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Abstract: This paper presents an integrated approach of discrete fracture network modelling for
a naturally fractured buried-hill carbonate reservoir in the Jingbei Oilfield by using a 3D seismic
survey, conventional well logs, and core data. The ant tracking attribute, extracted from 3D seismic
data, is used to detect the faults and large-scale fractures. Fracture density and dip angle are
evaluated by observing drilling cores of seven wells. The fracture density distribution in spatiality
was predicted in four steps; firstly, the ant tracking attribute was extracted as a geophysical log; then
an artificial neural network model was built by relating the fracture density with logs, e.g., acoustic,
gamma ray, compensated neutron, density, and ant tracking; then 3D distribution models of
acoustic, gamma ray, compensated neutron and density were generated by using a Gaussian random
function simulation; and, finally, the fracture density distribution in 3D was predicted by using
the generated artificial neural network model. Then, different methods were used to build the
discrete fracture network model for different types of fractures of which large-scale fractures were
modelled deterministically and small-scale fractures were modelled stochastically. The results show
that the workflow presented in this study is effective for building discrete fracture network models
for naturally fractured reservoirs.
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1. Introduction

Fracture prediction is important for evaluating and developing fractured reservoirs [1]. However,
it is difficult to characterise fractures properly because of their extremely heterogeneity and complexity
features [2,3]. Geologists and engineers tried to use different types of data to describe the fractures,
e.g., seismic attributes, geophysical logs, drilling cores, and outcrops [4,5]. A seismic edge detection
method was used to conduct stratigraphic and structural interpretations of geological features [6,7].
However, some subtle faults and fractures may cause minor changes in the seismic waveform which
are not easily correlated using the conventional interpretation of the seismic section. Thus, many
seismic interpreters tried to use seismic attributes. Dip and azimuth attributes were put forward
by Dalley et al. [8], who described the basic algorithm for using dip and azimuth attributes to
interpret the faults. Later, dip and azimuth attributes were used in identifying subtle faults, as
well [6,9]. More recently, curvature attribute was widely used in delineating faults [6,10,11] and
predicting fracture orientations and distributions [7,12,13]. Coherency attribute developed by Bahorich
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and Farmer [14], can calculate the similarity of the seismic amplitude volume to enhance the
seismic edge. Marfurt et al. [15] and Gresztenkorn and Marfurt [16] developed an algorithm called
semblance-based coherency, which allowed us to analyse data of lesser quality than our original
three-trace cross-correlation-based algorithm. An ant tracking attribute is based on the ant colony
algorithm which mimics the behaviour of ants to track the continuous feature [6]. This algorithm is
powerful when it is used to interpret subtle faults and fractures [4,6,17–20]. In recent years, some
researchers tried to combine multiple attributes, which were used to detect the seismic edges, to
enhance the interpretation for the subtle faults and fractures. Nasseri et al. [4] used chaos, variance,
dip deviation, and coherency to detect the discontinuities of the amplitude volume which then
were used to interpret the subtle faults and fractures; then the ant colony algorithm and fuzzy
c-means clustering were used to enhance these discontinuous features (subtle faults and fractures).
Basir et al. [6] employed dip, similarity, and curvature attributes to detect the discontinuity of the
seismic volume and then used the ant tracking approach to enhance the seismic edge. Final faults were
interpreted by combining these attributes through artificial neural network (ANN) algorithm [21–24].

Seismic attributes cannot identify small-scale fractures (SSF) because of the resolution restriction
of seismic data volume [25]. However, borehole data, e.g., wireline logs, drilling and core data,
provide information of fractures directly or indirectly. Therefore, researchers studied the SSFs by using
core observation, image log [26–28] and geophysical logging interpretation [29–31] combining some
mathematical methods [32]. Image log interpretation is an advanced technique to detect and evaluate
the fracture intensity and orientation. However, there is no image log in this study area, which forces
us to assess the fractures using conventional geophysical logs. Geophysical logs, e.g., temperature
log, caliper (CAL), spontaneous potential (SP) curve, natural radioactivity logs, density logs (DEN),
compensated neutron logs (CN), and acoustic logs (AC), etc., can reflect fracture features [33].

