, J] (5)

where Pj
m denotes the power generation of the m-th plants in system at the j-th interval in MW; Bm

2i , Bm
1i

and B0 (MW) represent the power transmission loss coefficients, respectively.
Furthermore, Pj

Hk denotes the power output of the kth hydro plant at the j-th interval in MW,
which is a quadratic function of water discharge and storage volumes as follows [32,34]:

Pj
Hk = Ck1 ·

(
V j

Hk

)2
+ Ck2 ·

(
Qj

Hk

)2
+ Ck3 ·V

j
Hk ·Q

j
Hk + Ck4 ·V

j
Hk + Ck5 ·Q

j
Hk + Ck6, j ∈ [1, J] (6)

where Ck1, Ck2, Ck3, Ck4, Ck5 and Ck6 represent the generation coefficients of the k-th hydro plant,
respectively. The units of Ck1, Ck2 and Ck3 are respectively MW/(104·m3)2, the units of Ck4 and Ck5 are
respectively MW/104·m3, while the unit of Ck6 is MW. V j

Hk is the initial storage of the k-th hydro plant

at the j-th interval in 104·m3. Qj
Hk is the water discharge of the k-th hydro plant at the j-th interval

in 104·m3.

2.2.2. Thermal Plant Power Output Capacity Constraints

Pj,min
Ti ≤ Pj

Ti ≤ Pj,max
Ti , i ∈ [1, NT ], j ∈ [1, J] (7)

where Pj,max
Ti and Pj,min

Ti are the maximum and minimum power output of the i-th thermal plant at the
j-th interval in MW, respectively.

2.2.3. Hydro Plant Power Output Capacity Constraints

Pj,min
Hk ≤ Pj

Hk ≤ Pj,max
Hk , k ∈ [1, NH ], j ∈ [1, J] (8)

where Pj,max
Hk and Pj,min

Hk are the maximum and minimum power output of the k-th hydro plant at the
j-th interval in MW, respectively.

2.2.4. Reservoir Storage Volume Constraints

V j,min
Hk ≤ V j

Hk ≤ V j,max
Hk , k ∈ [1, NH ], j ∈ [1, J] (9)

where V j,max
Hk and V j,min

Hk represent the maximum and minimum storage volume of the k-th hydro plant
at the j-th interval in 104·m3, respectively.

2.2.5. Water Discharge Constraints

Qj,min
Hk ≤ Qj

Hk ≤ Qj,max
Hk , k ∈ [1, NH ], j ∈ [1, J] (10)
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where Qj,max
Hk and Qj,min

Hk represent the maximum and minimum water discharge of the k-th hydro plant
at the j-th interval in 104·m3, respectively.

2.2.6. Water Dynamic Balance Constraints

V j
Hk = V j−1

Hk + I j
Hk + ∑

l∈Ωk

(
Q

j−τk
l

Hl + S
j−τk

l
Hl

)
−Qj

Hk − Sj
Hk , k ∈ [1, NH ], j ∈ [1, J] (11)

where I j
Hk and Sj

Hk represent the local inflow and water spillage of the k-th hydro plant at the j-th
interval in 104·m3, respectively. To be mentioned, for simplicity, it is assumed that all the water
discharge is used for generation. Ωk is the set of directly upstream hydro plants above the kth hydro
plant. τk

l is the water transport period from hydro plant l to k.

2.2.7. Initial and Terminal Storage Volume Constraints

 V j
Hk

∣∣∣j=0
= Vbeg

Hk , k ∈ [1, NH ]

V j
Hk

∣∣∣j=T
= Vend

Hk , k ∈ [1, NH ]
(12)

where Vbeg
Hk and Vend

Hk are the initial storage volume and final storage volume of the k-th hydro plant in
104·m3, respectively.

3. Parallel Multi-Objective Genetic Algorithm

3.1. Overview of Multi-Objective Genetic Algorithm

In fact, multi-objective optimization (MOO) has found many applications in the energy field.
Without loss of generality, supposing that there are n objectives to be minimized, which is defined as
f (x) = [f 1(x), f 2(x), . . . , fn(x)], where fi(x) is the ith objective and x is the decision vector. Generally, in
MOO problems, no one solution is better than any other solutions with respect to all objectives. Hence,
MOO aims at finding the Pareto optimal solution set consisting of alternative compromise solutions
for all the objectives [31,35–37].

The non-dominated sorting genetic algorithm-II, NSGA-II for short, is one of the most classical
multi-objective genetic algorithms used to solve MOO problems [30]. Due to its practicality and
feasibility, NSGA-II is chosen as the method to be parallelized in this research. In the NSGA-II, each
potential solution for the optimization problem at hand is treated as one individual surviving in
nature. After randomly generating the initial population in the search space, three basic evolutionary
operators—the selection operator, crossover operator and mutation operator—are used to produce the
new population composed of elite individuals. Moreover, using the fast sorting method and crowding
distance strategy, all the Pareto solutions obtained at each cycle will be dynamically updated [38,39].
The iterative process will be not stopped until the terminal condition is met, then the final individuals
represent the approximate optimal Pareto solutions. The procedures of NSGA-II are briefly described
as follows:

Step 1: Preparation and initialization. Determine the necessary computational parameters of the
algorithm, and generate the parent population randomly in the feasible space.

Step 2: Calculate the objective function values and constraint violation value of each solution in the
parent population.

Step 3: Fast non-dominated sorting the parent population. Each solution is assigned a front level
equal to its own non-domination level. Then, calculate the crowding distance value of all the
individuals at each non-domination level, which will be used to sort the parent population in
a descending order.
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Step 4: Selection operation. Two individuals randomly chosen from the hybrid population are
compared, and the one with better front level and crowding distance value will be selected as
the candidate solution in the mating pool.

Step 5: Crossover and mutation operation. To enhance the population diversity, the predefined
crossover operator and mutation operator will be used to generate the offspring population.

Step 6: The parent population and offspring population are combined and sorted based on the
non-domination and crowding distance. Then, the better solutions will be chosen as the
members in the new generation.

Step 7: Repeat Steps 2 to 6 until the maximum iteration is reached, then export the Pareto
optimal solutions.

