
energies

Review

Multi-Objective Planning Techniques in Distribution
Networks: A Composite Review

Syed Ali Abbas Kazmi *, Muhammad Khuram Shahzad and Dong Ryeol Shin *

Department of Electrical and Computer Engineering, College of Information and Communication
Engineering (CICE), Sungkyunkwan University (SKKU), Suwon 440-746, Korea; khuram@skku.edu
* Correspondence: kazmi@skku.edu (S.A.A.K.); drshin@skku.edu (D.R.S.);

Tel.: +82-10-5947-6376 (S.A.A.K.); +82-31-290-7125 (D.R.S.)

Academic Editor: Francesco Calise
Received: 13 July 2016; Accepted: 31 January 2017; Published: 12 February 2017

Abstract: Distribution networks (DNWs) are facing numerous challenges, notably growing load
demands, environmental concerns, operational constraints and expansion limitations with the
current infrastructure. These challenges serve as a motivation factor for various distribution
network planning (DP) strategies, such as timely addressing load growth aiming at prominent
objectives such as reliability, power quality, economic viability, system stability and deferring
costly reinforcements. The continuous transformation of passive to active distribution networks
(ADN) needs to consider choices, primarily distributed generation (DG), network topology change,
installation of new protection devices and key enablers as planning options in addition to traditional
grid reinforcements. Since modern DP (MDP) in deregulated market environments includes multiple
stakeholders, primarily owners, regulators, operators and consumers, one solution fit for all planning
scenarios may not satisfy all these stakeholders. Hence, this paper presents a review of several
planning techniques (PTs) based on mult-objective optimizations (MOOs) in DNWs, aiming at better
trade-off solutions among conflicting objectives and satisfying multiple stakeholders. The PTs in the
paper spread across four distinct planning classifications including DG units as an alternative to costly
reinforcements, capacitors and power electronic devices for ensuring power quality aspects, grid
reinforcements, expansions, and upgrades as a separate category and network topology alteration and
reconfiguration as a viable planning option. Several research works associated with multi-objective
planning techniques (MOPT) have been reviewed with relevant models, methods and achieved
objectives, abiding with system constraints. The paper also provides a composite review of current
research accounts and interdependence of associated components in the respective classifications.
The potential future planning areas, aiming at the multi-objective-based frameworks, are also
presented in this paper.

Keywords: active distribution network (ADN); distributed generation (DG); distributed energy
resources (DERs); distribution network planning (DP); multi-objective optimization (MOO);
multi-criteria decision analysis (MCDA); distributed generation placement (DGP); volt-ampere
reactive power (VAR) compensation and power quality (VPQ); component reinforcement and up
gradation (CRU); network (distribution) topology change and reconfiguration (NTR); planning
techniques (PT); multiple objective planning (MOP); multi-objective planning techniques (MOPTs);
future distribution networks (FDNs)

1. Introduction

Electrical power grids (as hierarchical networks) are traditionally responsible for the unidirectional
flow of power from centralized generation sources via transmission networks (TNWs) to distribution
networks (DNWs) for ultimate electricity consumption. Increasing load demands, fewer expansion
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options, increasingly competitive electricity market scenarios and environmental concerns result in
stressed operating conditions for both TNWs and DNWs. In comparison, DNWs gets a higher share of
stressed conditions due to their design, planning and operation limitations [1]. Traditionally DNWs
were purposely planned to operate in a radial configuration to maintain one-way power flow. Such a
setup was preferred largely due to simple protection equipment, reduced short circuit currents (SCCs)
of the networks, easy control requirements, a safe and economical operation for the end consumer.
However, the rapid growth of DNWs and associated loads over large geographical areas results in
technical issues like voltage instability, increased system losses, low network reliability, compromised
power quality and capacity enhancement concerns, respectively [2,3].

The factors above are motivating system planners to find alternative methods rather than
traditional ones, to meet the increased demand and concerned issues promptly. The possible solution
strategy calls for planning modifications on short/medium/long-term basis in the potential areas of
generation capacity enhancement, improving power quality, load management, emissions control and
ensuring overall system reliability.