Fracture density is an essential parameter to characterise the fracture occurrence. Martinez [34]
provided a fuzzy logic technique to predict the fracture density using conventional geophysical
logs. Al-Anazi and Babadagli [29] predicted the fracture density using ANN model of which static
geophysical logs and dynamic production data were combined together. Tokhmchi et al. [30] predicted
the fracture density by converting the conventional geophysical logs, e.g., CAL, AC, DEN, and
photoelectric (PHE), to energy logs; then a linear relationship between energy logs and fracture density
was established and then used to predict the fracture density. Zazoun [31] predicted the fracture
density for un-cored wells by using wireline logs, e.g., AC, gamma ray (GR), DEN, CN, CAL and depth
logs, and measured fracture density data from core observations. All of these methods predict the
fracture density successfully and quantitatively at the depth point. Nevertheless, it is still a challenge
and shortage in the literature to predict the fracture density distribution in 3D. Geostatistics is a widely
used method in analysing the trend and structure of the spatially distributed data. From the controlling
factors of this trend and structure, a geologically reasonable interpolation scheme can be used to build
2D/3D geological models [35,36]. In this study, we tried using geostatistics to predict the spatial
distribution of the fracture density by combining ANN algorithm.

Fracture modelling is to simulate the fractures and the fluid flow in the fracture systems [5].
Two models, e.g., equivalent continuous model and the discrete fracture network (DFN) model, were
used to describe the fracture distribution. The equivalent continuous model was brought forward
by Barenblatt and Zheltov [37] and developed by later researchers [38–40]. In this method, most
fluid stores in the matrix and flow through fractures; the fluid flow between matrix and fractures is
presented by a transfer function [41]. DFN modelling is an advanced approach for fracture modelling,
of which different sets of fractures could be created. Each fracture is presented by a plane with
specific parameters such as dip angle, dip azimuth and aperture, etc. The fracture model built
by DFN approximates the real fracture distribution in plays [42,43]. Both of the deterministic and
stochastic fractures [44,45] can be generated using DFN. The petrophysical properties, e.g., porosity
and permeability, can be calculated by upscaling the DFN model [27,46,47] into cells in order to
simulate the reservoir fluid flow [48].



Energies 2017, 10, 183 3 of 19

In this study, we tried to use seismic data to detect and extract the subtle faults and large-scale
fractures because the fluid flow in the study area is mainly through faults and fractures [49,50].
Geophysical logs and core observations were used to predict the parameters of small-scale fractures.
The fracture density is calculated by an ANN model based on the spatially distributed geophysical
properties. Figure 1 shows the workflow.
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2. Data and Methodology

2.1. Geological Settings for Jingbei Oilfield

The Jingbei Oilfield, with a proved area of 14.1 km2 for oil, is located in the north of the Jinganbao
tectonic belt in the Damingtun Depression, Northeast China (Figure 2a). The buried depth of the oil
zone, which belongs to the Proterozoic formation [51] and partly to the Archaeozoic formation, ranges
from 2450 m to 3100 m [49,52]. Until 2011, 7.57 Mt of oil had been produced. The lithologies for the
Proterozoic formation are quartzite, dolomite, slate, and limestone while the Archaeozoic formation
beneath consists of mixed granite and metamorphic rocks (Figure 2b). Fractures and faults are widely
distributed in the reservoir because of the multiple tectonic events [53]. Fractures are the main space
for oil in the reservoir and tectonic fractures are the dominant fracture type [52].

The Proterozoic formation undertook multiple tectonic movements [50,53]. At the early stage of
the Paleozoic, main tectonic movements were upright, which lead to the erosion of the Palaeozoic
formation. During the Indo-Chinese epoch, some wide N–S folds were formed in the Proterozoic
formation, due to the bearing of N–S directional pressure. In Yanshanian, the study area suffered
NW–SE directional compressive stress because of the collision of the Kula-Pacific plate compressing
toward the west that led to some new N–E folds. In the early Himalaya epoch, a series of main faults
with a near N–E direction were generated under the effect of tensile stress which caused by the Pacific
plate diving beneath the Eurasian plate.
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2.2. Data

A 3D seismic survey with an area of 60 km2 was collected from the oil company. The average
dominant frequency of data was 30 Hz. The seismic data were used to detect subtle faults and
large-scale fractures. More than 130 wells are drilled in the studied area. Geophysical logs of AC,
DEN, CN, and GR from 110 wells were collected and used in this study. The 223 m cores from seven
cored wells (locations are shown in Figure 2a) were observed and analysed. Geophysical logs and core
observation data were used to identify the features, e.g., fracture density and fracture dip angle of
small-scale fractures at the borehole scale.

