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Abstract: Electrothermal energy storage (ETES) provides bulk electricity storage based on heat pump
and heat engine technologies. A subcritical ETES is described in this paper. Based on the extremum
principle of entransy dissipation, a geometry model is developed for heat transfer optimization
for subcritical ETES. The exergy during the heat transfer process is deduced in terms of entropy
production. The geometry model is validated by the extremum principle of entropy production.
The theoretical analysis results show that the extremum principle of entransy dissipation is an effective
criterion for the optimization, and the optimum heat transfer for different cases with the same mass
flux or pressure has been discussed. The optimum heat transfer can be achieved by adjusting the
mass flux and pressure of the working fluid. It also reveals that with the increase of mass flux, there is
a minimum exergy in the range under consideration, and the exergy decreases with the increase of
the pressure.
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1. Introduction

Energy storage plays an important role in energy utilization and conversion systems. The different
forms of energy that can be stored include mechanical, electrical and thermal energy [1]. Thermal
energy storage (TES) has been proven to be a method to improve the flexibility of energy supply
systems and to reduce energy consumption [2]. In these systems energy can be stored as a change in
internal energy of a material as sensible heat, latent heat and thermochemical or some combination of
these, and it already has been widely applied in thermal solar power plants [3], water heater storage [4],
solar latent heat storage unit [5,6] and so on. It is also found that TES has been employed to contribute
electrothermal energy storage (ETES), which is a type of bulk electricity storage technology to balance
power demand and supply. ETES is based on heat pump and heat engine technologies [7]. It uses
a heat pump system to transfer electrical energy combined with TES to convert electrical energy into
thermal energy in the off peak electrical output periods; during periods of peak power consumption in
the electric network the stored energy is then converted back into electrical energy using a heat engine.
Compared with pumped hydroelectric storage and compressed air energy storage, the advantage of
ETES is that it is not restricted by geographical constraints and covers small to large capacities [8,9].

Some researchers have proposed a combination of a heat pump and a heat engine to store
energy [10,11], and some studies have been carried out on the optimizations for ETES. Peterson [12]
and Henchoz et al. [13] noted the effectiveness of sub-ambient temperature ETES. White et al. [14]
investigated the thermodynamic aspects of a pumped thermal electricity storage system, and showed
that highly efficient compression and expansion processes are clearly required to obtain a satisfactory
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cycle efficiency. Meanwhile, the transcritical CO2 Rankine cycle has been proposed to replace the
Rankine cycle as the thermodynamic cycle, which is allowing for higher roundtrip efficiency in heat
exchange process [15]. Kim et al. [16] proposed a novel isothermal ETES with transcritical CO2 cycles,
which shows higher roundtrip efficiency because of a lower back work ratio than in the isentropic
case. Furthermore, the heat transfer of ETES plays an important role in the system performance [17].
Morandin [18,19] used pinch analysis tools to optimize various forms of transcritical CO2 cycle
based ETES. They showed that the thermal energy available from the heat pump condenser at high
temperatures can be stored and further used in a more efficient way, and the heat transfer feasibility
must also be required in the optimization. Baik et al. [20] showed that an optimum temperature exists
in the low-temperature hot storage tank for maximizing the roundtrip efficiency. Desrues [8] presented
a thermal energy storage process for large scale electric applications based on a high temperature heat
pump cycle and a heat engine cycle. The increase of the heat exchange is identified as a key factor to
approach the theoretical storage efficiency.

Many studies focus on ETES utilizing transcritical CO2 cycle, however, the expander or turbine for
transcritical CO2 cycles is complicated and expensive in practice. On the other hand, high temperature
thermal storage may result in large heat losses. Therefore, in this study, a subcritical ETES is presented
and a geometry model is developed for the optimization of the heat transfer process. The optimal
parameters (mass flux, pressure) are theoretically investigated.