1.1. Traditional Versus Modern Distribution Planning

Traditional distribution planning (TDP) methods had the narrow aim of finding economically
feasible solutions based on single objective optimization techniques. The respective methods usually
focus on grid reinforcements with optimal location and capacity of future substations (SSs), feeders
(Fr), and conductors (branches) to address future load demands (across the planning horizon).
These evaluations usually favor one decision maker (distribution companies) regarding decision
support [4]. Major planning restrictions are also faced within TDP when high distributed generation
(DG) penetration exists. The DNW design complications may result in further deterioration of the
aforesaid technical issues rather than solving them. The conventional “fit-and-forget” approach has
resulted in unfeasible costly reinforcements, to address various technical issues and retain DNW within
operation limits.

Modern distribution planning (MDP) methods are somewhat both better and complex than their
traditional counterparts in various aspects. The most important feature aims at planning with “active
network management” (ANM) for increased DG penetration abiding with system operational limits
rather than the “fit-and-forget” approach. The concept of ANM introduces new planning concepts in
modern planning paradigms, predominately renewable energy sources (RES) integration, distributed
storage technologies (STs) and electrical vehicles (EVs); supported by communication, intelligent
metering, active demand side management (DSM) and advance distributed automation (ADA) [5].
Another significant feature of MDP methods is that they can exploit various multi-objective planning
techniques (MOPTs) to sort out viable trade-off (compromised) solutions among conflicting objectives
that satisfy multiple (diverse) stakeholders [6,7].

1.2. Potential Planning Techniques in Modern Distribution Planning

The distribution network planning (DP) problems are becoming more complicated with the
active participation of several stakeholders in the competitive energy market. The achievement of
acceptable solutions ensuring economic viability, acceptable power quality, utmost reliability and
improved operational aspects (better voltage stability and reduced power losses) among major market
participants is one of the key motives of modern planning studies. Since the MDP problem essentially
needs multi-objective optimization (MOO) methods to find a feasible solution in the setup above,
therefore it can be established that MDP is a multi-objective planning (MOP) problem [7–10]. Numerous
distribution planning techniques proposed in the literature since the last decade address the complex
nature of DP problems from MDP perspectives. Major research accounts are nowadays more focused on
DG planning options, conventional solution techniques and modified grid reinforcement strategies [6–17].

Wang et al. [6] provided a review of multi-criteria decision making (MCDM) for decision
aids in MOP problems till 2009. A critical review of “state-of-the-art survey” was presented by
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Rodriguez et al. [7] regarding MO-based DG/DER planning methods till 2009. Georgilakis and
Hatziargyriou [8,10] presented two notable planning surveys for optimal DG placement and grid
reinforcements, respectively. The multi-objective planning (MOP) problem had partially addressed
in both works. Kalambe in [9] offered a bibliographic survey regarding single objective techniques
focusing on loss minimization for DG, capacitor placement, and network reconfiguration (NTR)
respectively. DG as an attractive planning alternative for utilities regarding loss minimization, voltage
stability and deferring costly grid reinforcements has advocated in [10–12].

The integration of RES-based DGs (REG) to achieved clean energy and emission reduction are
among the notable motives for researchers. However planning with only high penetration of REG
is not very productive due to the limitations in traditional operational (inadequate reactive power
support at unity power factor, power quality) and protection capabilities of current DNWs [13]. Hence,
volt-amphere reactive (VAR) power compensation and power quality issues have been addressed with
planned allocation of capacitors [14] and advanced power electronic devices [15]. The protection issue
has addressed with planned allocation of protection and automation devices; to ensure reliability and
system stability under both normal and emergency scenarios [16]. Also, a few new MDP strategies
are employed to address load management issues by employing coordinated planning of multiple
components (DG units, capacitors, protection devices) with NR (and/or topology alteration) [17–19].

A review of the literature shows that most of the planning techniques address single objectives
optimization on a large scale. However, little attention is paid to various planning techniques (PTs)
in multi-objective framework [20], which can be interdependent, integrated and coordinated with
traditional planning options from a MDP viewpoint. Hence the potential planning techniques in this
paper are distinctly classified into four categories. The first category covers planning components,
primarily DG units (of various types and concepts), STs and EVs. The second category comprises
capacitors (types) and power electronic devices, to ensure VAR compensation and power quality.
The third category contains protection, automation devices, and traditional grid reinforcements to
guarantee reliability and system stability under new or expansion planning scenarios [8,18,19]. Finally,
network topology optimization with alteration and/or NTR (to retain the radial nature of distribution
systems) has been considered as a planning option.