2.3. Methodology

2.3.1. Condition of the Seismic Data Volume

Seismic attributes are often sensitive to noise, especially for the buried-hill reservoir of which the
seismic data quality is severely affected by the erosion surface. Therefore, running a spatial filtering is
imperative to reduce the noise in the signal. In this study, we used a structural smoothing approach to
condition the original seismic volume. The structural smoothing method smooths the input signal
guided by the local structure to increase the continuity of the seismic reflectors [54]. Table 1 lists all
parameters in the seismic volume condition. Principal component dip and azimuth computation
were used to determine the local structure. Gaussian smoothing was then applied parallel to the
orientation of this structure [55]. Then, we enhanced the seismic spatial discontinuities by calculating
seismic variance which is an edge detecting method. The edge means the lateral discontinuities of
seismic amplitude.
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Table 1. List of parameters used in conditioning the seismic volume.

Structural
Smoothing

Filter option Sigma X Sigma Y Sigma Z
Plain 1.5 1.5 1.5

Variance
Inline range Crossline range Vertical smoothing Plane confidence threshold

3 3 15 0.9

3D Edge
Enhancement

Horizontal/Vertical radius Plane half thickness Minimum/Maximum dip Maximum/Maximum strike
5/10 10 50/90 0/180

2.3.2. Ant Tracking Algorithm

Ant tracking [6] is used to detect and extract the continuous features from the seismic attributes.
The ant-tracking algorithm is based on the ant-colony algorithm to capture trends in noisy data [6].
Non-structural features, such as noise and channels are less likely to be captured by the ant-tracking
algorithm because these features usually have internally chaotic textures which are not continuous.

Several parameters, e.g., the initial ant boundary, ant track deviation, ant step size, illegal steps
allowed, legal steps required, and stop criteria, significantly affect the extraction result by the ant
tracking algorithm [55]. The initial ant boundary controls how closely the initial ant agents can be
placed within the volume. Ant track deviation defines the searching tolerance of ant on their side of
its tracking direction. A larger ant track deviation value allows more connections for the ant agent.
The step size, normally using 3, is how far an ant advances for each increment of its search. Illegal steps
allow the ant to search beyond its current location when an edge has not been detected. The legal steps
required parameter works in combination with the illegal step parameter, by requiring the selected
number of valid steps after an illegal step. The stop criteria parameter also works in combination
with the illegal steps, and is used to terminate an ant’s advance when too many illegal steps have
been taken.

In the software, the parameters’ combination of the ant tracking algorithm has three options,
known as passive, custom, and aggressive parameters [55]. As the studied reservoir is a buried-hill
reservoir, the reflection is weakened by the erosion surface. Therefore, the aggressive parameters
shown in Table 2 were selected for detecting the discontinuity in ant tracking processes. The aggressive
option allows the ant agents more freedom to explore and detects more subtle connections.

Table 2. The ant tracking parameters used in this study.

Initial Ant
Boundary

Ant Track
Deviation

Ant Step
Size

Illegal Steps
Allowed

Legal Steps
Required

Stop
Criteria

5 2 3 2 2 10

2.3.3. Extraction of the Faults and Fractures

Automatic fault-extraction technology can reduce human intervention and improve accuracy
and efficiency in fault interpretation [56]. However, the result of automatic extraction is restricted
by the parameters, such as extraction sampling distance, extraction sampling threshold, extraction
background threshold, deviation from a plane, connectivity constraint, minimum patch size, and patch
down sampling.

Extraction sampling distance sets the minimum distance between extraction seed points. Distance
is measured in voxels and defines a radius around the extraction point. The extraction sampling
threshold sets the minimum signal level from which to create extraction points. The values range
in percentage for signal minimum and maximum. The extraction background threshold sets the
minimum signal level to be incorporated into fault estimate. Deviation from a plane controls how
far a fault may deviate from a plane surface fit to the data. The value defines the number of voxels
to be searched on either side of the orientation estimation plane. For minimum patch size (points),
fault patches which contain fewer than this number of points will be excluded from the fault patch set.
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Patch down sampling (voxels) controls the density of points within each patch [55]. Table 3 lists the
parameters which were used in extracting of the fault patches in this study.