2. Theoretical Analysis

As for the theoretical analysis, it is well known that the entropy production of a thermal system
at steady-state should be the minimum, so many researchers have developed the concept of entropy
production to deal with heat transfer optimization. Bejan [21] proposed the entropy production
expressions to optimize the geometry of heat transfer tubes and find the parameters to achieve the
optimum heat transfer. Johannesse [22] presented a theoretical proof that the entropy production due
to heat exchange in a heat exchanger is minimum when the local entropy production is constant in all
parts of the system. Balkan [23] presented a more realistic application of the entropy minimization
principle Equipartition of Entropy production (EoEP). It dictates uniform local entropy productions
along the heat exchanger in order to minimize the total entropy production rate due only to heat
transfer. In recent years, a new physical quantity has been identified by Guo et al. [24] which is a basis
for optimizing heat transfer process in terms of the analogy between heat and electrical conduction.
Guo et al. [25] established a principle Equipartition of Entransy Dissipation (EoED) for heat exchanger
design, which says that for a heat exchanger design with given heat duty and heat transfer area,
the total entransy dissipation rate reaches the minimum value when the local entransy dissipation
rate is uniformly distributed along the heat exchanger, which means the optimum heat transfer can be
achieved with the minimum entransy dissipation. However, as far as we know, few research works
have optimized the heat transfer for ETES by the principles EoEP and EoED. And the purpose of this
article is to make an optimization by these two principles.

Figure 1 shows a schematic diagram of the ETES. For a subcritical cycle, there are three zones
during heat transfer process for working fluid: liquid zone, phase change zone and vapor zone.
To simplify the model, some assumptions are made:

a. The charging process is fixed, and the total heat exchange capacity of the charging and discharging
process are equivalent, and the heat exchange is mainly based on the latent heat exchange;

b. The variations of isobaric specific heat and latent heat with minor change of pressure can be
ignored, thus the isobaric specific heat and latent heat are assumed to be constants;

c. The pinch point temperature difference is assumed to be zero; the heat loss of the heat exchange
process is taken no account.
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Figure 1. Schematic diagram of an ETES: C. compressor; T. turbine; P. pump; E. expander. 
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exchanger are fixed, that is to say the heat is exchanged by a given boundary heat flux, thus the 
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be simplified by calculating the area of a quantity of triangles. 
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Figure 1. Schematic diagram of an ETES: C. compressor; T. turbine; P. pump; E. expander.

According to the theory of Guo et al. [24], the optimization of a heat conduction process minimizes
the equivalent thermal resistance for the constraints. The minimum entransy dissipation implies the
minimum thermal resistance for a given boundary heat flux, while the maximum entransy dissipation
implies the minimum thermal resistance for a given set of boundary temperature. The extremum
principle of entransy dissipation can also be applied to the optimization of heat convection processes.
In our model, the total heat exchange capacity and area of the heat exchanger are fixed, that is to say
the heat is exchanged by a given boundary heat flux, thus the entransy dissipation must achieve the
minimum value to obtain the optimum heat transfer. Because the specific heat capacity is assumed
constant for a given working fluid, the entransy dissipation can be simplified by calculating the area of
a quantity of triangles.

For the charging process, the entransy dissipation can be presented as:

Eh∅,ch = Eh,ch − Eh,hx =
1
2

∫ H2

H1

[Tch(H, p)− Thx(H, p)]dH =
1
2
(Sa + Sb) (1)

As shown in Figure 2, the heat exchange line changes from solid line to any dotted line,
the entransy dissipation will increase, it is because that ha is higher than hb obviously due to the
large latent heat. Thus, the entransy dissipation of the charging process reaches the minimum when
the heat exchange line pass through points (H1, To) and (Hc1, T1). The slope of the heat exchange line
can be expressed as following:

k =
T1 − To

Hc1 − H1
=

T1 − To

x
(2)

Similarly, the entransy dissipation of the discharging process is:

Eh∅,ds = Eh,hx − Eh,ds =
1
2

∫ H2

H1

[Thx(H, p)− Tds(H, p)]dH =
1
2
(A1 + A2) (3)

where A1 and A2 are the areas of S1, S2 in Figure 3.
Therefore the heat exchange line can be expressed as:

k(H − Hc1) = T − T1 (4)
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Figure 2. Minimum entransy dissipation of the charging process.
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Figure 3. Charging and discharging processes.

