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Abstract: This paper proposes a novel methodology for very short term forecasting of hourly global
solar irradiance (GSI). The proposed methodology is based on meteorology data, especially for
optimizing the operation of power generating electricity from photovoltaic (PV) energy. This
methodology is a combination of k-nearest neighbor (k-NN) algorithm modelling and artificial
neural network (ANN) model. The k-NN-ANN method is designed to forecast GSI for 60 min ahead
based on meteorology data for the target PV station which position is surrounded by eight other
adjacent PV stations. The novelty of this method is taking into account the meteorology data. A set of
GSI measurement samples was available from the PV station in Taiwan which is used as test data.
The first method implements k-NN as a preprocessing technique prior to ANN method. The error
statistical indicators of k-NN-ANN model the mean absolute bias error (MABE) is 42 W/m2 and the
root-mean-square error (RMSE) is 242 W/m2. The models forecasts are then compared to measured
data and simulation results indicate that the k-NN-ANN-based model presented in this research can
calculate hourly GSI with satisfactory accuracy.

Keywords: global solar irradiance (GSI); photovoltaic (PV); very short term; forecasting; k-nearest
neighbor (k-NN); artificial neural network (ANN)

1. Introduction

Nowadays, forecasting global solar irradiance (GSI) is an essential task, particularly related to the
increased use of photovoltaic (PV) solar energy as a power source. Forecasting GSI can be executed
in different terms: long-term, medium-term, and short-term. Since solar power is categorized as an
intermittent energy source, forecasting is paramount to regulate electricity loads in power networks.
It also functions to optimize power delivery and unit commitment and by extension, it helps minimize
the operating costs of power systems [1]. With a forecast, it is expected that plant operation control
systems can be improved, so as to balance power generation and load. Moreover, distribution of load,
electric energy storage, and energy supply will be maximized and more reliable.

The performance of PV systems is heavily influenced by meteorological conditions such as
temperature, global irradiation, humidity, wind speed and wind direction [2]. The relation is clear:
electrical energy generated by the PV solar depends on the amount of the GSI received by the PV
panels. Solar irradiance absorbed in each PV panel varies depending on geographic location, time, and
the absorption capacity of the PV panels. Previous studies have presented a variety of mathematical
models for GSI forecasting in relation to meteorological variables. GSI forecasting with k-nearest
neighbor (k-NN) statistical methods has been described [3,4]. Hocaoğlu [3] and Pedro and Coimbra [4]
presented modeling of solar irradiation with stochastic methods using a k-NN artificial neural network
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(ANN) at a PV station. Solar irradiation prediction is an important problem in geosciences, with direct
applications in renewable energy, where the data in the form of time series can also be analyzed using
a regression model as described in reference [5]. Salcedo-Sanz et al. [5] worked on the prediction of
daily global irradiation using a temporal Gaussian process, in which the study explains the suitability
of Gaussian regression (GPR) for the estimation of solar irradiation compared to other machine
learning regression algorithms. The GSI forecasting is not only used in stochastic modeling, but in
other studies [6,7] attempted forecasting was analyzed using exponential smoothing combined with
decomposition methods and least absolute shrinkage and selection operator model. Yang et al. [6,7]
studied the forecasting of global horizontal irradiance by exponential smoothing using decompositions,
while on another study, they developed the least absolute shrinkage and selection operator model
using irradiance very short-term forecasting. Combining a forecasting model with GSI is important
to get a better result, and forecasting GSI by the spatiotemporal pattern recognition method, ANN
method, parametric models and decomposition models, has been described in [8–10]. Spatiotemporal
pattern recognition and nonlinear principal component analysis (PCA) for global horizontal irradiance
forecasting has been proposed as well by Licciardi et al. [8]. Amrouche and Le Pivert [9] have presented
an ANN based on daily local forecasting for global solar radiation, describing a novel methodology
for local forecasting of daily global horizontal irradiance (GHI). The methodology is a combination of
spatial modelling and ANNs algorithm. Wong et al. [10], have presented solar radiation models based
on parametric models and decomposition models for predicting the average daily and hourly global
radiation, beam radiation and diffuse radiation.