Table 3. Parameters used in the extraction of the fault patches in this study.

Extraction
Sampling
Distance

Extraction
Sampling
Threshold

Extraction
Background
Threshold

Deviation
from a Plane

Connectivity
Constraint

Minimum
Patch Size

Patch Down
Sampling

6 voxels Top 60% Top 80% 7 voxels 2 faces 50 points 8 voxels

2.3.4. Artificial Neural Network

Artificial neural networks (ANNs) are computer models that mimic the functions of the human
nervous system through some parallel structures comprised of non-linear processing nodes which are
connected by weights [57]. These weights establish a relationship between the input and output of
each node in the ANNs [58]. These systems process the data and then learn the relationships between
the given data in a parallel and distributed pattern. Hence, ANN is robust in capturing the complex
relationships among different parameters [31]. ANN was also used in seismic data processing and
interpretation, geophysical logging interpretation, reservoir mapping, and engineering [58].

In order to control the spatial distribution of fracture density, the ant-tracking attribute log
was extracted from the ant tracking attribute as a synthetic wireline log. The ANN model was
then built with geophysical logs of AC, DEN, CN, GR, and ant attribute logs as the inputs and
fracture density as the output (see Figure 3). Note that the ANN algorithm is an embedded tool
in PetrelTM (Schlumberger, Houston, TX, USA) in which the neuron number in the hidden layer is
determined from trial and error. The parameters of a maximum number of iterations, error limit,
and cross-validation percentage of samples in building the supervised ANN model were set as 20%,
10%, and 50%, respectively. The selection of 50% of samples for cross-validation is used to prevent
overtraining/overfitting [59].
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2.3.5. Discrete Fracture Modelling

In this study, two ways were used to generate the DFN model. For the fractures in which the
length is longer than 200 m, a deterministic method was used to generate their distribution by using
the extracted discontinuity from the ant tracking attribute, while a stochastic method was adopted to
model the fractures shorter than 200 m. The threshold selection of 200 m is explained in Section 3.3.
In the stochastic process, the DFN models are crucially affected by the parameters, e.g., fracture density,
fracture length, fracture dip angle, and fracture azimuth.
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2.3.6. Core Observation and Analysis

In the core observation process, we counted all of the fractures occurring on the surface of the
cored rock; meanwhile, the dip angle of each fracture is measured. Fracture density on the core surface
was then calculated using the area of the fractures of each core divided by the volume of the core
which is equal to the core length times the borehole’s area.

3. Results and Discussion

3.1. Seismic Conditions

The original amplitude volume of the buried hill is severely affected by the erosional surface so
that the amplitude continuity is interrupted (Figure 4a). Hence, the structure smoothing process was
used to reconstruct this continuity by using the Gaussian smoothing algorithm (Figure 4b). Then the
variance algorithm was used to detect the edge which represents the discontinuity of the amplitude
volume (Figure 4c). In the time slice of the variance attribute volume, we can see there are many
discontinuities in the buried hill zone (black zones in Figure 4c). Finally, the 3D edge enhancement
method was used to enhance the edge detected in the variance attribute (Figure 4d).
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volume (d).

3.2. Ant Tracking Result

In order to obtain good results, the ants should be restricted in a certain direction. Figure 5a shows
the ant tracking attribute without using any azimuthal filter. Results show that most ant tracking
attributes are continual along the W–E and N–S directions. However, in the study area, most faults are
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nearly W–E distributed, as shown in Figure 2. Hence, ant tracking was processed using two directional
azimuthal filters, e.g., W–E and N–S directions with an angle of 60◦ as the tolerance. Figure 5b,c
show the ant tracking attribute by using a W–E and N–S directional azimuthal filters, respectively.
Results show that some W–E directional fractures were tracked very well by using the W–E directional
azimuthal filter (Figure 5b); while the N–S directional fractures were tracked very well by using the
N–S directional azimuthal filter (Figure 5c). These two ant tracking attributes were merged into one
attribute (Figure 5d) which was used to extract fractures in Section 3.3.
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Figure 5. A time slice showing the ant tracking attribute. The results of ant tracking without azimuthal
filter (a); ant tracking using a N–S filter (b); ant tracking using a W–E filter (c); the ant tracking result
was merged with the ant tracking results extracted using different azimuthal filters (d). The red
ellipses indicate the detected W–E discontinuities (appear in Figure 5b) that did not disappear in
Figure 5c; the blue ellipses indicate the detected N–S discontinuities (appear in Figure 5c) that were not
disappeared in Figure 5b.