3.2. Fork/Join Parallel Framework

As a famous parallel framework based on the divide-and-conquer strategy, Fork/Join first divides
the complicated computational task into a series of smaller subtasks to be simultaneously solved by
simple methods, and then merges the solutions of all the subtasks to obtain the final optimal result of
the original problem [20,26]. Figure 1 shows a diagram of the Fork/Join framework. In the Fork/Join
framework, the threshold is used to control the scale of the subtasks and decide whether to implement
the decomposition process. Thus, the threshold selection has direct impact on the performance of
parallel methods: smaller value usually brings about heavy management expenses spent on subtasks,
while larger value cannot make full use of the abundant multi-core resource in computers. Thus, the
threshold value should be chosen carefully before the calculation. To obtain better parallelization
performance, the threshold here is defined as follows:

T = da/Pe (13)

where T is the threshold value; a is the scale of the parent task; P is the number of units for parallel
computing; and dxe represents the minimum integer bigger than x.

In Fork/Join, to reduce the extra cost caused by the frequent creation and closure of worker
threads, the thread pool where the number of threads is equal to the number of cores is created at the
beginning. During the parallel computation process, to avoid wasting multi-core resources, Fork/Join
uses the work stealing technique to handle the work queue contention problem. Besides, as Fork/Join
is an open source project, with little knowledge of the technical parallelization, programmers can call
the universal application programming interface to develop procedures running in many operating
systems that support Java virtual machine operation [26]. Thus, due to the above outstanding merits,
Fork/Join is employed in this paper to realize the implementation of parallel algorithms for solving
the SEEHTS problem.
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3.3. Parallel Multi-Objective Genetic Algorithm

Although the NSGA-II algorithm has been successfully employed to solve multi-objective
problems, this method still has some disadvantages: (1) considering the worst case of all operations,
the overall complexity of NSGA-II exhibits an approximate square growth [30], i.e., O(M·N2), where
M and N denote the number of objectives and individuals, respectively; (2) at the latter evolution
process, the diversity of individuals will significantly reduce, and the population tends to emerge
the premature convergence [29]. When handling large-scale engineering problems, NSGA-II may
take a long computation time to finish the entire evolution process, but the pseudo Pareto optimal
solutions are obtained in the end. Then, inspired by some earlier studies on the small population
technique [40,41] and multi-core parallel technology [20,21], the PMOGA is proposed in this section to
alleviate the above problems in MOGA.

Figure 2 shows a map of the population decomposition process in PMOGA, while the map of
the PMOGA algorithm is given in Figure 3. In the PMOGA, the calculation of the original larger
population is treated as the parent task. After the initialization step, the divide-and-conquer strategy is
used to divide the task into several smaller subpopulations which will be executed simultaneously in
different cores or threads. Each computing unit only answers for the task assigned by thread manager,
and all the subpopulations start searching for the feasible Pareto solutions. The parallel processing
will not be stopped until all subtasks finish the corresponding calculation task. Once the calculation of
all subtasks is done, the main thread will collect the final Pareto solutions of all the subpopulations
and choose the best individuals to form up the optimal Pareto solution set.
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In summary, our method can combine the advantages of MOGA and parallel technique so as to
enhance the population diversity and computational efficiency simultaneously. On the one hand, as
shown in Figure 4, PMOGA can maintain the population diversity by dividing the whole population
into several small subpopulations to search for Pareto solutions independently in the problem space.
The small-population based strategy can help increase the exploitation and exploration ability of
swarms and avoid the prematurity problem of MOGA as far as possible.
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On the other hand, by using the parallel technique, PMOGA can reduce the execution time of
population evolution significantly. Assume there are N individuals and M objectives, when PMOGA
is performed in P units, the number of individuals in each subpopulation is about N/P, and the
complexity of each subtask is reduced to O(M·(N/P)2), which indicates that PMOGA lowers the
computational complexity and improves the efficiency compared with MOGA. In addition, with the
increase of cores involved in the calculation, the acceleration effect of the algorithm will become more
obvious, and the algorithm can finish more tasks within the same computation time. Thus, based on
the parallel technique and population decomposition strategy, the proposed PMOGA can effectively
address the complicated SEEHTS problem.

4. PMOGA for Short-Term Economic Environmental Hydrothermal Scheduling

In this section, some practical strategies are proposed to deal with complicated constraints in the
SEEHTS problem.

4.1. Structure of Individuals

For convenience, the water discharge of hydro plants and power generation of thermal plants
are selected as decision variables for evolution. The structure of an individual is expressed by the
following real-coded matrix consisted of some decision variables:

X =


Q1

H1 Q1
H2 · · · Q1

NH
P1

T1 P1
T2 · · · P1

TNT

Q2
H1 Q2

H2 · · · Q2
NH

P2
T1 P2

T2 · · · P2
TNT

...
... Qj

Hk
...

...
... Pj

Ti
...

QJ
H1 QJ

H2 · · · QJ
NH

PJ
T1 PJ

T2 · · · PJ
TNT

 (14)

Thus, each individual contains the detailed scheduling decision information of all the NH + NT
generators in T periods, and the total dimension of the population is NP·(NH + NT)·T, where NP
denotes the number of individuals in the population.

4.2. Initialization of Individuals

During the initialization phase, the elements of all the NP individuals are generated randomly in
the feasible range of water discharge in hydro plants and power output in thermal plants, which is
as follows: Qj

Hk = Qj,min
Hk + U(0, 1) ·

(
Qj,max

Hk −Qj,min
Hk

)
Pj

Ti = Pj,min
Ti + U(0, 1) ·

(
Pj,max

Ti − Pj,min
Ti

) , i ∈ [1, NT ], k ∈ [1, NH ], j ∈ [1, J] (15)

where U(0,1) denotes the number distributed uniformly in the range of [0,1].
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4.3. Constraint Handling Method

Since the SEEHTS involves a number of complex constraints, the newly generated individuals in
the initialization phase and evolution process may not satisfy all the necessary constraints, which will
influence the convergence speed of algorithms [29,33]. Thus, a heuristic strategy for repairing infeasible
solutions is proposed in this section to enhance the computing efficiency of algorithms. Moreover,
the equality constraints (power and water balances) are solved through an iterative scheme for each
set of values of decision variables given by the optimizer, and they are not handled as part of the
optimization algorithm, while only bounds and inequality constraints are handled by the optimizer.