For the triangle S1 shown in Figure 3, the height h1 and base d1 of S1 can be expressed by the
following equations due to the (Hc2,T2) is on the heat exchange line, therefore:

h1 = Hc2 − H1 =
T2 − T1

k
+ Hc1 − H1 = x− ∆T

k
= α (5)

where x is the enthalpy difference between the end of the charging process and the beginning of the
phase change stage. Similarly α is the enthalpy difference between the beginnings of the discharging
process and the phase change stage:

d1 = To − Ti,b (6)

with:
(T2 − Ti,b) = Hc2 − H1 = α (7)

k(H1 − Hc1) = To − T1 (8)
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Thus:
d1 = −kα +

α

mc1
(9)

A1 =
1
2

(
α

mc1
− kα

)
α =

1
2

(
α2

mc1
− kα2

)
(10)

As for S2, it can be calculated by S21 + S22 obviously, where the height and base of S21 can be
deduced by the equations below:

h21 = To,b − T2 (11)

d21 = mhm (12)

With the slope equation of the vapor stage:

kvap =
1

mc2
=

To,b − T2

h2 − (hc2 + mhm)
(13)

where:
y +

∆T
k

= β (14)

Thus:
h21 = To,b − T2 =

β−mhm

mc2
(15)

A21 =
1
2

mhm ×
β−mhm

mc2
=

1
2

βhm −mhm
2

c2
(16)

Similarly, the height and base of S22 can also be expressed:

h22 = H2 − Hc2 = H2 −
T2 − T1

k
− Hc1 = β (17)

d22 = Tx − To,b (18)

with:
Tx = ky + T1 (19)

And the To,b can be deduced by Equation (15), therefore:

A22 =
1
2

β×
(

kβ− β−mhm

mc2

)
=

1
2

(
kβ2 − β2 − βmhm

mc2

)
(20)

Base on the equations above, the area of S2(A2) and the whole area between heat exchange line
and discharging process line (A) can be obtained as:

A = A1 + A2 = A1 + A21 + A22 =
1
2

(
α2

mc1
− kα2 + kβ2 − (β−mhm)

2

mc2

)
(21)

where A corresponds to the entransy dissipation of the discharging process Eh∅:

Eh∅ =
1
2

∫ H2

H1

[Thx(H, p)− Tds(H, p)]dH =
1
2

A =
1
4

(
α2

mc1
− kα2 + kβ2 − (β−mhm)

2

mc2

)
(22)

2.1. Optimum Heat Transfer at Different Mass Fluxes

The minimum entransy dissipation has been demonstrated to represent the optimum heat transfer
in this model. In the discharging process, to study the influence of mass flux on the heat transfer
process, the pressure is assumed constant. Thus other thermodynamic properties are fixed under
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the same pressure, the mass flux is the only variable parameter. The range of the mass flux has been
dominated by the assumptions of the heat exchange model in this study. The minimum and maximum
mass flux are limited by the outlet temperature of the discharging process shown in Figure 4.Energies 2017, 10, 198 6 of 14 
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The outlet temperature of the discharging process at the minimum mass flux is equal to the outlet
temperature of the heat exchange fluid. Therefore:

1
mminc2

=
ky + T1 − T2

h2 − (hc2 + mminhm)
(23)

mmin =
β

kβc2 + hm
(24)

Eh∅(mmin) = Ammin =
1
2

(
α2hm

βc1
+

α2kc2

c1
− kα2 +

kβ2hm

kβc2 + hm

)
(25)

As for the maximum mass flux, the outlet temperature of the discharging process is equal to the
phase change temperature of the discharging process, with:

mmaxhm + Hc2 = H2 (26)

Thus:
mmax =

H2 − Hc2

hm
=

β

hm
(27)

Eh∅(mmax) = Ammax =
1
2

(
α2hm

βc1
− kα2 + kβ2

)
(28)

Therefore the range of mass flux is
(

β
kβc2+hm

, β
hm

)
.