3.3. Extraction of the Large-Scale Fractures

The extraction result was strongly impacted by the parameter inputted in the extraction process.
Through comparing the results of different parameters, we found that the extracted results were
sensitive to deviation from a plane which was explained in Section 2.3.3. Figure 6 shows the extracted
fault patches (coloured planes) by using different values of deviation from a plane parameter. The bold
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black lines represent the discontinuities detected by ant tracking. Comparing the four figures in
Figure 6, the patches in the red ellipse in Figure 6b matches the ant tracking result, in which the value
of deviation from a plane (DFAP) equals 7. There is another feature that the bigger value of DFAP
we use, the more extended the patches will be (pointed with red arrows in Figure 6). As the value of
DFAP is enlarged to 11, the patch even extends to another patch and merges with it (showed in a black
circle in Figure 6d). The number of the extracted fractures decreases as the value of DFAP increases,
which prove that some fractures are merged when we use the bigger value of DFAP. Hence, from the
analysis of Figure 6, we selected the DFAP value equals 7 in this study.
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Figure 6. The extraction result of the discontinuity from the ant tracking attribute. The value of
deviation from plane = 5 (a); the value of deviation from plane = 7 (b); the value of deviation from
plane = 9 (c); value of deviation from plane = 11 (d).

Figure 7 shows the histogram of the length of the extracted fractures. There are a total of
1264 fractures. Results show that the fracture frequency increases with a decreasing fracture length;
most fracture lengths range from 150 m to 1000 m and the average fracture length is about 511 m.
The cumulative probability distribution of fracture lengths was fitted by using an exponential equation.
Results show that there is a good fitting for fractures with length longer than 200 m (indicated by
an arrow in Figure 7); the distribution of fractures which shorter than 200 m significantly deviated
from the exponential distribution; we supposed that the deviation is because the fractures shorter than
200 m is beyond the identification capability of ant track using the seismic data. Hence, 200 m was
used as a threshold for the division of small-scale fractures (SSFs) through assuming the large-scale
fractures (LSFs).

Figure 8 shows the dip angle and azimuthal distribution of the LSFs. Results show that the dip
angle for most LSFs ranges from 0◦ to 90◦ with an average of 44.5◦. The dip azimuth can be grouped
into the NW–SE direction. The distribution of the azimuth can be used as the parameter to generate
the SSFs by assuming the LSFs and the SSFs follow the same characteristic of the azimuth distribution.

Figure 9 shows the histogram of the fracture dip angle which was measured from the 223 m core
of seven wells. Results show that core-observed fractures mostly show a dip angle ranging from 40◦ to
90◦. The average dip angle is 64◦.
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3.4. Core Observation Result

Figure 10 shows the comparison of wireline logs, lithology, and fracture density at well A-67,
whose location is shown in Figure 2. The fracture density was calculated by using the total area of the
fractures on the core divided by the volume of the core (P32). In the column of “FracDen”, the observed
fracture density is presented using different colours.Energies 2017, 10, 183 11 of 19 
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Figure 10. Comparison of wireline logs, lithology, and fracture density (m2/m3) at well A-67.

3.5. Fracture Density Distribution

Table 4 lists the core observed fracture density and the corresponding values for AC, DEN, CN,
GR, and ant attribute. The ANN model, which was explained in Section 2.3.4, was used to predict
the fracture density at boreholes. Figure 11 shows the comparison of observed fracture density and
the predicted fracture density. The correlation coefficient is about 0.60 which indicates a good match
between them.

Table 4. Core observed fracture density and the corresponding wireline log values and ant attribute.

AC, µs/m GR, API CN, % DEN, g/cm3 Ant Tracking Frac Density, m2/m3

183.99 21.25 15.00 2.68 0.08 0.0
187.63 18.89 14.32 2.78 0.08 3.0
179.11 20.53 17.68 2.70 0.08 4.0
136.47 6.91 3.99 2.82 0.00 4.0
157.72 2.02 5.00 2.75 0.00 4.5
148.89 4.49 6.22 2.81 0.15 4.9
171.32 13.13 7.20 2.72 0.00 5.6
208.47 19.97 14.64 2.68 0.08 6.0
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Table 4. Cont.