4.3.1. Inequality Constraints Handling Method

When the elements of the newly generated individuals do not satisfy the boundary constraints,
the following formula will be used to modify the infeasible values:

Pj
Ti = max

{
Pj,min

Ti , min
{

Pj,max
Ti , Pj

Ti

}}
(16)

Qj
Hk = max

{
Qj,min

Hk , min
{

Qj,max
Hk , Qj

Hk

}}
(17)

4.3.2. Water Balance Constraints Handling Method

To deal with the water balance constraints, a two stage proportional adjustment method is
proposed. This method first calculates the total water discharge volume, and then adjusts the water
discharge sequence by the relative weight which is gotten by the original water discharge rate in the
total left water discharge volume. The procedure is as follows:

Step 1: Set the hydro plant index k = 1.
Step 2: Calculate the total water discharge of the kth hydro plant. According to Equations (11) and

(12), the terminal reservoir storage volume Vend
Hk can be expressed as follows:

Vend
Hk = Vbeg

Hk +
T

∑
j=1

{
I j
Hk + ∑

l∈Ωk

(
Q

j−τk
l

Hl + S
j−τk

l
Hl

)
−Qj

Hk − Sj
Hk

}
(18)

Thus, the possible total discharge rate Wk of the k-th hydro plant during the whole scheduling
periods is as follows:

Wk =
T

∑
j=1

(
Qj

Hk + Sj
Hk

)
= Vbeg

Hk +
T

∑
j=1

{
I j
Hk + ∑

l∈Ωk

(
Q

j−τk
l

Hl + S
j−τk

l
Hl

)}
−Vend

Hk (19)

Step 3: Use the following formula to adjust the water discharge rate to be feasible value at any periods,
and then the modified water discharge sequence

(
Q1

Hk, Q2
Hk, · · · , QT

Hk
)

is used to calculate the
corresponding storage volumes of the kth hydro plant in the scheduling periods.

Qj
Hk = max

min

Wk ·
Qj

Hk
T
∑

m=j
Qm

Hk

, Qj,max
Hk

, Qj,min
Hk


Wk = Wk −Qj

Hk

, j ∈ [1, J] (20)

Step 4: Set k = k + 1, and if k ≤ NH , go to Step 2; otherwise, the process to adjust water balance
constraints is done.
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4.3.3. Power Balance Constraints Handling Method

In this section, to satisfy the power balance constraints, the output of thermal plants is adjusted
without changing the output of hydro plants in the previous adjustment. The procedure is as follows:

Step 1: Set the period index j = 1.
Step 2: Calculate the power transmission loss by Equation (5) and the total power output Dj left for

thermal plants by Equation (21).

Dj = Pj
D + Pj

L −
NH

∑
k=1

Pj
Hk (21)

Step 3: Use the following formula to adjust the power output of all thermal plants to be feasible value
at the current period:

Pj
Ti = max

min

Dj ·
Pj

Ti
NT
∑

o=i
Pj

To

, Pj,max
Ti

, Pj,min
Ti


Dj = Dj − Pj

Ti

, i ∈ [1, NT ] (22)

Step 4: Set j = j + 1, and if j ≤ T, go back to Step 2; otherwise, the process for handling load balance
constraints is done.

4.4. Selection Strategy Based on Constraint Violation

In theory, the individuals modified by the above constraint handling process can satisfy all the
constraints imposed on hydrothermal systems. However, it is possible that some infeasible solutions
still exist because of various problems. Thus, after the elements are modified to be feasible values
during the constraint handling process, the total violation of individual X will be calculated by
summing the violation of storage volume, power output and system balance, which is as follows:

TV(X) =
NH

∑
k=1

∣∣∣VT
Hk −Vend

Hk

∣∣∣+ T
∑

j=1

∣∣∣∣Pj
D + Pj

L −
NT

∑
i=1

Pj
Ti −

NH

∑
k=1

Pj
Hk

∣∣∣∣
+

T
∑

j=1

NH

∑
k=1

{
max

{
0, V j

Hk −V j,max
Hk , V j,min

Hk −V j
Hk

}
+ max

{
0, Pj

Hk − Pj,max
Hk , Pj,min

Hk − Pj
Hk

}} (23)

From the above equation, it can be found that TV will be zero and a positive number for feasible
solutions and infeasible solutions, respectively. Here, to make full use of the constraint violation
information, the dominance relationship between any two solutions X1 and X2 is modified as below:
(1) the feasible individual always dominates the infeasible one; (2) between two feasible individuals,
the dominance relationship is determined by the objectives and crowding distance; (3) between two
infeasible candidates, the one with smaller violation value is chosen.

4.5. Outline of PMOGA for the SEEHTS Problem

The outline of PMOGA for solving the SEEHTS problem is presented as below:

Step 1: Preparation. Set the computing parameters, such as the population size, the maximum iteration
and the worker threads for parallelization.

Step 2: Initialization. Use the method in Section 4.2 to initialize all the individuals randomly in the
problem space. Then, the main thread creates a thread pool and divides the whole population
into several subpopulations to be concurrently optimized.

Step 3: Subpopulation evolution. For any one subpopulation, use the corresponding crossover,
mutation and selection operators to generate the members for the next cycle, and the whole
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iterative process will not be stopped until the maximum iteration is reached. To be mentioned,
for the target subpopulation, the constraint handling method in Section 4.3 is used to repair
infeasible solutions, while the method in Section 4.4 is employed to verify the performance
of solutions.

Step 4: Stop the calculation. The main thread will shut down the thread pool when all the
subpopulations finish the calculation. Meanwhile, the results of each subpopulation are
collected to form up the optimal Pareto solution set that will be exported as the final solutions
for the problem.