1.3. Paper Contribution

The paper presents a composite review of prominent planning techniques applied to distribution
systems. Most notably, the review indicates the interdependence and coordination of planning
components in MDP. The core focus of this paper will remain on four MOPTs, associated methods,
achieved objectives and associated taxonomy (consisting of 80 papers published in the last decade
as a whole, since 2005 in particular and more specifically after 2010) on a relatively large number
of works. The PT categorizations have designated in this paper by DG placement (DGP) [21–52].
Followed by VAR compensation and power quality (VPQ) [53–70]. Moreover, component (protection
and automation devices) placement, modern grid reinforcement and upgrades (CRU) [71–89]. Finally
a change of topology and/or NTR has discussed as a planning option in [90–100]. The details in
each category are discussed in later sections. Besides distinct classifications, the interdependence
of individual planning components in each PT will also be presented. This work compliments the
existing works by:

(1) Offering a composite review for researchers, planning engineers and distribution companies,
regarding multiple planning techniques aiming at MDP under MO framework.

(2) Presenting planning components’ interdependence, interaction, coordination (in each PT) and
addressing the contributions of each PT from the perspective of MOO in DNWs.

(3) Discussing objective attainment, methods, test systems, challenges/requirements and future
research directions.
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It is a well-established fact that real world planning problems are multi-objective (MO) in nature.
Also, more investigation is needed to carry out realistic (MO) planning by upgrading conventional to
smart DNWs or redesigning them from the beginning. Hence, the core aim of this paper is to provide
a background for future distribution network (FDN) planning on the basis of the limitations perceived
in available works and from the perspectives of MO achievement.

The paper is organized as follows: Section 2 covers classification details of planning techniques,
objectives, MO formulations and major considerations for MOP models. A composite review of studied
works has presented regarding decision variables, constraints, objectives, test systems, methods and
considered models within PT taxonomies in Section 3. Section 4 outlines MO method classification.
The contribution of the reviewed work has presented in Section 5. Future research directions have
been suggested in Section 6. The paper concludes in Section 7.

2. Classifications of Planning Techniques and Key Enablers

The primary objective from the perspective of planning, operation, and upgrading of any DNW
is to meet the demands of end consumers in a better, safe, economical, reliable and timely manner
(planning horizon). The general DP problem is considered a mixed integer nonlinear programming
problem (MINLP) [8,10]. The TDP problem focuses on minimization of economic cost objectives
for traditional reinforcements subject to a set of constraints. The MDP problem focuses on planning
techniques (PT) from various aspects, multiple objectives, decision variables, load models while abiding
with system constraints. Based on our literature survey, four PTs are presented in Sections 2.1–2.4.

2.1. Distributed Generation Placement (DGP)

The DG is defined as “a small-scale electrical power generation source connected directly to the
DNW or on the consumer side of the meter”. The DG type by connection and voltage level includes
DGs on the DNW side with a medium voltage (MV) or low voltage (LV), whereas usually LV is on the
consumer side. The DG units connected directly to DNW (close to load centers) are considered as an
attractive planning alternative for utilities worldwide. However, high DG penetration has changed
the nature of DNW from passive to an active one with bidirectional power flows. The prominent
benefits attributed to DGP-based planning include voltage support, loss minimization, an alternative
to costly reinforcements, and reduction of GHG (with REGs). Broader DG concepts by types are
covered in [11–13] as follows:

• Conventional (synchronous) DG units, for example, microturbines and diesel generators.
• Non-conventional, for example, fuel cells (FCs), EVs, plug-in EV (PEV).
• Wind (asynchronous) and photovoltaic (PV/electronic converter)-based REG units.
• Distributed energy resources (DERs) concepts (including DG, ST, and RL).
• Various types of storage technologies (ST) and concepts like DSS.

2.2. Volt-Ampere Reactive Power Compensation and Power Quality (VPQ)

Capacitor (Cap) placement is one of the oldest techniques, still in use today (as shunt capacitor
banks). They primarily provide VAR compensation within DNWs (located at SS or distributed in
the field) to reduce reactive power losses, power factor correction and voltage stability. Moreover,
improvement in power electronics, particularly FACTS devices and power filters, make room for
modifications in planning approach, which is meeting load demands ensuring both VAR compensation
and power quality during the planning process. The broad VPQ category, comprising of planning
components, are arranged as per following types [14,15]:

• Capacitor types: Fixed, switched and combined fixed/switched (VRCs).
• Power electronic devices types: FACTS (SVC and STATCOM) and power filters (passive, active

or hybrid).
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2.3. Component Reinforcements/Allocations and Upgradations (CRU)

The main motive of this technique is to find a most economical solution for future substations,
feeders, and upgraded devices to meet future requirements ensuring the quality of service promptly.
It can be divided into two sub-classes as follows [10,16].