The relative influence of mass flux on the entransy dissipation can be expressed by the equation:

∂
(

Eh∅m,p

)
∂(m)

=
1
4

(
− α2

m2c1
− m2hm

2 − β2

m2c2

)
(29)
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The extremum mass flux of the maximum entransy dissipation is:

mex =

√
c1β2 − c2α2

c1hm2 <
β

hm
(30)

To calculate the minimum entransy dissipation, the entransy dissipations at the minimum and
maximum mass flux are compared:

∆A = Ammin − Ammax =
1
2

(
α2kc2

c1
− k2β3c2

kβc2 + hm

)
(31)

Thus:
When α2

β2 < kβc1
kβc2+hm

, ∆A < 0:

Eh∅min
=

1
2

Amin =
1
2

Ammin =
1
4

(
α2hm

βc1
+

α2kc2

c1
− kα2 + kβ2 − k2β3c2

kβc2 + hm

)
(32)

Thus:
mopt = mmin =

β

kβc2 + hm
(33)

When α2

β2 = kβc1
kβc2+hm

, ∆A = 0:

Eh∅min
=

1
2

Ammin =
1
2

Ammax =
1
4

(
α2hm

βc1
− kα2 + kβ2

)
(34)

Thus:
mopt = mmin or mmax (35)

When α2

β2 > kβc1
kβc2+hm

, ∆A > 0:

Eh∅min
=

1
2

Amin =
1
2

Ammax =
1
4

(
α2hm

βc1
− kα2 + kβ2

)
(36)

Thus:
mopt = mmax =

β

hm
(37)

2.2. Optimum Heat Transfer under Different Pressures

Similarly, to present the influence of pressure on the entransy dissipation, is equivalent to
assuming that the mass flux is fixed in the discharging process. As we all know, though the latent
heat, specific heat and phase change temperature are affected by pressure in the discharging process,
the latent heat and specific heat are not taken into account because of the minor changes (compared with
the variation of phase change temperature) under various pressure conditions. Therefore, the relative
influence of the pressure simply performed as the phase change temperature difference between
the charging and discharging process, as shown in Figure 5, the maximum (or minimum) pressure
corresponds to the minimum (or maximum) temperature difference:

∂
(

Eh∅m,p

)
∂(∆T)

=
1
2

(
2αα′

mc1
− 2kαα′ + 2kββ′ − 2ββ′ − 2mhmβ′

mc2

)
=

kmc1c2(α + β) + c1mhm − (c2α + c1β)

kmc1c2

(38)
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∆Tex =
kc2x(kmc1 − 1) + kc1y(kmc2 − 1) + kc1mhm

c1 − c2
(39)

With:
kc2x(kmc1 − 1) = kc2(kmc1x− x) = −kc2mhm (40)

∆Tex = kmhm − ky
c1(1− kmc2)

c1 − c2
(41)

Based on the assumptions about the heat exchange model mentioned above, the phase change
temperature difference is limited by the inlet and outlet temperature of the discharging process.
The outlet temperature of the discharging process with the minimum phase change temperature
difference is equal to the phase change temperature of the discharging process. Then:

β∆Tmin = mhm = h2 − hc2 = y +
∆Tmin

k
(42)

Thus:
∆Tmin = kmhm − ky (43)

Similarly, the inlet temperature of the discharging process with the maximum phase change
temperature difference is equal to the phase change temperature of discharging process, that is to say:

β∆Tmax = x + y (44)

then:
∆Tmax = kx (45)

Therefore the range of the phase change temperature difference between the charging and
discharging process is (kmhm − ky, kx) as shown in Figure 5.

As we all know, the slope of the heat exchange line is smaller than the slope of the liquid or vapor
stage, which means:

k <
1

mc1
and k <

1
mc2

(46)

When c1 > c2:
c1 − c2

c1
< 1− kmc2 (47)

1 <
c1(1− kmc2)

c1 − c2
(48)

∆Tex < ∆Tmin (49)

The entransy dissipation is a monotonous decreasing function of the phase change temperature
difference which corresponds to a monotonous increasing function of pressure. It ensures that the
entransy dissipation is the minimum with the maximum phase change temperature difference.