AC, µs/m GR, API CN, % DEN, g/cm3 Ant Tracking Frac Density, m2/m3

188.00 14.81 20.00 2.68 –0.01 6.1
132.42 1.95 2.00 2.79 0.49 6.7
124.02 3.12 1.00 2.77 0.47 6.7
143.08 3.78 4.76 2.84 0.19 7.0
156.68 4.07 4.92 2.78 0.20 8.0
145.50 3.99 8.99 2.84 0.15 9.1
183.13 4.65 4.68 2.86 0.00 9.3
182.41 14.22 14.64 2.65 0.02 10.0
184.59 20.18 13.00 2.74 0.24 10.0
164.21 12.68 10.64 2.73 –0.01 10.0
250.26 18.12 14.32 2.61 0.09 10.0
142.54 3.33 7.32 2.84 0.20 10.0
155.59 4.26 5.90 2.77 0.19 10.0
156.11 4.81 6.87 2.80 0.22 10.0
162.62 5.45 9.15 2.74 0.01 10.0
149.93 8.77 3.20 2.80 0.00 10.0
164.08 7.96 13.94 2.67 0.00 10.2
155.08 6.16 7.38 2.80 0.00 10.2
157.13 6.17 12.10 2.76 0.00 10.6
145.28 4.62 8.40 2.73 0.01 11.0
210.32 18.39 13.00 2.69 0.08 12.0
159.27 4.53 9.60 2.72 0.00 12.0
187.63 10.94 5.00 2.80 0.03 12.5
187.26 8.52 3.00 2.80 0.03 12.5
177.23 6.41 6.00 2.70 0.01 12.5
238.67 6.68 11.00 2.60 0.01 12.5
203.92 12.69 23.00 2.63 0.02 13.0
178.06 16.12 20.00 2.83 0.19 13.3
146.62 4.04 6.33 2.80 –0.01 14.0
180.72 4.36 2.00 2.77 0.51 15.0
147.59 4.12 5.26 2.81 0.19 15.0
160.44 5.18 7.80 2.79 0.00 15.0
158.78 4.89 2.68 2.87 0.00 15.0
159.06 3.22 2.51 2.68 0.16 15.0
176.45 3.99 4.91 2.68 0.14 15.0
208.59 9.96 2.00 2.77 0.01 15.0
193.97 20.00 13.32 2.71 0.08 17.0
149.34 5.77 9.26 2.77 0.00 17.1
174.57 1.75 3.00 2.77 0.33 17.6
204.09 20.21 18.68 2.57 0.09 20.0
193.13 14.77 9.68 2.69 0.09 20.0
155.68 5.55 11.36 2.75 0.00 20.0
138.01 5.61 6.00 2.82 0.00 20.0
136.94 3.13 4.56 2.78 0.00 20.0
136.91 5.01 5.56 2.79 0.00 20.0
140.31 5.50 5.00 2.83 0.00 20.0
145.70 4.99 4.88 2.79 0.16 20.0
155.75 8.65 5.78 2.74 0.00 20.0
148.90 6.04 5.25 2.77 0.23 20.0
180.68 7.00 9.00 2.63 0.08 20.0
213.38 9.82 6.00 2.70 0.08 20.0
309.26 2.84 5.36 2.61 0.08 20.0
177.83 16.00 10.00 2.75 0.08 21.0
160.02 12.37 7.68 2.77 0.04 21.0
284.19 4.96 0.00 2.63 0.11 21.0
288.12 12.52 0.68 2.60 0.08 21.0
183.15 1.74 5.00 2.73 0.00 22.2
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Table 4. Cont.