5. Case Study

5.1. Description of the Power System

In this section, we choose a classical interconnected hydrothermal power system to verify the
performance of the proposed method. Figure 5 shows a schematic map of the test hydrothermal system
that has four cascaded hydro plants and three thermal plants. The scheduling period is one day, while
the time interval is 1 h, and the whole number of scheduling intervals is 24. For the power system,
the related coefficients data and operation limits of plants, system load at each period and hydraulic
connection of reservoirs are taken from [32]. These data are not given here due to the space limitations.
For testifying the feasibility of the proposed method, three different case studies were implemented
in the following sections. For three cases, there is some difference in the calculation of the economic
objective and transmission line losses, while they all have 168 decision variables and are subjected
to the necessary boundary constraints, about 192 inequality constraints and 128 equality constraints.
In addition, given that evolutionary algorithms use random numbers, there may be some difference in
the optimal solutions found in different trails. Hence, to compare the performance of algorithms in
each study, we run our algorithms 10 times with a different random number seed.
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5.2. Parameters Setting

Based on lots of trials, the basic parameters of PMOGA are set as follows: the population
size is 1200, the max iterations are 1000, and the size of external archive set is 30. The MOGA
parameters are the same as that of PMOGA. Moreover, the number of worker threads in PMOGA is
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set to be equal to the number of computer cores. All the examples are encoded in Java language and
executed on a personal computer with the Windows XP operating system and one Intel Xeon CPU
E3-1245@3.30 GHz (four cores).

5.3. Simulation Results

5.3.1. Case Study 1

In the first case study, for the sake of simplicity, the valve-point effect and transmission line
losses are not considered. The result of multi-objective cultural algorithm based on particle swarm
optimization (MOCA-PSO) is employed to testify the effectiveness of the proposed method [12].
In order to verify its stability and effectiveness, the algorithm runs the experiment 10 trials
independently for each case with different initial populations. The best compromise solutions in
10 trails obtained by PMOGA are drawn in Figure 6, where it can be seen that both the fuel cost and
emission have a small range of variation, and the 7th trial with smaller objectives is selected as the best
one among the 10 trials [42]. In a similar way, the best trial for the following two cases can be obtained,
which details are not given to save space.Energies 2017, 10, 163 12 of 21 
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Figure 6. Best compromise solutions obtained by PMOGA in 10 independent trials.

Figure 7 shows the Pareto optimal front obtained by various methods, while Table 1 lists the
detailed objective values of both MOGA and PMOGA. To demonstrate the validity of the constraint
handling strategy, Scheme 15 in Table 1 is selected as the trade-off scheduling plan, the hourly reservoir
storage volume is drawn in Figure 8, while the water discharge rates of hydro plants and power
outputs of all plants are shown in Table 2.
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Table 1. The non-dominated schemes obtained by different methods for Case 1.

No.
MOGA PMOGA

No.
MOGA PMOGA

fceo ($) femi (lb) fceo ($) femi (lb) fceo ($) femi (lb) fceo ($) femi (lb)

1 39,716 17,913 39,687 17,936 16 39,812 16,385 39,782 16,136
2 39,721 17,858 39,689 17,528 17 39,821 16,317 39,795 16,074
3 39,722 17,718 39,692 17,381 18 39,833 16,214 39,806 16,023
4 39,728 17,581 39,695 17,235 19 39,854 16,150 39,818 15,977
5 39,730 17,444 39,697 17,144 20 39,866 16,100 39,830 15,937
6 39,732 17,328 39,701 17,049 21 39,879 16,057 39,851 15,879
7 39,736 17,208 39,705 16,951 22 39,894 16,022 39,871 15,836
8 39,744 17,094 39,713 16,795 23 39,910 15,980 39,891 15,804
9 39,751 17,007 39,717 16,720 24 39,922 15,958 39,908 15,781

10 39,755 16,908 39,723 16,644 25 39,947 15,930 39,924 15,763
11 39,761 16,751 39,728 16,573 26 39,972 15,907 39,950 15,740
12 39,772 16,696 39,734 16,508 27 39,989 15,891 39,971 15,727
13 39,777 16,604 39,746 16,388 28 40,002 15,878 40,000 15,714
14 39,790 16,531 39,758 16,291 29 40,026 15,866 40,020 15,709
15 39,797 16,434 39,770 16,207 30 40,048 15,863 40,048 15,706

From the distribution of Pareto solutions in Figure 7, it can be clearly seen that the optimal PMOGA
scheme dominates the solutions of other methods, which means that the PMOGA outperforms both
MOGA and MOCA-PSO in terms of solution convergence and diversity. The economic objective
and emission objective are in conflict with each other because the increasing value of one object will
decrease the other one, which is in line with the results of [10,42]. That’s to say, for the SEEHTS
problem, the lowest fuel costs may lead to damage of the environmental benefit. Meanwhile, with
the same level of fuel cost, the proposed method can obtain the scheme with smaller emission cost in
comparison with other methods. Moreover, Table 2 and Figure 8 indicate that the water discharge and
storage volumes, power outputs are all in the predefined boundaries of the predefined operational
constraints, demonstrating the feasibility and validity of the constraints handling method proposed in
this research. Therefore, the proposed method can provide abundant technical options for planners
and decision makers.
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21 70.15 76.77 53.06 303.97 120.55 152.14 133.36 

22 65.88 79.19 55.35 300.67 104.03 133.69 121.19 
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Figure 8. The water storage processes of Scheme 15 by PMOGA for Case 1.
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Table 2. The detailed results of scheme 15 by PMOGA for case 1.