Obtaining GSI forecasting for a PV station is also the subject of several studies. In the previous
references the GSI forecasting was carried out without being influenced by the location of the PV
station, but in [11,12] the GSI forecasting was very influenced by the Mediterranean location studied.
To achieve multi-horizon irradiation forecasting for Mediterranean locations, time series models have
been proposed by Paolia et al. [11]. Lorenz et al. [12] presented irradiance forecasting for the power
prediction of grid-connected PV systems. In addition to GSI forecasting using grid-connected systems
there are also other studies that similarly use the grid-connected method but different locations, as
explained in [13,14]. Wang et al. [13] studied a short term solar irradiance forecasting model based on
an ANN using statistical feature parameters. Another study on GSI forecasting using an ANN was
performed by Mellit and Pavan [14], which they applied the prediction to a grid-connected PV plant
located at Trieste, Italy. The application of a statistical method to detect the motion of cloud structures
for surface irradiance is widely used for forecasting GSI as in the previous reference, and therefore
in [15] optimization and operational validation of the GSI forecasting, i.e., short term forecasting of
solar radiation using statistical methods to determine cloud motion vector fields have been proposed
by Hammer et al. Xiao and Chaovalitwongse [16] have presented optimization models for decomposed
nearest neighbor feature selection. Validation of short and medium term operational solar radiation
forecasts in the US was studied by Perez et al. [17]. Many of the development models done by other
researchers for forecasting GSI, tried GSI forecasting with statistical methods of stochastic learning
and the development of analytical models with time series as in [18,19], i.e., forecasting of global
and direct solar irradiance using stochastic learning methods, ground experiments and the national
weather service’s (NWS) database have been proposed by Marquez et al. [18]. Martin et al. [19]
have presented GSI forecasting methods based on time series analysis that have been used to predict
half daily values of solar irradiance for the next three days. GSI forecasting models developed by
performing functional and fuzzy approach spatiotemporal model development have been used too, as
described in [20,21]. Boata and Gravila [20] have presented a functional fuzzy approach for forecasting
daily global solar irradiation and very short term forecasting of the global horizontal irradiance using
a spatiotemporal autoregressive model has been proposed by Dambreville et al. [21]. Of the various
modeling approaches for forecasting GSI in the previous references, namely developing and combining
forecasting models for short-term forecasts, [22–24] also describe several methods for forecasting GSI,
namely using support vector machines and space exponential smoothing models. A review of solar
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irradiance forecasting methods and a proposition for small-scale insular grids has been provided
by Diagne et al. [22]. Short term solar power prediction using a support vector machine has been
proposed Zeng et al. [23]. Dong et al. [24] have presented a short term solar irradiance forecasting
method using an exponential smoothing state space model. A comparative empirical study based on a
short term wind speed forecating model has been presented by Ren et al. [25]. Mellit et al. [26] and
Farhad et al. [27] have presented ANN models for the prediction of solar radiation and a new bloggers
classification approach with a hybrid k-NN and ANN model. Probabilistic solar power forecasting
approaches based on k-NN kernel and selection of input parameters to model direct solar irradiance by
using ANN have been proposed by Zhang and Wang [28] and López et al. [29]. The aforementioned
studies elaborated on GSI forecasting at one target PV station, but have yet to forecast GSI at PV
stations surrounded by other PV stations.

This paper presents part of a study in process seeking to estimate and predict one hour or 60 min
ahead global solar irradiation at PV stations for energy production. This part focuses on how to predict
hourly GSI for the target PV station with the availability of a local database and based on meteorology
data. In this study, a new hybrid methodology that combines k-NN modelling and ANN modelling
algorithm has been developed. A k-NN-ANN method is used to forecast GSI at the target PV station by
means of calculating k-NNs based on the Euclidean distance and then do the testing and training data.

The remainder of the paper is organized as follows: Section 2 describes the modelling and data
from a PV station, Section 3 describes the methodology used, i.e., the k-NN and neural network models,
while Section 4 presents modelling study cases for very short-term forecasting and their measured
errors. Finally, Section 5 presents some concluding remarks.

2. Modelling and Data Description

The GSI measurements were performed continuously every 5 min for four hours. The dataset
thus contains four hours of data (from 5:20 a.m. to 8:00 a.m.) collected on 8 June 2012 at nine PV station
locations: Station A (0◦, 8.3 km), Station B (36◦, 10.5 km), Station C (93◦, 10.8 km), Station D (140◦,
10.5 km), Station E (180◦, 10 km), Station F (250◦, 4.3 km), Station G (280◦, 5.4 km), Station H (310◦,
9.1 km) and Station S (0◦, 0 km), located in Taipei, Taiwan. For this study, the very short-term forecasts
of GSI were only provided by PV Station S which was located in the center. The nearest neighbouring
locations surrounding Station S were Station A, Station B, Station C, Station D, Station E, Station F,
Station G and Station H (Figure 1).
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Figure 2 illustrates the GSI values as measured at Station S. These monitored data have been used
to evaluate the methodology algorithm using k-NN-ANN as the proposed model for GSI forecasting.
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Figure 2. Measured global solar irradiance (GSI) at Station S from 5:20 a.m. to 8:00 a.m. on 8 June 2012.

3. k-Nearest Neighbor and Artificial Neural Network Model for Forecasting Global Solar
Irradiance Based on Meteorological Data

This section explains the basic idea of the construct methodology for GSI prediction, namely the
k-NN-ANN model. In this study, the subject is the central station, which it is surrounded by several
other PV stations. The first purpose of this study is the improvement of forecasting results using the
k-NN method combined with an ANN model method, and the process is then used to predict GSI
output result of a PV station one hour or 60 min ahead based on meteorological data.