AC, µs/m GR, API CN, % DEN, g/cm3 Ant Tracking Frac Density, m2/m3

144.95 5.21 5.23 2.85 0.09 24.0
142.33 4.47 9.55 2.81 0.00 25.0
201.62 4.37 8.32 2.69 0.08 25.0
264.01 8.80 0.00 2.60 0.08 25.0
276.55 6.55 0.00 2.60 0.08 25.0
153.85 5.47 9.22 2.72 –0.01 26.0
218.58 5.74 0.00 2.59 0.08 26.0
146.41 3.09 3.44 2.84 0.14 27.0
267.75 5.16 0.00 2.62 0.16 27.0
295.85 10.14 6.00 2.75 0.08 28.6
137.74 3.90 8.98 2.84 0.09 30.0
139.41 5.58 8.34 2.79 0.00 30.0
150.62 3.56 5.04 2.79 0.17 30.0
201.07 4.04 2.00 2.83 0.00 30.0
339.43 10.96 0.00 2.59 0.08 30.0
212.00 1.50 0.00 2.63 0.00 32.0
207.72 1.70 0.00 2.55 0.00 35.0
264.00 8.84 0.00 2.60 0.08 36.0
265.40 4.99 4.96 2.22 0.08 37.0
251.27 6.35 0.00 2.59 0.08 50.0
275.64 1.64 2.00 2.56 0.08 50.0
207.06 15.30 7.00 2.60 0.76 50.0
251.88 15.84 23.00 2.72 0.72 66.7
222.32 15.60 19.00 2.63 0.63 67.0
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Figure 12 shows the distribution of AC, DEN, CN, GR, and ant tracking attribute, which were 
used to predict the fracture density distribution in 3D by using the built ANN model. Figure 13 
shows the fracture density distribution. Results show that fracture density tends to be larger at the 
top of the erosional surface and near the faults. It is worth noting that faults are not necessarily flow 
channels or flow barriers because of their different sealing abilities; areas of more intense fractures 
are likely to be more conductive than areas of less intense fractures. 

Figure 11. Observed fracture density against the predicted fracture density by the ANN model.

Figure 12 shows the distribution of AC, DEN, CN, GR, and ant tracking attribute, which were
used to predict the fracture density distribution in 3D by using the built ANN model. Figure 13 shows
the fracture density distribution. Results show that fracture density tends to be larger at the top of the
erosional surface and near the faults. It is worth noting that faults are not necessarily flow channels or
flow barriers because of their different sealing abilities; areas of more intense fractures are likely to be
more conductive than areas of less intense fractures.
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Figure 13. Vertical profile of fracture density. Black lines indicate the faults. The location section is 
shown in the small inset figure, which shows the fracture density distribution on the top grid in the 
model. 

3.6. DFN Modelling 

Deterministic and stochastic methods were used in this study, respectively. The deterministic 
fracture model was generated by converting the extracted fracture patches from seismic data to the 
DFN model, which are LSFs. Table 5 lists the statistical parameters for the LSFs of two different 
fracture sets that are divided by azimuth. Results show that the dip angle, concentration, and 
anisotropy are similar for the two fracture sets.  

Table 5. Statistical parameters of different fracture sets. 

Fracture Set Mean Dip, Degree Mean Azimuth, Degree Concentration Anisotropy Statistical Method
Fracture set 1 37.0 166.7 2.5 0.1 Kent model 
Fracture set 2 36.7 346.4 2.6 0.1 Kent model 

The stochastic fracture model was generated based on the spatially distributed fracture density, 
which was explained in Section 3.5, statistical data of fracture length, the maximum length of 
implicit fractures (50 m), and fracture orientation. The statistical parameters of fracture length were 
calculated by assuming the SSFs follows the same distribution of fracture length of LSFs as shown in 
Figure 7. The fractures were shaped in rectangles with the elongation ratio (the ratio of the 
horizontal length to its vertical length) of 2.9.  

Figure 14a shows the 3D deterministic model of LSFs, in which the fractures are displayed 
using different colours for their length. For the SSF model, a small area was shown in Figure 14b 
because it takes a long time to generate and display the SSF model for the whole area. Figure 14c 
shows the fracture density distribution, which was used to generate the SSF model, for the same area 
as Figure 14b.  

Malin et al. [60] reported that fracture-governed fluid flow in crustal rock is spatially correlated 
at all scale lengths. In this study, we did not assume any correlations between fractures because (1) 
we do not have enough information to study the correlation; and (2) the correlation studying is 
beyond the scope of this study. In the future, the spatially correlation of these large- and small-scale 
fractures will be studied.  

Figure 13. Vertical profile of fracture density. Black lines indicate the faults. The location section
is shown in the small inset figure, which shows the fracture density distribution on the top grid in
the model.