2.3.1. Grid Reinforcement Component (GRC)

This sub-class mainly deals with the traditional planning aspects for network expansions and
component replacement for a static or dynamic period [4,10]. Main GRCs include: (1) branches or
cables or conductors (Br); (2) feeders (Fr); (3) transformers (TF); (4) substations (SS).

2.3.2. Grid Upgrades with Devices/Components (GUC)

This sub-class deals with the grid upgrading with devices or components [14,15], vital for
necessary upgrades, such as: (1) automatic-reclosers (RA) for automation/protection; (2) normally
open (NO)/tie-switches (TSW) and normally closed (NC)/sectionalizing switches (SSW) placement in
DNW for load management; (3) devices placement like voltage regulators (VR) or automatic voltage
regulators (AVRs) and online tap changers (OLTCs).

2.4. Distribution Network Topology Alteration and Reconfiguration (NTR)

This technique refers to the operational planning with variation in the DNW topology [17–19].
Topology changes are realized by changing the open/close status of (SSW/NC and TSW/NO) switches
to ensure primarily radial configuration, load management and system protection (with unidirectional
power flow) in current DNWs. The topology can be changed to loops by simply closing TSW between
two radial feeders with an advanced or upgraded protection scheme. However, the key motive is to
find the best switching combination that ensures system loss reduction, cost minimization, ensuring
the quality of service and reliability. Other benefits attributed to NTR include load balancing and
planning maintenance outages.

2.5. Classification of Objectives

Any planning process aims towards achieving maximization (↑↑) and minimization (↓↓) of certain
objectives respectively. The objectives associated with the planning have broadly classified into four
major types, which have presented in the Sections 2.5.1–2.5.4, respectively.

2.5.1. Technical Objectives

(1) Network power losses (NPLs): The minimization (↓↓) of system losses in the literature have been
addressed as energy losses in distribution lines (EL), real/resistive (P-loss), reactive/inductive
(Q-loss), P-loss index (ILP), Q-loss index (ILQ) and reactive power deviation (QPD).

(2) Voltage stability (VS): The voltage objective from the maximization (↑↑) aspect in the literature
has been evaluated regarding magnitude of profile (VMP), profile index (VPI), stability level
(VSL), stability index (VSI), stability margin or load-ability limit (VSM) and high-level limit
(MaVL). Also, voltage criteria regarding minimization (↓↓) have been addressed as sag level
(VSgL), deviation/drop (VD) and total variation (TVV). Furthermore, an error at power buses
(VEPB), unbalance profile (VUBP), deviation index (IVD), minimum limit (MiVL) and level at
DG (VLDG) have been minimized.

(3) Power quality (PQ): Objectives have achieved with minimization (↓↓) of total harmonic
distortions (THD); voltage THD (VTHD) (↓↓), P-loss under THD (PLHD) and reactive current
component (QIC).

(4) Capacity enhancement: Maximization (↑↑) with DG is designated with penetration (CEDGP) and
penetration level (DGPL) respectively.

(5) Load balancing (LB): Must be achieve with a minimum number of switching actions for NTR (↑↑).
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(6) Reinforcement components: The performance is normally evaluated as the possibility of overload
(OL) at SS, Fr, loads nodes (LN) (OLSSFrLN) (↓↓), feeder current flow (FCF), reserve capacity
of conductor (RCC) and RCC index (RCCI). Other performance indicators are capacity security
margin of TFs and feeders (CSM) (↑↑), network capacity release (NCR), current carrying capacity
of branch (CCC) (↑↑), CCC index (CCI) (↑↑), line loading Index (LLI) (↑↑) and line flow limit
index (IC).

(7) Protection: Primarily evaluated with performance based indices. Notably, short circuit level
(SCL) (↓↓), short circuit index (SCI) (↓↓), three-phase short circuit (3-ph-SC), single-phase-ground
(1-ph-G), fault current level (FCLL) due to DG (FCLLDG) (↓↓).