Simulation of the k-NN neural networks can be programmed in a few minutes after the recording
of the first measurements. For the GSI forecasting, k-NN-ANN method employs past meteorological
data (GSI, temperature, humidity, wind speed and direction). The forecast horizon is four hours in
5 min increments. The first step in developing a k-NN-ANN method is to develop the database of
features that will be used for comparison with the current conditions and the forecast GSI a few ahead.

3.1. k-Nearest-Neighbors

The k-NN method is one of the simplest machine learning algorithm methods. The k-NN algorithm
is a non-parametric method used for classification and regression. The output depends on whether
k-NN is used for classification or regression: in used k-NN model classification is the value output
is a class membership. An object validation is classified by a majority vote of its neighbors, with the
object being assigned to the class most common among its k-NNs. If k = 1, then the object is simply
assigned to the class of that single nearest neighbor. In a k-NN regression model, the value output is the
property value for the object. This value result output training is the average of the values of its k-NNs.
The k-NN model is applied to perform classification of objects based on learning data that were located
closest to the object, and the method is considered the simplest among other methods [2]. The main
idea is that the k-NN algorithm uses a training set for data modelling. Then, the prediction of new
points can be the average of the values of its k-NNs. The variables employed for modelling very short
term forecasting have been described in the previous section. The k-NN predict is computed using the
features assembled in the matrices in a two-step process. In the first step, we have been calculating the
pre-defined distance between the variables in the new dataset (the optimalization or the testing sets
and training sets) and the features in the previous dataset. For a given set of features S = {p1, ..., pn} in
the new dataset with lengths N1, ..., Nn, the distances of the previous data are calculated. In the second
step, choosing k-NNs and have k smallest distances from training test [26]. The distance D is sorted
in ascending order, and the first k elements DS(DS,1 ≤ DS,2 ≤ ... ≤ DS,k) and their associated k time
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stamps {τ1, ..., τk} are extracted [2] Equation (1). To find the k-NN based on the Euclidean distance,
this mathematical equation is used:

d(x, y) =

√√√√ N

∑
j=1

w2
j
(
xj − yj

)2,j = 1, 2, 3, . . . . (1)

where d is the number of forecast instances in the optimization set. We can calculate the distance
between two scenarios using some distance function d(x, y), where x, y are the matrix scenarios
composed of N features x = {x1, ..., xN}, y = {y1, ..., yN}, N is the length of data, and the distance
between the current performance and previous condition, wj is the weight value of the dependent
variable members of k-NN (kernel function) and j is the order of the k-NN based on their distance from
the current performance condition and which the nearest with used the lowest order (j = 1, ..., K).

k-Nearest Neighbor Modelling

In this research, to obtain the k-NN model forecast using the algorithm model proposed described
above, several parameters need to be specified and the k-NN modelling process can be divided into
five calculation stages. The procedure of k-NN for regression is as follows:

(1) The matrix scenarios composed modelling stage which includes form d-dimensional feature
vectors C or nxy from the historical data x: c =

[
c1, c2, ..., cp

]
and nxy =

[
nxy1, nxy2, ..., nxyp

]
or

x: C = nxy = [xt, xt−1, ..., xt−d+1]; Their corresponding successors are denoted as xh. They are
given two pieces point c and nxy in a space vector of n-dimensional c (c1, c2, ..., cn) and nxy (nxy1,
nxy2, ..., nxyn).

(2) The distance calculate vector stage which includes form n-dimensional distance vector
dsi

j(c, nxy) = Di for each testing vector C or nxy by calculating the Euclidean distance between

dsi
j(c, nxy) = Di and the remaining:

C : dsi
j(c, nxy) =

{
‖Di − Dj‖

}
, j 6= i (2)

where Di is the value of the dependent variable historical data set and Dj is the value of the
dependent the nearest neighbor based on distance:

dsi
j(c, nxy) =

√√√√ k

∑
q=1

(
ci

p − nxyi
pj

)2
, p = 1, 2, 3, ..., n (3)

where dsi
j(c, nxy) is value of the dependent variable GSI, nxyi

pj is the position coordinat PV

station (magnitude of nearest neighbors) ci
p is the d-dimensional feature vectors, The index j is the

current condition, i is the historical dataset, k = K the number of elements in the nearest neighbors,
q is the historical dataset and where x, y are scenarios composed of k features and p is the number
of the k-NN based on their distance from the current condition (j) in which the nearest have the
lowest order (p = 1, ..., k).