When c1 < c2:
c1(1− kmc2)

c1 − c2
< 0 (50)

∆Tex > ∆Tmin (51)

According to the assumption mentioned above, the sensible heat exchange in liquid and vapor
stages are too low, which means they are about equivalent.

mhm + y ≈ x (52)

∆Tex = kmhm − ky
c1(1− kmc2)

c1 − c2
= k

(
mhm + y

c1(1− kmc2)

c2 − c1

)
(53)
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while:
c1(1− kmc2)

c2 − c1
< 1 (54)

∆Tex < ∆Tmax (55)

∆Tex is in the range of the phase change temperature difference between the charging and
discharging process. The minimum entransy dissipation can be obtained with the ∆Tex which
corresponds to the optimum pressure.

When:
c1(1− kmc2)

c2 − c1
> 1 (56)

then:
∆Tex > ∆Tmax (57)

The entransy dissipation is also a monotonous decreasing function of the phase change
temperature difference. It means the minimum entransy dissipation is obtained at the maximum phase
change temperature difference which corresponds to the minimum pressure.

Therefore:
When c1 > c2 or c1 < c2, c1(1−kmc2)

c2−c1
> 1:

Eh∅min
=

1
2

Amin =
1
2

A∆Tmax =
1
2

Apmin (58)

When c1 < c2, c1(1−kmc2)
c2−c1

< 1

Eh∅min
=

1
2

Amin =
1
2

A∆Tex (59)
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Figure 5. Heat transfer under the minimum and maximum pressure in discharging process.

Based on above analyses, it can be known that the optimum heat transfer can be presented by
adjusting the mass flux or pressure respectively at a given pressure or mass flux. The main object of
this work is to find out the optimum parameters. The significance of entransy dissipation has been
researched in previous published papers, and the optimum parameters have certainly been obtained
with these theories. On the other hand, this study will also present the minimum entropy production
analysis to demonstrate the results shown above.
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3. Numerical Confirmation of the Optimum Heat Transfer

In order to check the validation of the presented model, a numerical confirmation is carried out
for the various mass fluxes and pressures respectively. R245fa is employed for the working fluid using
the thermodynamic data from REFPROP 9.0. Figures 6 and 7 show the variation of temperature with
the enthalpy change. Figure 6 displays the variation at various mass fluxes under the fixed pressure.
It can be found that the outlet temperature of the discharging process decreases with the increasing
mass flux. Conversely, the inlet temperature of the discharging process increases. The increasing
mass flux causes the enthalpy change of phase change stage more and the slopes of the liquid and
vapor stage (shown in the Equation (13)) smaller, resulting in the inlet and outlet temperature changes.
Figure 7 displays the variation of temperature under various pressures at the same mass flux. It can be
seen that the phase change temperature increases with the increase of pressure. However, as for other
thermodynamics properties (isobaric specific heat, latent heat), there are not significant variations,
therefore, the inlet temperature increases and outlet temperature decreases as Figures 6 and 7 show.

Energies 2017, 10, 198 10 of 14 

 

temperature changes. Figure 7 displays the variation of temperature under various pressures at the 
same mass flux. It can be seen that the phase change temperature increases with the increase of 
pressure. However, as for other thermodynamics properties (isobaric specific heat, latent heat), there 
are not significant variations, therefore, the inlet temperature increases and outlet temperature 
decreases as Figures 6 and 7 show. 

 
Figure 6. Variation of temperature with the mass flux in the discharging process. 

 
Figure 7. Variation of temperature with the pressure in the discharging process. 