(8) Overall system stability: Besides voltage, frequency and phase angle; is evaluated with critical
clearing time (CCT) for transient stability (↓↓) and average network security index (ANSI) (↑↑).

2.5.2. Economic Objectives

(1) Project planning costs: They have been addressed in the literature; aiming at minimization of
(↓↓) payback year (PBY), net present value (NPV) of components/systems, project installation
(ItC), network upgrading (CNU) and annual (AC) costs. The objectives are also targeted at
maximization of (↑↑) time deferral in new installations and economic index (EI), respectively.

(2) System running (operation) costs: These objectives comprise cost minimizations (↓↓) in investment
(InvC), operation (OC), maintenance (MC), O&M (OMC), investment and operation (IOC) and
capacity adequacy cost (CAC).

(3) Stakeholder economics: They concern objective maximization (↑↑) of profits, net savings (NS), the
benefit to cost ratio and DG owner income (DGOI).

(4) Technical costs: These involve cost minimization (↓↓) of power (CPL) or energy (CEL) losses and
overall power losses during operations (OCPL) (↓↓).

(5) Cost of reliability: This has been evaluated regarding overall cost minimization (↓↓) with the
reliability indices, such as energy not supplied (CENS), system average interruption frequency
index (CSAIDI), interruption (IntC) non-distributed energy (NDE) and customer service
interruptions (CSI). Also, cost objective minimization (↓↓) concerning customer interruption
(CIC) and DG unavailability (DGUI) have also considered in the literature.

(6) Market economics: Market-based objectives concern the minimization (↓↓) of economic risks in
electricity market price (EMP) and cost of purchased energy (CPE) (↓↓).

(7) Planning component costs: The monetary functions, focusing on a wide range of planning
components, have been evaluated as cost (or investment) minimization (↓↓) of: (1) equipment
(EC); (2) switching (SWC); (3) NTR operations (NRC); (4) capacitor (CC); (5) DG installation
(CDG); (6) DG investment (DGI); (7) voltage regulator (VR); (8) VRC (CVR/C); (9) DG and PPF
(ICDGPPF); (10) switch purchase and maintenance (SPMC); (11) reinforcements (IRC); (12) energy
loss reduction (ELC); (13) DG and capacitors (ICAll); (14) monetary risk (MnC) and (15) system
upgrades (SUCs).

(8) Other planning-related costs: The addressed objectives in this subcategory deal with cost
minimization (↓↓) of investment, EL and O&M cost (IELOM); system planning (SCP), overall
fixed and variable cost (OFVC) and overall new and old devices (COD). Also, includes operation
and investment (EOI); total operation cost (TOC); expected global cost (EGC) and overall complete
system (OCS) (including installations, O&M, power losses, reliability excluding profits).

2.5.3. Techno-Economic Objectives

(1) System efficiency (↑↑).
(2) Optimizing spinning reserve (SR) (↓↓).
(3) Social benefits have addressed in the literature improving electricity service quality (↑↑), reducing

the unit rate for consumers (↓↓) and consumer interruption level (CILL) (↓↓).
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(4) Electrical service security and control (↑↑).
(5) System reliability maximization (↑↑) can be achieved with objective minimization (↓↓) of:

(1) system average interruption frequency index (SAIFI); (2) system average interruption
unavailability index (SAIUI); (3) system average interruption duration index (SAIDI); (4) energy
not supplied (ENS); (5) ENS for average case (AENS); (6) expected ENS (EENS); and (7) overall
contingency load loss index (CLLI).

(6) Techno-economic hazards minimization (↓↓) has considered as objectives addressing system
failure, malfunctions and conditional value at risk (CVaR).

(7) Reliability of DG (DGR) (↑↑).

2.5.4. Environmental Objectives

(1) Greenhouse gases (GHGs): The minimization (↓↓) of GHG emissions (GHGE) are among the key
objectives of modern planning. In literature, emissions have addressed with minimization (↓↓) of
average (annual) GHG (ACE), grid (GHGG) and DG (GHGDG) respectively.

(2) Penetration of REGs (↑↑).
(3) Energy diversity with REG (↑↑).
(4) Cost and quantity of fossil fuel saving with less costly alternatives (↓↓).
(5) REG-based objectives: They principally deal with minimization (↓↓) of external cost of energy

(ECE); power buying (PB) from SS (PBSS) and DG owner (PBDG); energy imported from the grid
(EIG) and distributed storage system (DSS) energy losses (DEL). Also, energy export from DG
(REG) to grid (EEDG2G) needs to be maximized (↑↑).