(3) Select the value distance of the k-NN stage, which includes the sort dsi
j(c, nxy) in ascending order

and select the first K entries as the nearest neighbors Dk, k ∈ {1, ..., K}.
(4) Select the best value of k used in modelling the k-NN stage, because a high k value will reduce the

effect of noise on the classification, but it will make the boundaries between each classification
becomes increasingly blurred. Form a kernel function:

K(j) =
1
j

K
∑

j=1

1
j

or ki =
1

dis(i)
i = 1, 2, 3, 4, 5 (4)
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where K(j) = ki is the value k-NN (kernel function), i is the historical data set and the index j is the
number of the k-NN based on their distance from the current condition (i) in which the nearest
have the lowest order (j = 1, ..., K), and K is the length data sets, and the distance between the
current and previous condition [25].

(5) Calculate the final estimation stage, using Equation (5):

sumd =
k

∑
j=1

Kjxh
j (5)

where xh
j is the magnitude of nearest neighbor j, j is the order of the nearest neighbors based

on their distance from the current condition (h) in which the nearest have the lowest order
(j = 1, ..., k), sumd is the karnel function, k is the length of data sets, and Kj is the kernel function.

3.2. Artificial Neural Network

ANN is a mathematical method inspired by the structure and information processing of biological
neural networks. ANNs are intelligent systems that have the capacity to learn, memorize and create
relationships among data [30]. ANN model is a combination of pattern recognition, deductive
reasoning and numerical computations to simulate learning in the human brain. ANN consists
of an interconnected many groups namely neurons, and its main task is processes information using
a connection approach to computation. ANN consists of an interconnected many groups namely
neurons, and its main task is processes information using a connection approach to computation. ANN
models have been used to predict solar radiation data [24]. The methodology is a promising alternative
to traditional approaches for forecasting GSI, especially in cases where radiation measurements are
not readily available. ANN models fundamentally comprise multiple connected neurons and nodes.
The neural networks are considered as the member of the non-parametric techniques which are
usually used for estimation and classification [25]. The neurons have five basic components, i.e., input,
weight-bias, threshold, summing junction and output, as illustrated in Figure 3. Neurons are arranged
in three layers which consist of input, hidden and output.
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Artificial Neural Network Modelling

The ANN algorithm model can be divided into four step: (1) the design model and input pattern
step which includes the choice of the ANN model, the number of its layers ANN, the number of
neuron groups in each layer ANN, its inputs and outputs, the choice of training set and validation
set samples which use k-NN design; (2) the training set and testing set ANN forecasting based on
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meteorology data are presented to the ANN and the weights layer are adjusted accordingly till a
predetermined condition is more better; (3) the simulation test passed step, in which the result ANN
forecasting model is tested using measurement data at nine station PV which are not treated during
the training step; and finally (4) the performance evaluation stage.

Layered perceptron ANN model with different topology designs were considered in order to
obtain the best mapping between the ANN algorithm inputs and outputs. The proposed model in this
research is used to predict the GSI values for the next hours or one hour ahead, forecasting based on
meteorology data and the GSI data from other PV stations. The GSI forecasting data are normalized
to the limit of [0, 1] to avoid neuron groups saturation during the learning progress. The number
of neuron groups in the first hidden layer is 10 and we have to consider an ANN with 1475 inputs
for GSI forecasting. The neuron groups active function of hidden and output layer are tansig and
purelin, respectively. Performance test data set is used to evaluate GSI forecast accuracy of the ANN
algorithm. The ANN models inputs acts directly on the training period duration for GSI forecasting [9].
To choose the best design modeling for forecasting, we investigated the role of meteorology data in
the ANN model effectivity and then we researched the impact of the data mode on the training good
performance and on the forecasting accuracy.

In the first reason, the ANN models will learn about the global solar irradiance profile of the
target location. At the end of the learning process, the k-NN-ANN model will be able to give the GSI
forecast results at the target PV station based on meteorology data. When compared to actual data,
ANN also presents the whole GSI values for the four-hour window, giving ANN the possibility to
learn the existing relationship in between them and to develop an idea about GSI evolution during the
time window. In the second reason, the entire GSI data are used for very short term forecasting using
the k-NN-ANN model based on meteorological data at the target PV station, which is surrounded by
eight other PV stations. The proposed k-NN-ANN model has to forecast GSI values for the next hour
or 60 min ahead by taking into account the forecasting data based on meteorology data.

The specific feature of this k-NN-ANN model is that measured data and hourly weather
meteorology data (temperature, humidity, global irradiance wind speed and direction) forecasts
for the nearest eight surrounding stations are used as input data information, as explain by Figure 4.
To model the available relationship between k-NN model prediction and the actual values of GSI at the
pivot location, an ANN based model is used. The training of the ANN models can be programmed in
one hours ahead after the recording of first measurements.
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3.3. k-Nearest Neighbor and Artificial Neural Network Modelling

The forecasting problem in this research was forecasting based on meteorological data study in
progress to forecast GSI at a PV station for energy production by one hour or 60 min ahead by using
the hybrid k-NN-ANN model. The procedure of k-NN-ANN model for GSI forecasting based on
meteorological data has the following steps:

Step 1: Calculate the distance of each data parameter:

dsGI
j (c, nxy) =

√
∑k

q=1

(
cGI

p − nxyGI
pj

)2
, p = 1, 2, ..., n j = 1, 2, ..., n (6)

dsTa
j (c, nxy) =

√
∑k

q=1

(
cTa

p − nxyTa
pj

)2
, p = 1, 2, ..., n j = 1, 2, ..., n (7)

dsHo
j (c, nxy) =

√
∑k

q=1

(
cHo

p − nxyHo
pj

)2
, p = 1, 2, ..., n j = 1, 2, ..., n (8)

dsWs
j (c, nxy) =

√
∑k

q=1

(
cWs

p − nxyWs
pj

)2
, p = 1, 2, ..., n j = 1, 2, ..., n (9)

dsWd
j (c, nxy) =

√
∑k

q=1

(
cWd

p − nxyWd
pj

)2
, p = 1, 2, ..., n j = 1, 2, ..., n (10)

and the weight distance is:

GIx =

1
d2

1

sumd
· GIi +

1
d2

2

sumd
· GIi +

1
d2

3

sumd
· GIi +

1
d2

4

sumd
· GIi +

1
d2

5

sumd
· GIi (11)

Tax =

1
d2

1

sumd
· Tai +

1
d2

2

sumd
· Tai +

1
d2

3

sumd
· Tai +

1
d2

4

sumd
· Tai +

1
d2

5

sumd
· Tai (12)

Hox =

1
d2

1

sumd
· Hoi +

1
d2

2

sumd
· Hoi +

1
d2

3

sumd
· Hoi +

1
d2

4

sumd
· Hoi +

1
d2

5

sumd
· Hoi (13)

Wsx =

1
d2

1

sumd
·Wsi +

1
d2

2

sumd
·Wsi +

1
d2

3

sumd
·Wsi +

1
d2

4

sumd
·Wsi +

1
d2

5

sumd
·Wsi (14)

Wdx =

1
d2

1

sumd
·Wdi +

1
d2

2

sumd
·Wdi +

1
d2

3

sumd
·Wdi +

1
d2

4

sumd
·Wdi +

1
d2

5

sumd
·Wdi (15)

where dsGI
j (c, nxy) is the Euclidan distance GSI

dsTa
j (c, nxy) is the Euclidan distance temperature

dsHo
j (c, nxy) is the Euclidan distance humidity

dsWs
j (c, nxy) is the Euclidan distance wind speed

dsWd
j (c, nxy) is the Euclidan distance wind direct

GIx is the weight distance at GSI
Tax is the weight distance at temperature
Hox is the weight distance at humidity
Wsx is the weight distance at wind speed
Wdx is the weight distance at wind direct
GI is the global irradiance
Ta is the temperature
Ho is the humidity
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Ws is the wind speed
Wd is the wind direct
CGI

p is the d dimensional feature vectors GSI

CTa
p is the d dimensional feature vectors temperature

CHo
p is the d dimensional feature vectors humidity

CWs
p is the d dimensional feature vectors wind speed

CWd
p is the d dimensional feature vectors wind direct

nxyi
pj is the position coordinat PV station (magnitude of nearest neighbors)

ci
p is the d-dimensional feature vectors

sumd is the kernel function:
i is the historical data set
j is the current condition, i is the historical dataset, k = K the number of elements in the
nearest neighbors
q is the historical dataset and where x, y are scenarios composed of k features and p is the number
of the k-NN based on their distance from the current condition (j) in which the nearest have the
lowest order (p = 1, ..., k).

Step 2: Calculate number of nearest neighbors:

ki+n =
1

dis(i + n)
i = 1, 2, 3, ..., n = 130 (16)

where k is the distance nearest neighbor, i is the historical dataset and n is the total number of
features (i = 1, 2, ..., n)

Step 3: Calculate the final estimation as:

sumd =
k

∑
j=1

K(j)xh
j (17)

where xh
j is the value magnitude of the k-NN j, j is the order of the nearest neighbors based on

distance (h) in which the nearest have the lowest order (j = 1, ..., k), sumd is the karnel function, k
is the length of data sets, and the distance between the current and previous condition and Kj is
the kernel function.

Step 4: Training data and testing data using ANN method are obtained from the following steps:

a. The final estimation of GSI from k-NN method is into training sets, validation sets, and test
sets for ANN model.

b. Architecture model and training sets parameters (create and configure the neural network,
initialize the weights layer and biases layer) are selected

c. Model GSI forecast using the training set are run
d. Model forecasting is validated using the validation set
e. Step b–e are repeated using different architectures model forecasting and training

set parameters
f. The optimum model is chosen and inserted into training process using data from the

training set and validation set
g. The ultimate forecasting model is assessed using the test set