According to the extremum principle of entropy production, the object of thermodynamic 
optimization is to minimize the total entropy production. The minimum entropy production 
corresponds to the maximum exergy. As a consequence, the exergy analysis can be employed for 
numerical confirmation in this study. The exergy is determined by the temperature and 
thermodynamic data of the R245fa in the discharging process, which can be calculated by an 
equation, the exergy of a heat source with limited capacity can be written as: ܧ௨ொ = න (1 − ଴ܶܶ)݀ܳଶ

ଵ = ܳଵଶ − ଴ܶ∆ ଵܵଶ (60) 

In the model established previously, the entropy production of the discharging process can be 
obtained as: ∆ ଵܵଶ = ݉ቆܿଵ ݈݊ ଶܶ௜ܶ,௕ + ℎ௠,ଶଶܶ + ܿଶ ݈݊ ௢ܶ,௕ଶܶ ቇ (61) 

Figure 6. Variation of temperature with the mass flux in the discharging process.

Energies 2017, 10, 198 10 of 14 

 

temperature changes. Figure 7 displays the variation of temperature under various pressures at the 
same mass flux. It can be seen that the phase change temperature increases with the increase of 
pressure. However, as for other thermodynamics properties (isobaric specific heat, latent heat), there 
are not significant variations, therefore, the inlet temperature increases and outlet temperature 
decreases as Figures 6 and 7 show. 

 
Figure 6. Variation of temperature with the mass flux in the discharging process. 

 
Figure 7. Variation of temperature with the pressure in the discharging process. 

According to the extremum principle of entropy production, the object of thermodynamic 
optimization is to minimize the total entropy production. The minimum entropy production 
corresponds to the maximum exergy. As a consequence, the exergy analysis can be employed for 
numerical confirmation in this study. The exergy is determined by the temperature and 
thermodynamic data of the R245fa in the discharging process, which can be calculated by an 
equation, the exergy of a heat source with limited capacity can be written as: ܧ௨ொ = න (1 − ଴ܶܶ)݀ܳଶ

ଵ = ܳଵଶ − ଴ܶ∆ ଵܵଶ (60) 

In the model established previously, the entropy production of the discharging process can be 
obtained as: ∆ ଵܵଶ = ݉ቆܿଵ ݈݊ ଶܶ௜ܶ,௕ + ℎ௠,ଶଶܶ + ܿଶ ݈݊ ௢ܶ,௕ଶܶ ቇ (61) 

Figure 7. Variation of temperature with the pressure in the discharging process.

According to the extremum principle of entropy production, the object of thermodynamic
optimization is to minimize the total entropy production. The minimum entropy production
corresponds to the maximum exergy. As a consequence, the exergy analysis can be employed for
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numerical confirmation in this study. The exergy is determined by the temperature and thermodynamic
data of the R245fa in the discharging process, which can be calculated by an equation, the exergy of
a heat source with limited capacity can be written as:

EuQ =

2∫
1

(
1− T0

T

)
dQ = Q12 − T0∆S12 (60)

In the model established previously, the entropy production of the discharging process can be
obtained as:

∆S12 = m
(

c1 ln
T2

Ti,b
+

hm,2

T2
+ c2 ln

To,b

T2

)
(61)

The variations of exergy with various mass fluxes and pressures are shown in Figures 8 and 9.
The range of the mass flux in this calculation case is (0.92, 1.07) kg/s, it can be found that the exergy
decreases firstly, and then increases with increasing mass flux under the same pressure. This means
there is a critical point of the minimum exergy just like the mex deduced by the previous theoretical
analysis. The value of mex is calculated for this case, which is 1.058 kg/s. It is accordingly shown at
around m = 1.06 kg/s in Figure 8. On the other hand, the exergy attain the maximum value at the
minimum mass flux in the numerical analysis, which means the optimum heat transfer can be obtained
at the minimum mass flux. And in this case, α2

β2 < kβc1
kβc2+hm

is satisfied, that is to say the optimum
heat transfer occur at the minimum mass flux demonstrated in the theoretical part. The difference
between theoretical analysis and numerical analysis can be performed indirectly via a comparison of
the different values of mex. In this case, the difference is around 0.19%. As a consequence, the optimum
heat transfer (minimum eantransy dissipation) at different mass flux of theoretical analysis and the
actual optimum heat transfer have achieved a good agreement.