Period
Hydro Plant Output (MW) Thermal Output (MW)

Ph1 Ph2 Ph3 Ph4 Ps1 Ps2 Ps3

1 79.74 49.00 28.22 132.08 137.57 174.74 148.65
2 80.67 50.16 32.44 129.25 145.79 185.32 156.36
3 77.94 51.30 30.59 125.93 120.42 155.98 137.84
4 75.29 52.93 31.10 121.83 107.25 137.79 123.81
5 74.89 54.50 36.56 115.97 114.75 144.26 129.08
6 76.26 55.50 41.19 139.45 143.29 185.80 158.51
7 77.79 59.85 43.49 190.84 175.00 220.65 182.38
8 77.32 62.78 42.39 227.43 175.00 233.97 191.12
9 79.84 66.47 41.32 261.25 175.00 253.94 212.18

10 78.46 66.80 41.15 273.48 175.00 242.62 202.49
11 79.52 69.59 41.07 281.05 175.00 247.46 206.32
12 82.19 74.65 39.47 284.88 175.00 270.30 223.50
13 81.58 73.37 37.34 287.07 175.00 249.64 205.99
14 79.10 70.85 36.55 285.96 168.91 212.20 176.43
15 78.31 72.09 37.22 285.22 161.63 202.26 173.27
16 80.36 75.54 39.13 289.24 175.00 218.23 182.50
17 79.18 75.99 44.43 294.38 167.18 211.43 177.41
18 81.11 80.40 46.95 297.40 175.00 240.75 198.38
19 78.32 78.78 48.70 299.58 171.02 214.82 178.79
20 76.26 78.72 51.52 304.24 161.85 206.06 171.34
21 70.15 76.77 53.06 303.97 120.55 152.14 133.36
22 65.88 79.19 55.35 300.67 104.03 133.69 121.19
23 68.23 81.78 57.14 296.21 97.42 129.31 119.91
24 67.68 80.86 58.30 291.23 88.22 108.93 104.77

5.3.2. Case Study 2

In this section, the valve-point effect and the constraints of the first case are considered in
the problem formulation. To compare the performance of the proposed method, the improved
multi-objective gravitational search algorithm (IMOGSA) [13] and multi-objective differential evolution
with adaptive Cauchy mutation (MODE-ACM) [4] are employed to solve the same problem. The Pareto
optimal fronts by various methods are drawn in Figure 9, while the numerical results of MOGA and
PMOGA are listed in Table 3. Moreover, the detailed operational processes of Scheme 15 in Table 3 are
given in Table 4 and Figure 10, respectively.
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Figure 9. The optimal Pareto front by different algorithms for Case 2.

From Table 3 and Figure 9, it can be found that the proposed method can gives a group of solutions
closer to the true optimal Pareto front compared with other evolution techniques, which proves that
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PMOGA can be an effective approach to solve complex multi-objective problems. Meanwhile, the
results again prove that there is irreconcilable contradiction between the economic objective and the
environmental objective. For example, in the best economic scheme, the fuel cost of PMOGA is reduced
by 1867 ($) compared to the MOGA. In addition, the results in Table 4 and Figure 10 indicate that all
the variables can satisfy the preset maximum and minimum constraints of the SEEHTS problem, which
proves the validity of the proposed algorithm to deal with complicated constraints. Hence, from the
above analysis, it can be concluded that PMOGA is an alternative method to handle the hydrothermal
system scheduling problem.

Table 3. The non-dominated schemes obtained by different methods for Case 2.

No.
MOGA PMOGA

No.
MOGA PMOGA

fceo ($) femi (lb) fceo ($) femi (lb) fceo ($) femi (lb) fceo ($) femi (lb)

1 43,497 16,864 41,630 17,338 16 45,162 16,195 44,282 16,133
2 43,509 16,805 41,634 17,331 17 45,330 16,152 44,440 16,111
3 43,608 16,743 41,770 17,222 18 45,555 16,112 44,745 16,071
4 43,710 16,697 41,771 16,854 19 45,777 16,073 45,018 16,038
5 43,726 16,648 41,954 16,759 20 46,023 16,043 45,257 16,010
6 43,853 16,597 42,140 16,686 21 46,160 16,007 45,647 15,965
7 43,923 16,552 42,330 16,617 22 46,374 15,990 45,940 15,932
8 44,018 16,488 42,506 16,556 23 46,510 15,978 46,197 15,906
9 44,140 16,429 42,690 16,501 24 46,747 15,958 46,592 15,867
10 44,263 16,366 42,821 16,448 25 46,983 15,906 46,848 15,845
11 44,379 16,324 43,035 16,366 26 47,269 15,901 47,088 15,830
12 44,469 16,287 43,168 16,327 27 47,631 15,879 47,382 15,806
13 44,649 16,269 43,321 16,291 28 47,883 15,860 47,682 15,787
14 44,777 16,245 43,665 16,230 29 48,216 15,855 47,978 15,777
15 44,929 16,223 44,000 16,180 30 48,418 15,844 48,318 15,771

Table 4. The detailed results of scheme 15 by PMOGA for case 2.

Period
Hydro Plant Output (MW) Thermal Output (MW)

Ph1 Ph2 Ph3 Ph4 Ps1 Ps2 Ps3

1 75.49 49.00 28.37 131.88 116.90 209.01 139.35
2 70.71 50.16 23.02 129.03 175.00 192.61 139.47
3 70.35 51.30 18.95 125.74 173.88 125.25 134.53
4 70.04 52.93 24.01 121.63 118.46 124.96 137.97
5 53.36 54.50 24.12 115.87 166.18 125.02 130.95
6 59.85 55.50 36.49 131.91 172.32 204.90 139.02
7 89.98 66.07 38.84 215.74 175.00 213.78 150.59
8 88.24 67.94 37.45 253.73 175.00 214.42 173.22
9 88.37 69.47 34.20 274.74 175.00 220.74 227.47
10 85.20 68.07 34.11 286.53 175.00 212.64 218.45
11 86.22 70.36 33.76 282.50 175.00 222.98 229.18
12 86.81 70.42 29.25 282.04 175.00 280.77 225.71
13 85.83 73.62 32.10 287.88 175.00 226.63 228.93
14 87.93 74.10 32.79 288.16 175.00 217.46 154.57
15 84.82 72.63 37.36 290.14 175.00 209.95 140.11
16 86.17 77.60 40.92 299.86 175.00 213.41 167.03
17 86.12 78.72 44.07 294.99 175.00 214.01 157.09
18 84.74 78.86 46.01 299.35 175.00 282.07 153.97
19 86.29 78.48 47.31 304.91 175.00 215.11 162.91
20 84.61 75.94 49.28 302.47 175.00 212.07 150.63
21 53.64 59.35 53.27 293.40 119.69 190.91 139.74
22 55.60 72.60 55.94 295.47 112.73 128.00 139.66
23 54.31 70.59 58.13 291.98 114.08 124.95 135.97
24 55.10 67.50 58.96 286.87 110.22 124.89 96.46



Energies 2017, 10, 163 16 of 22

Energies 2017, 10, 163 15 of 21 

 

Table 4. The detailed results of scheme 15 by PMOGA for case 2. 