Step 5: Perform predictions for future GSI data at the Station S with k-NN-ANN
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The forecast model designed for k-NN is described in Figure 5a. If the validation test for forecasting
the GSI is successful and get more better the result, the forecast model could perform its designed
function, otherwise one or more changes should be made during the previous process. The procedures
are shown in Figure 5b. GSI forecasting process using hybrid k-NN-ANN algorithm can also be divided
into two process: (1) k-NN modelling to determine the d-dimensional feature and n-dimensional
distance for input data at the ANN process; (2) the ANN modelling for GSI forecasting. The procedures
are displayed in Figure 5c. In this research, k-NN and ANN structure construction was programmed
using MATLAB (R2013a) programming. MATLAB is been provided with some ANN tools.
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3.4. Normalization

The normalization of data input is very important to obtain good results in the ANN method [9].
In this research for analysis, it needs normalization data for training process the GSI forecasting 60 min
ahead, as defined [31], which can be calculated by Equation (18):

GSIn
dnorm =

GSIn
d − GSImin

GSImax − GSImin
(18)
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Let us denote GSIn
dnorm and GSIn

d be normalized target feature at frame index n and the d-GSI
output, respectively. Let us also denote GSImax and GSImin be the maximum value and minimum
values of the GSI, respectively.

4. Results and Discussion

This section discusses the result of k-NN-ANN model used to forecast future GSI by using a
one hour ahead forecasting procedure. The procedure is described in Figure 5. We tested our model
using previously described databases based on meteorology data, i.e., wind direction, wind speed, GI,
temperature, and humidity, during the 1 h or 60 min ahead process.

Data

Using the k-NN-ANN model, it is expected that a valid GSI forecast result will be produced.
The design forecast is divided into two stages:

(a) The first stage is calculating d-dimensional feature and n-dimensional distance based on the
Euclidean (k-NN model) every hour for all of the PV stations. Data shown in Table 1 are the
order parameters of each PV station, i.e., angle, distance and position coordinates. The table
summarizes all possible combinations of variables to be considered as an input for k-NN method.

(b) The second stage uses the ANN based on the assumption that the existing data input is a
combination of the results obtained from the k-NN model. The research model proposed in this
study seeks to estimate and predict a PV station production 60 min ahead, which position is
located at the center and surrounded by eight other PV stations.

Table 1. Data position and coordinates of the PV stations.

No. Station Angle (◦) Distance (d) Coordinate (xi, yi)

1 A 0 8.3 (8.3, 0)
2 B 36 10.5 (8.5, 6.2)
3 C 93 10.8 (−0.6, 10)
4 D 140 10.5 (−8, 6.7)
5 E 180 10 (−10, 0.1)
6 F 250 4.3 (−5.5, −5)
7 G 280 5.4 (1, −5.3)
8 H 310 9.1 (5.8, −7)
9 S 0 0 (0.1, 0.1)

The d-dimensional feature and n-dimensional distances based on the Euclidean (k-NN model)
every hour for all of PV station are shown in Figure 6. From the simulation results using the k-NN
method based on meteorological data consisting of global irradiance, temperature, humidity, wind
speed and wind direction values, respectively. All of them are used as pre-processing data in the ANN
method, which can be calculated by the polynomial Equation (19):

f (x, y) = p00 + p10x + p01y + p20x2 + p11xy + p02y2 (19)

where f (x, y) is the GSI value of the k-NN method and variable x, y is the coordinate value’s position of
the PV station.

Example Figure 6a can be produced by polynomial Equation (20):

f (x, y) = 10.74 + 0.05105x + 0.01365y + (−0.0014)x2 + 0.0015xy + 0.002923y2 (20)

Example Figure 6b can be produced by polynomial Equation (21):

f (x, y) = 520.4− 1.678x− 0.7583y + (−0.3799)x2 + 0.2108xy + 0.07159y2 (21)
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In which the polynomial equation above is the result of the simulation on 5:20 a.m. for Figure 6a
and 8:00 a.m. hours for Figure 6b using the k-NN method for Station S. Moreover that polynomial
equation also can be implemented for the other PV stations.

To validate the proposed method, GSI data of 60 min ahead of a PV station has been calculated
using the process described in Section 3. The results are then compared with the actual data of the GSI
at target PV station as described in Section 4. Table 2 shows the optimal k-NN parameters for the GSI
forecast with meteorology data every hours from 5:20 a.m. to 8:00 a.m. on 8 June 2012.
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Figure 6. (a) d-Distance PV station based on the Euclidean (k-NN model) in time 5:20 a.m. on 8 June 2012;
and (b) d-Distance PV station based on the Euclidean (k-NN model) in time 8:00 a.m. on 8 June 2012.

Table 2. Optimal k-NN parameters for the GSI forecast with meteorology data.