Figure 9 shows the variation of the exergy with pressure at a fixed mass flux of 1 kg/s. In this
case, the condition of c1 < c2, c1(1−kmc2)

c2−c1
> 1 is satisfied. The entransy dissipation is a monotonous

increasing function of pressure. The exergy decreases with the increase of pressure in the range of
the variable pressure, the maximum exergy is at the minimum pressure which corresponds to the
minimum entransy dissipation.
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4. Conclusions

The main parameters, mass flux and pressure of working fluid, can affect the roundtrip efficiency
of subcritical ETES via heat transfer process. A geometry model based on the entransy dissipation
theory is developed to simplify the theoretical analysis and validated by the minimum entropy
production principle. The following conclusions can be reached from theoretical analysis of the heat
transfer process of subcritical ETES:

1. For the different mass fluxes under fixed pressure, the mass fluxes to achieve the optimum heat
transfer are different for different cases. The optimum mass flux is effected mainly by the latent
heats of the charging and discharging processes. However, it is confirmed that the optimum mass
flux appears at the minimum or maximum allowed value under the same pressure.

2. Similarly, for the different pressures at fixed mass flux, the optimum pressure is effected mainly
by the specific heat capacities of the liquid or vapor stages. The optimum heat transfer can be
obtained under the minimum pressure with c1 > c2 or c1(1−kmc2)

c2−c1
> 1. We found the reason for

this is the entransy dissipation is a monotonous decreasing function for this situation. However,
for any other cases, there is an optimum pressure which depends on the extreme phase change
temperature difference between charging and discharging processes.

3. In order to demonstrate the validation of the model, the maximum exergy analysis based on
the minimum entropy production principle has been carried out. The data of the numerical
confirmation is compared with the result proposed by theoretical analysis. There is minor
difference (around 0.19% in this study) between the variations of the exergy and entransy
dissipation of R245fa.

In summary, to optimize the heat transfer of the ETES system, it is efficient to optimize the mass
flux or pressure of the discharging process respectively. The theoretical analysis is proven to be an
efficient method to approach the optimum parameters in the ETES.
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Abbreviations

A Area
A1 Area of the triangle S1

A21 Area of the triangle S21

A22 Area of the triangle S22

c1 Liquid isobaric specific heat
c2 Vapor isobaric specific heat
d1 Base of the triangle S1

d21 Base of the triangle S21

d22 Base of the triangle S22

Eh Entransy
Eh∅ Entransy dissipation
EuQ Exergy
H Enthalpy
H1 Enthalpy of the beginning
H2 Enthalpy of the end
Hc1 Enthalpy of the phase change end in the charging process
Hc2 Enthalpy of the phase change beginning in the discharging process
hm Latent heat
h1 Height of the triangle S1

h21 Height of the triangle S21

h22 Height of the triangle S22

k Slope of the heat exchange line
kvap Slope of the vapor stage in the discharging process
m Mass flux
p Pressure
S1 ∆123
S21 ∆145
S22 ∆156
T Temperature
T1 Phase change temperature of the charging process
T2 Phase change temperature of the discharging process
Ti Inlet temperature of the charging process
To Outlet temperature of the charging process
Ti,b Inlet temperature of the discharging process
To,b Outlet temperature of the discharging process
T0 Environment temperature
Tx Outlet temperature of the heat exchange fluid
Q12 Heat change
x Enthalpy difference between the end and the phase change beginning of the charging process
y Enthalpy difference between the beginning and the phase change beginning of the charging process
∆S The area difference between the process with the minimum and maximum mass flux
∆S12 Entropy production
∆T Phase change temperature difference between charging and discharging process
Greek Symbols
α Enthalpy difference between the beginning and the phase change beginning of the discharging process
β Enthalpy difference between the phase change beginning and the end of the charging process
ε Effect degree
ϕ Thermodynamic properties
Subscripts
ex Extreme value
ch Charging process
hx Heat exchange
ds Discharging process
min Minimum
max Maximum
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