3.6. DFN Modelling

Deterministic and stochastic methods were used in this study, respectively. The deterministic
fracture model was generated by converting the extracted fracture patches from seismic data to the
DFN model, which are LSFs. Table 5 lists the statistical parameters for the LSFs of two different fracture
sets that are divided by azimuth. Results show that the dip angle, concentration, and anisotropy are
similar for the two fracture sets.

Table 5. Statistical parameters of different fracture sets.

Fracture Set Mean Dip, Degree Mean Azimuth, Degree Concentration Anisotropy Statistical Method

Fracture set 1 37.0 166.7 2.5 0.1 Kent model
Fracture set 2 36.7 346.4 2.6 0.1 Kent model

The stochastic fracture model was generated based on the spatially distributed fracture density,
which was explained in Section 3.5, statistical data of fracture length, the maximum length of implicit
fractures (50 m), and fracture orientation. The statistical parameters of fracture length were calculated
by assuming the SSFs follows the same distribution of fracture length of LSFs as shown in Figure 7.
The fractures were shaped in rectangles with the elongation ratio (the ratio of the horizontal length to
its vertical length) of 2.9.

Figure 14a shows the 3D deterministic model of LSFs, in which the fractures are displayed using
different colours for their length. For the SSF model, a small area was shown in Figure 14b because
it takes a long time to generate and display the SSF model for the whole area. Figure 14c shows
the fracture density distribution, which was used to generate the SSF model, for the same area as
Figure 14b.

Malin et al. [60] reported that fracture-governed fluid flow in crustal rock is spatially correlated at
all scale lengths. In this study, we did not assume any correlations between fractures because (1) we
do not have enough information to study the correlation; and (2) the correlation studying is beyond
the scope of this study. In the future, the spatially correlation of these large- and small-scale fractures
will be studied.
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Figure 14. Discrete fracture model of large-scale fractures and small-scale fractures. The model of the 
LSFs (a); the red square indicates the area where SSFs were generated. The model of SSFs (b); the 
fracture density of the SSFs are in the same position as Figure 14b (c). 

4. Conclusions 

An efficient workflow of the discrete fracture network modelling in a buried hill reservoir was 
presented in this study. The results show that: 

(1) The ant tracking attribute is feasible to detect the small faults and large-scale fractures in the 
buried hill reservoir. Before using the ant tracking algorithm, the seismic condition processes 
are necessary to enhance the quality of the seismic data; 

(2) The variance attribute is a powerful method to detect the edge of the amplitude volume, which 
is essential to the ant tracking process. Particularly, we tried an automatic workflow to extract 
the faults and fractures detected by the ants. The automatical workflow can save computing 
time, although we lost some accuracy since the shape and the position of the fractures do not 
always follow the discontinuity of the ant tracking attribute; 

(3) In total, 1264 subtle faults and LSFs were extracted in the reservoir. These fractures can be 
divided into two sets in terms of the azimuth distribution. Mostly, the strike of the fractures is 
in the W–E direction;  

(4) The fracture density is predicted through an integrated method by combining the core 
observation, well log interpretation, and artificial neural network algorithm. The spatial 
distribution of the fractures matched the faults. 
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Figure 14. Discrete fracture model of large-scale fractures and small-scale fractures. The model of
the LSFs (a); the red square indicates the area where SSFs were generated. The model of SSFs (b);
the fracture density of the SSFs are in the same position as Figure 14b (c).

4. Conclusions

An efficient workflow of the discrete fracture network modelling in a buried hill reservoir was
presented in this study. The results show that:

(1) The ant tracking attribute is feasible to detect the small faults and large-scale fractures in the
buried hill reservoir. Before using the ant tracking algorithm, the seismic condition processes are
necessary to enhance the quality of the seismic data;

(2) The variance attribute is a powerful method to detect the edge of the amplitude volume, which is
essential to the ant tracking process. Particularly, we tried an automatic workflow to extract the
faults and fractures detected by the ants. The automatical workflow can save computing time,
although we lost some accuracy since the shape and the position of the fractures do not always
follow the discontinuity of the ant tracking attribute;

(3) In total, 1264 subtle faults and LSFs were extracted in the reservoir. These fractures can be divided
into two sets in terms of the azimuth distribution. Mostly, the strike of the fractures is in the
W–E direction;

(4) The fracture density is predicted through an integrated method by combining the core observation,
well log interpretation, and artificial neural network algorithm. The spatial distribution of the
fractures matched the faults.
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