Time
Station (x, y) *

ST-S
(0.1, 0.1)

ST-A
(8.3, 0)

ST-B
(8.5, 6.2)

ST-C
(−0.6, 10)

ST-D
(−8, 6.7)

ST-E
(−10, 0.1)

ST-F
(−5.5, −5)

ST-G
(1, −5.3)

ST-H
(5.8, −7)

5:20 11 11 11 11 10 10 10 11 11
5:25 15 15 15 15 15 15 15 15 15
5:30 22 22 22 22 22 22 22 22 22
5:35 27 29 27 25 24 25 27 28 30
5:40 37 39 37 33 33 35 38 39 41
5:45 42 44 44 42 41 40 41 42 43
5:50 33 35 38 38 35 31 30 31 31
5:55 32 32 31 31 31 32 32 32 32
6:00 40 41 36 33 35 40 44 44 46
6:05 59 61 53 45 48 57 65 67 70
6:10 77 82 76 67 66 72 79 83 88
6:15 101 106 100 91 90 95 103 107 111
6:20 139 132 113 110 127 148 160 155 155
6:25 169 152 133 140 165 189 195 183 178
6:30 179 158 153 172 194 204 197 181 170
6:35 197 186 184 196 207 211 206 197 191
6:40 216 200 202 221 234 235 225 213 203
6:45 230 217 219 236 246 246 237 226 218
6:50 240 229 233 248 256 254 245 235 228
6:55 252 238 243 263 272 269 256 245 235
7:00 269 256 260 278 287 285 274 263 254
7:05 292 275 275 294 310 314 304 290 280
7:10 308 290 290 310 326 330 320 305 295
7:15 324 302 302 327 347 351 338 321 307
7:20 345 322 320 345 366 373 361 343 330
7:25 357 334 334 360 381 385 372 354 340
7:35 370 351 354 379 394 395 380 365 351
7:40 362 331 334 371 397 400 380 355 336
7:45 360 323 327 372 402 405 380 351 327
7:50 344 316 328 367 385 378 352 329 310
7:55 427 414 414 429 440 443 436 426 418
8:00 475 457 450 467 486 497 492 478 469

Note: * (x, y) are the coordinate position values of the PV stations.
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The k-NN-ANN modelling approach is unique since the neural network algorithm is firstly
developed using the k-NN model based on meteorology data. Results from the k-NN model are then
divided it into two sets of data: the training and the validation set. After the simulation test, the ANN
model based on the k-NN results will be ready to use in 60 min ahead GSI forecasting. As explained
previously, the optimization parameters for GSI forecasting were obtained from a dataset based on
meteorology data. The calculated values of GSI were then compared with measured values (GSI) of
each station: Station S, Station A, Station B, Station C, Station D, Station E, Station F, Station G, Station
H. Mean absolute bias error (MABE) and root-mean-square error (RMSE) were used as error statistical
indicators. The estimation from the k-NN-ANN model was then compared with the k-NN model and
mean average of meteorological data prediction.

For the comparison, k-NN-ANN model performed only 500 iterations for each learning period.
Figure 7 shows the all the data for the three subsets: (a) training dataset; (b) validation dataset; and
(c) test dataset. In this figure the plots show for GSI versus the time. For the ANN algorithm is initially
constructed for the training based on the k-NN model data, and after this, its training is periodically as
the database expands over time.
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Figure 7. (a) GSI for the training set; (b) GSI for the validation set; and (c) GSI for the testing set.

The k-NN model database provides pretraining data, and then the database divided it into two
sets of data; the training data set and the validations data set, after the validation test, the k-NN-ANN
based model will be ready to use for forecasting the GSI, and the the accuracy of the model can be
determined using the testing set data that has been gained from the training data process. For the
present forecast application program, the ANN model has to start learning based on the training
data set, and subsequently construct and sharpen the knowledge while ensuring the continuity of its
task. For the process of testing the accuracy of the forecasting model that has been gained from the
training process using backpropagation method. The amount of testing data used was 90% of the total.
Note that for this validation, the k-NN-ANNs were trained only while data processing is done on the
training data patterns with a target error of 0.001, learning rate of 0.1 and a maximum of 50 epochs.

Figure 8 shows a comparison of the two methods for the GSI data between actual data and
k-NN-ANN method, where: (a) there is a better between actual and forecasting data for very
short term GSI forecasting at Station target S; and (b) shows the normalized GSI curve using the
k-NN-ANN method.
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Figure 8. Comparison of the two methods for the GSI data: (a) very short term GSI forecasting using
the k-NN-ANN model versus actual data for station S; and (b) the normalized GSI curve using the
k-NN-ANN method.

Figure 9 illustrates the comparison of GSI forecasting in a four hour window (5:20 a.m.–8:00 a.m.)
on 8 June 2012, based on the k-NN-ANN model, actual data, and the k-NN method. The result shows
that very short term forecasting simulation using k-NN-ANN method during a four hour window
gives better results compared to the k-NN method.
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Figure 9. Very short term GSI forecasting in 5-h window based k-NN-ANN model, actual data, and
k-NN method.

Figure 10 illustrates a very short-term (60 min ahead) GSI forecast using k-NN-ANN and its
comparison with actual data. It is evident that the k-NN-ANN model is in a good agreement with the
measured data at the object station.