Period 
Hydro Plant Output (MW) Thermal Output (MW) 

Ph1 Ph2 Ph3 Ph4 Ps1 Ps2 Ps3 

1 75.49 49.00 28.37 131.88 116.90 209.01 139.35 

2 70.71 50.16 23.02 129.03 175.00 192.61 139.47 

3 70.35 51.30 18.95 125.74 173.88 125.25 134.53 

4 70.04 52.93 24.01 121.63 118.46 124.96 137.97 

5 53.36 54.50 24.12 115.87 166.18 125.02 130.95 

6 59.85 55.50 36.49 131.91 172.32 204.90 139.02 

7 89.98 66.07 38.84 215.74 175.00 213.78 150.59 

8 88.24 67.94 37.45 253.73 175.00 214.42 173.22 

9 88.37 69.47 34.20 274.74 175.00 220.74 227.47 

10 85.20 68.07 34.11 286.53 175.00 212.64 218.45 

11 86.22 70.36 33.76 282.50 175.00 222.98 229.18 

12 86.81 70.42 29.25 282.04 175.00 280.77 225.71 

13 85.83 73.62 32.10 287.88 175.00 226.63 228.93 

14 87.93 74.10 32.79 288.16 175.00 217.46 154.57 

15 84.82 72.63 37.36 290.14 175.00 209.95 140.11 

16 86.17 77.60 40.92 299.86 175.00 213.41 167.03 

17 86.12 78.72 44.07 294.99 175.00 214.01 157.09 

18 84.74 78.86 46.01 299.35 175.00 282.07 153.97 

19 86.29 78.48 47.31 304.91 175.00 215.11 162.91 

20 84.61 75.94 49.28 302.47 175.00 212.07 150.63 

21 53.64 59.35 53.27 293.40 119.69 190.91 139.74 

22 55.60 72.60 55.94 295.47 112.73 128.00 139.66 

23 54.31 70.59 58.13 291.98 114.08 124.95 135.97 

24 55.10 67.50 58.96 286.87 110.22 124.89 96.46 

 

Figure 10. The water storage processes of Scheme 15 by PMOGA for Case 2. 

Moreover, to further show the effectiveness of the proposed technique, its results is compared 

to the results of other methods in Table 5, including differential evolution (DE) [43], 

quantum-behaved particle swarm optimization with differential mutation (QPSO-DM) [44], and 

improved quantum-behaved particle swarm optimization (IQPSO) [1]. For the ELS case, the fuel 

cost is the only objective to be optimized, and it is not necessary to compare the emissions. Similarly, 

for the EES case, the emissions are the objective we care about, thus the fuel cost is not compared. 

From Table 5, it can be clearly observed that compared with methods reported in previous 

literatures, PMOGA provides results with fewer fuel cost and pollutant emissions in different cases. 

From the comparison with DE, QPSO-DM and IQPSO, the proposed algorithm can reduce the total 

fuel cost by 1870 ($), 279 ($) and 729 ($) in the ELS case; while the emission obtained by PMOGA is 

reduced by 2486 (lb), 1888 (lb) and 1996 (lb) in the EES case. In the CEES case, PMOGA can reduce 

simultaneously the fuel cost and emission compared with the DE and IQPSO, while its solution is 

not dominated by that of QPSO-DM. Thus, PMOGA is able to provide better solutions in 

comparison with other methods while satisfying all the constraints of the hydrothermal system. 

60

90

120

150

180

210

0 4 8 12 16 20 24

S
to

r
a

g
e
 V

o
lu

m
e

Time Period (hour)

Reservoir1 Reservoir2 Reservoir3 Reservoir4

Figure 10. The water storage processes of Scheme 15 by PMOGA for Case 2.

Moreover, to further show the effectiveness of the proposed technique, its results is
compared to the results of other methods in Table 5, including differential evolution (DE) [43],
quantum-behaved particle swarm optimization with differential mutation (QPSO-DM) [44], and
improved quantum-behaved particle swarm optimization (IQPSO) [1]. For the ELS case, the fuel
cost is the only objective to be optimized, and it is not necessary to compare the emissions. Similarly,
for the EES case, the emissions are the objective we care about, thus the fuel cost is not compared.
From Table 5, it can be clearly observed that compared with methods reported in previous literatures,
PMOGA provides results with fewer fuel cost and pollutant emissions in different cases. From the
comparison with DE, QPSO-DM and IQPSO, the proposed algorithm can reduce the total fuel cost by
1870 ($), 279 ($) and 729 ($) in the ELS case; while the emission obtained by PMOGA is reduced by
2486 (lb), 1888 (lb) and 1996 (lb) in the EES case. In the CEES case, PMOGA can reduce simultaneously
the fuel cost and emission compared with the DE and IQPSO, while its solution is not dominated by
that of QPSO-DM. Thus, PMOGA is able to provide better solutions in comparison with other methods
while satisfying all the constraints of the hydrothermal system.

Table 5. Comparison of solutions by PMOGA and other methods for case 2. ELS: economic load
scheduling; EES: economic emission scheduling; CEES: combined economic emission scheduling; DE:
differential evolution; QPSO-DM: quantum-behaved particle swarm optimization with differential
mutation; and IQPSO: improved quantum-behaved particle swarm optimization.