To evaluate the performance of the models, a statistical error measurement was used in the
experiment, namely the MABE, and RMSE. To evaluate the accuracy of each method to forecast the GSI
values, MABE, and RMSE coefficient between results of k-NN-ANN and actual ground measurements
were calculated. These statistical error indicators validation forecasting are calculated according to
Equations (22) and (23) and the results statistical error are shown in Table 3.
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Figure 10. Very short term (60 min ahead) GSI forecast using k-NN-ANN versus actual data.

Table 3. Error statistical indicators of the GSI forecasting models. MABE: mean absolute bias error;
RMSE: root-mean-square error.

Model Error
Indicators k-NN k-NN-ANN

MABE (W/m2) 44 42
RMSE (W/m2) 251 242

MABE is calculated according to Equation (21):

MABE =
1
N

N

∑
i=1

(∣∣∣G f ,i − Gm,i

∣∣∣)−b±
√

b2 − 4ac
2a

(22)

RMSE is calculated according to Equation (22):

RMSE(k) =

[
1
N

N

∑
i=1

e2(t + k|t)
]1/2

(23)

where e(t) is the forecasting data and k(t) is the measured (observed) data:

p(t + k|t) = P(t + k)− P(t + k|t)

where G f ,i is forecasted value GSI and Gm,i is measured value GSI, (i = 1, 2, ..., N), N is the number of
the GSI data, i is the number index variations.

Figure 11 illustrates the MABE and RMSE coefficients for the actual data and the very short term
(60 min ahead) forecasting performance using k-NN and the k-NN-ANN model. The error statistical
indicators of the k-NN model are MABE 44 W/m2 and RMSE 251 W/m2. On the other hand, the
error statistical indicators for the proposed model (k-NN-ANN model) are MABE 42 W/m2 and RMSE
242 W/m2. Note that the highest RMSE was 191 (W/m2) during the thirty-two period, while the
lowest a value was found to be 9 (W/m2) for the same location. It is evident that k-NN-ANN model
displays better predictions than the k-NN model.
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Figure 11. (a) MABE coefficients between actual data and GSI forecasts using the k-NN-ANN model on
the test data set; and (b) RMSE coefficients between actual data and GSI forecasts using the k-NN-ANN
model on the test data set.

5. Conclusions

A new methodology for very short term (60 min ahead) GSI forecasting of a target PVstation
has been introduced. In this work we propose a novel methodology for GSI forecasting using a
combination of k-NN modelling and an ANN. The model estimates and predicts the GSI profiles of PV
stations in very short term (60 min ahead) based on hourly meteorology data from eight surrounding
PV stations. The following conclusions can be drawn from this research:

• A different formulation for very short term GSI forecasting using k-NN-ANN modelling
based on meteorology data is proposed. The proposed model attempting to shape the
patterns of a polynomial equation shows that the proposed model forecasting is more better.
The variable meteorology data weather is of great very importance and affects the resulting GSI
forecasting output.

• The new model proposed in this study is a combination of k-NN modelling and an ANN model.
The model is employed to forecast GSI data for very short term period (60 min ahead) based
on meteorology data. This research concerns how to predict GSI data at a target PV station,
which is surrounded by eight other PV stations. The study also considers the availability of a
local measured database. It clearly shows that the GSI forecasting using a different k-NN-ANN
model for every hour based on meteorological data giving a better result output, which means
the GSI forecasting largely depends on variable meteorological data, where the meteorology data
variables consist of GI, wind speed, wind direct, humidity and temperatures.

• This paper utilises k-NN-ANN modelling to determine the d-dimensional features and
n-dimensional distances. The results demonstrate that the results of the k-NN-ANN model
are closely matched with the actual data, and are better than data obtained from k-NN models.

The novelty of this article is to predict GSI at a PV station which position is at the center
surrounded by eight other adjacent PV stations. The proposed model is able to learn the characteristics
of meteorology weather data for the past four hours and use the data as model input. In this paper,
the proposed k-NN-ANN model has better approximation compared to k-NN model. The very short
term forecast evaluations of the GSI using the k-NN-ANN model are performed for only four hours
and the results show that the k-NN-ANN method is better than the k-NN method. The error statistical
indicators of the k-NN model are 44 W/m2 for the MABE and 251 W/m2 for the RMSE. On the other
hand, the error statistical indicators for the proposed model (k-NN-ANN model) are 42 W/m2 (MABE)
and 242 W/m2 (RMSE). We noted that the highest RMSE was 191 (W/m2) during the thirty-two hour
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period, while the lowest value was found to be 9 (W/m2) for the same location. The performance
of the proposed k-NN-ANN method is more better compared with the k-NN model. The proposed
k-NN-ANN model can therefore be used effectively to forecast very short term GSI data while giving
closer result outputs and better matches with actual measured data.
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