Case Method
Fuel Cost ($) Emission (lb)

Value Improvement Value Improvement

ELS

PMOGA 41,630 - 17,338 -
DE 43,500 1870 21,092 No comparison required

QPSO-DM 41,909 279 30,724 No comparison required
IQPSO 42,359 729 31,298 No comparison required

EES

PMOGA 48,318 - 15,771 -
DE 51,449 No comparison required 18,257 2486

QPSO-DM 45,392 No comparison required 17,659 1888
IQPSO 45,271 No comparison required 17,767 1996

CEES

PMOGA 44,000 - 16,180 -
DE 44,914 914 19,615 3435

QPSO-DM 43,507 −493 18,183 2003
IQPSO 44,259 259 18,229 2049

5.3.3. Case Study 3

In this case, all constraints are considered for accurate formulation. Compared with previous
cases, the power balance constraint makes it much more difficult to solve the SEEHTS because the
power transmission losses changes dynamically with the outputs of plants in system. To verify its
effectiveness, PMOGA is employed for the practical power system with MOGA and HMOCA [45].
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The Pareto optimal schemes obtained by various methods are drawn in Figure 11, and the detailed
objectives of PMOGA and MOGA are listed in Table 6. In addition, the 15th scheme is selected as the
compromise plan, and its scheduling processes are given in Table 7 and Figure 12, respectively.
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Figure 11. The optimal Pareto front by different algorithms for Case 3.

Table 6. The non-dominated schemes obtained by different methods for Case 3.

No.
MOGA PMOGA

No.
MOGA PMOGA

fceo ($) femi (lb) fceo ($) femi (lb) fceo ($) femi (lb) fceo ($) femi (lb)

1 43,891 17,984 42,687 18,471 16 45,567 17,250 44,624 17,292
2 43,898 17,920 42,713 18,440 17 45,733 17,216 44,914 17,223
3 43,948 17,858 42,895 18,339 18 45,940 17,181 45,190 17,173
4 44,046 17,808 42,897 18,099 19 46,188 17,148 45,470 17,134
5 44,151 17,748 43,018 18,002 20 46,381 17,094 45,737 17,094
6 44,276 17,715 43,166 17,907 21 46,599 17,069 45,949 17,062
7 44,377 17,666 43,323 17,830 22 46,778 17,038 46,159 17,032
8 44,449 17,609 43,485 17,760 23 47,054 16,986 46,520 16,980
9 44,546 17,560 43,665 17,693 24 47,355 16,953 46,799 16,944

10 44,635 17,511 43,794 17,627 25 47,589 16,924 47,193 16,898
11 44,790 17,487 43,909 17,563 26 47,868 16,883 47,470 16,869
12 44,925 17,443 43,976 17,495 27 48,149 16,868 47,840 16,834
13 45,040 17,403 44,169 17,403 28 48,445 16,832 48,146 16,814
14 45,266 17,357 44,299 17,364 29 48,770 16,828 48,502 16,798
15 45,470 17,304 44,452 17,326 30 49,047 16,804 48,969 16,783

From the results listed in Figure 11, it can be seen that, with the same size of external archive set,
the Pareto optimal front distribution of PMOGA is wilder than other methods. Therefore, PMOGA has
better performance than other methods in the solution diversity because its schemes are closer to the
true Pareto optimal front. Moreover, from the data in Table 6, we can find that PMOGA can obtain
schemes with smaller objective values than that of the traditional MOGA algorithm. For example,
compared to MOGA, PMOGA can reduce the emission cost by 487 (lb) in the optimal economic scheme
and decrease the fuel cost by 78 ($) in the optimal emission scheme, respectively. From Table 7 and
Figure 12, we can find that the results of PMOGA can satisfy all kinds of equality and inequality
constraints in the hydrothermal system at each period. Moreover, due to the valve-point and power
transmission losses, compared with the compromise solution (Scheme 15) in previous case studies,
there is some visible difference in the scheduling process of plants, and the fuel cost and emission cost
are higher. Hence, PMOGA is an effective optimization algorithm for solving multi-objective problems.
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Table 7. The detailed results of Scheme 15 by PMOGA for Case 3.

Period
Hydro Plant Output (MW) Thermal Output (MW) Total

(MW)
Loss PL
(MW)

Load PD
(MW)Ph1 Ph2 Ph3 Ph4 Ps1 Ps2 Ps3

1 74.00 49.00 25.90 132.38 127.53 210.05 139.80 758.66 8.66 750
2 66.21 50.16 21.49 129.41 175.00 209.78 139.67 791.72 11.72 780
3 74.18 51.73 23.78 126.15 169.25 126.76 137.90 709.75 9.75 700
4 71.95 52.90 34.20 123.33 108.56 126.02 139.44 656.40 6.40 650
5 53.37 54.47 23.28 116.27 102.52 189.88 137.11 676.90 6.90 670
6 61.81 55.47 37.93 132.47 175.00 209.94 139.04 811.66 11.66 800
7 92.14 67.06 41.85 228.93 175.00 210.76 146.52 962.26 12.26 950
8 83.06 64.83 38.43 229.43 175.00 210.63 224.37 1025.75 15.75 1010
9 86.24 62.39 35.80 259.95 175.00 275.29 211.98 1106.64 16.64 1090

10 87.15 72.84 34.17 286.49 175.00 292.70 146.06 1094.41 14.41 1080
11 88.90 73.67 34.76 276.11 175.00 294.93 172.02 1115.39 15.39 1100
12 83.42 70.04 35.67 282.33 175.00 294.31 227.28 1168.05 18.05 1150
13 86.24 67.30 32.08 287.40 175.00 250.75 228.35 1127.12 17.12 1110
14 88.40 73.81 36.53 291.57 175.00 234.43 143.28 1043.02 13.02 1030
15 87.67 74.79 38.86 290.33 175.00 214.74 141.13 1022.53 12.53 1010
16 82.46 75.17 41.48 288.84 175.00 269.66 141.07 1073.68 13.68 1060
17 90.76 79.65 44.94 297.15 175.00 231.20 144.34 1063.04 13.04 1050
18 83.99 80.42 47.46 301.07 175.00 292.90 153.94 1134.77 14.77 1120
19 85.04 81.06 48.67 303.87 175.00 247.51 142.20 1083.35 13.35 1070
20 80.56 78.56 49.66 301.51 175.00 212.09 166.04 1063.42 13.42 1050
21 53.76 67.10 54.18 288.62 104.96 209.72 139.85 918.20 8.20 910
22 54.05 61.35 56.38 293.95 104.08 160.19 137.43 867.42 7.42 860
23 61.03 75.11 57.88 292.64 105.76 125.29 139.51 857.22 7.22 850
24 56.77 74.17 58.71 286.47 103.00 125.21 101.68 806.01 6.01 800
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Figure 12. The water storage processes of Scheme 15 by PMOGA for Case 3.

5.4. Parallelization Performance

5.4.1. Metrics

The speedup and efficiency are two indicators frequently used to evaluate the performance of
parallel computation [20,26], which are defined as follows:

SP = TS
/

TP (24)

EP = SP
/

P (25)

where SP and EP are the speedup and efficiency, respectively; P is the number of cores; TS is the serial
computation time of the task in a single core; and TP is the parallel computation time of the task with
P computing units.
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5.4.2. Results Analysis and Discussion

In this section, a group of scenarios with different populations and worker threads for three cases
was executed to test the computational efficiency of parallel algorithms in multi-core environment.
Table 8 lists the computation time in different scenario using both serial and parallel algorithms with
various working threads.

Table 8. Serial and parallel computation time in different cases (time: s).

Scenario Popsize MOGA Time
PMOGA Time PMOGA Speedup PMOGA Efficiency

2 4 8 2 4 8 2 4 8

Case 1

600 155.3 62.9 37.8 59.2 2.47 4.11 2.62 1.24 1.03 0.33
800 244.7 94.8 53.7 78.5 2.58 4.56 3.12 1.29 1.14 0.39

1000 346.7 127.0 68.9 95.8 2.73 5.03 3.62 1.36 1.26 0.45
1200 455.5 163.6 80.9 120.0 2.78 5.63 3.79 1.39 1.41 0.47

Case 2

600 170.2 69.8 39.5 56.1 2.44 4.31 3.04 1.22 1.08 0.38
800 258.0 97.5 54.4 79.0 2.65 4.74 3.27 1.32 1.18 0.41

1000 349.1 131.5 66.0 102.9 2.65 5.29 3.39 1.33 1.32 0.42
1200 461.6 167.2 82.3 121.1 2.76 5.61 3.81 1.38 1.40 0.48

Case 3

600 201.2 83.9 46.2 55.0 2.40 4.36 3.66 1.20 1.09 0.46
800 288.1 116.3 63.0 75.2 2.48 4.57 3.83 1.24 1.14 0.48

1000 393.7 151.9 80.4 88.1 2.59 4.90 4.47 1.30 1.22 0.56
1200 508.0 192.2 95.5 106.6 2.64 5.32 4.77 1.32 1.33 0.60

From Table 8, it can be observed that the number of threads has no effect on the performance of
algorithms in the serial situation, which means that conventional serial algorithm cannot make full
use of the abundant computing resources available in a multi-core environment. On one hand, as the
problem complexity increases, the MOGA execution time shows an obvious increase: with the same
600 individuals, the time consumption increases by 46 s from Case 1 to Case 3. On the other hand,
the computation time of MOGA was increased rapidly with the increase of population: in the first case,
the time for 1200 individuals increases 3-fold in comparison with 600 individuals. Thus, the MOGA
will experience a rapid increase with the expansion of problem scale, which motivates us to develop a
parallel algorithm to improve the performance of MOGA.

The time of PMOGA in different cases are also listed in Table 8. Compared with the MOGA,
the PMOGA can significantly shorten the computation time. When there are 1200 individuals, the time
reductions are 291.8 s, 374.5 s and 335.4 s for two threads, four threads and eight threads in the
first case. In addition, the speedup increases with the number of individuals and threads, and there
is super linear speedup when the number of worker threads is lesser than the maximum number
of computational cores. This is because MOGA exhibits a quadratic growth in the computational
complexity, which means that the population with greater size needs longer computation time; while
in PMOGA, each subpopulation has relative smaller scale than MOGA, which dramatically reduces
the time spent on iteration process of the algorithm. Besides, the speedup has a quick decrease when
the number of worker threads exceeds the maximum number of computational cores. The reason lies
in that under such circumstances, the thread pool needs more communication time and memory usage,
which has a negative effect on the computational efficiency [21,26]. Thus, unreasonable worker threads
only use some of the parallel resources in the multi-core computer, and the number of threads equal to
the cores can obtain the best performance for most tasks.

Moreover, it can be seen from Table 8 that the efficiency in the same case has a quick drop as
the computing units increase. This is because more time is spent on the internal storage sharing and
working tasks communication between different computing units [20]. In other word, the task with
larger scale tends to obtain greater efficiency in the same condition. Hence, the above analysis indicates
that, for the SEEHTS problem, the parallel technology can make full use of the abundant computational
resources to enhance the efficiency of algorithms.
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6. Conclusions

The SEEHTS is classified as a multi-objective optimization problem subject to a set of complex
constraints. In the present study, a new method known as PMOGA is proposed to handle the
SEEHTS problem. Based on the Fork/Join parallel framework and natural parallelism of evolutionary
algorithms, PMOGA makes full use of the abundant computational resources in a multi-core
environment to enhance the performance of MOGA. A mature hydrothermal test system is used
to test the effectiveness of the proposed approach. The simulation results in different cases indicate
that compared with MOGA and several methods reported in the previous literature, PMOGA can
obtain better results with less fuel cost and environment pollution. Besides, with two worker threads,
the execution time of PMOGA for different population sizes is less than half that of MOGA for
computing, demonstrating the effectiveness of the parallel technique. Furthermore, the speedup
and efficiency of PMOGA are improved significantly with the expansion of problem scale, proving
its potential to solve large-scale multi-objective optimization problems. Thus, the practicality and
feasibility of PMOGA is verified adequately by the results of various cases, which indicate that the
PMOGA can be a competitive tool for the SEEHTS problem. Since the choices of objective have great
influence on the operational process, it is recommended that decision makers should pay careful
attention to the hydrothermal scheduling so as to balance the economic and environmental objectives,
and choose the approximate compromise scheme based on the actual demands of power systems.
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