(6) Health care costs due to GHGs and particle emissions needs to be minimized (↓↓).

2.6. Classification of MOP Formulations

The classic TDP techniques were single objective, single stakeholder, and single dimensional
approaches. In contrast, MDP considers diverse stakeholder participation in the presence of various
planning techniques, active network management and ownership (distribution system operator, DG
operator, consumer, etc.) has led to planning objectives that are conflicting in nature. For example;
switching radial DNW topology to loop will increase DG penetration, improve voltage and increase
reliability, however, system losses increases. Therefore MOO can be employed to bring a compromise
solution among conflicting objectives, abiding system constraints to satisfy all stakeholders. Finding a
single solution for MOP involves two steps, comprising of optimization and decision making (DM).
Depending on the order, in which these steps have performed, MO formulations can be classified as
two core approaches (classes), shown as follows [6,7,20].

2.6.1. MO + W or Priori Class

In this type of formulation, DM precedes optimization. The multiple objectives transform into the
single objective function, and the individual weights are assigned to each objective by user-defined
(decision maker) preferences before execution of optimization algorithms. This class is also known
for a priori articulation of preferences. The optimization of the single objective function is more
qualitative in nature (with preferred weights) and results in a single optimized solution. Also, a great
deal of background knowledge is required to evaluate the required weights. Key methods like goal
programming and MO performance index (IMO) can be included in this classification. The DM
approaches utilized in these formulations are generally from the family of multi-criteria decision
analysis (MCDA). Major MCDA-based DM techniques employed in MO formulations include weighted
sum method (WSM), weighted product method (WPM), analytical hierarchal process (AHP), max-min
and fuzzy DM (FDM) approaches. For simplicity, this type of problem is shown with term “MO + W”
in the rest of the paper.
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2.6.2. MO-P or Posteriori Class

In this class, optimization is preferred over DM to achieve realistic solutions. An optimization
algorithm determines a set of potential solutions (Pareto frontier), also called Pareto optimal set
solutions, and are usually non-dominated (or non-inferior) in nature. The decision maker then chooses
a solution from the resulting Pareto set on the basis of respective preferences, also called posteriori
articulation of preferences. It is important to note that MO solutions obtained with no articulation of
preferences are related arbitrary to the class of Pareto optimal set. Such approach is more quantitative in
nature, and evolutionary (meta-heuristic) algorithms have normally utilized as optimization processes.
This type of problem formulation has shown with the term “MO-P”.

2.7. Classification of Models in MOP

The associated classifications of key enablers aiming at MOP problem, have presented in
Sections 2.7.1–2.7.6, respectively.

2.7.1. Key Decision Variables (DV) for PT

• DGP: (1) Location (L); (2) capacity (C); (3) L + C; (4) L + C + Type (T) (DG/DER or storage (ST) or
others like EV); (5) L + C + Number (N) (single (S) or multiple (M)); (6) L + C + T + N.

• VPQ: (1) L; (2) C; (3) L + C; (4) L + C + T (capacitor, FACTS devices and power filters); (5) L + C +
N; (6) L + C + T + N.

• CRU/GRC: (1) Feeder (Fr.) location (L); (2) Fr. location (L) and capacity(C) (L + C); (3) substation
(SS) location (L) + SS capacity (C) + Fr. (L); (4) SS (C) + Fr. (L + C); (5) SS (C) + Fr. (L + C); (6) SS
(L + C) + Fr. (L + C); (7) SS (L) + Fr. (C) + Load (Ld) allocation; (8) SS (L + C) + Fr. (C) + Ld
allocation; (9) SS (C) + Fr. (C) + capacity of reinforcement planning components (SS, TF, Fr. and
Br.) and up-gradation devices (DG, capacitor, device, switches) or simply component capacity
(Cc); (10) SS (C) + Fr. (C) + Cc + Ld allocation; (11) SS (L + C) + Fr. (L + C) + Cc + Ld allocation;

• CRU/GUC: (1) L; (2) C; (3) L + C; (4) L + C + T (VR, SWs, RAs); (5) L + C + N; (6) L + C + T + N.
• NTR: (1) L; (2) N; (3) N + L; (4) Switching status (NO/NC); (5) Radial (retained) topology (RT); (6)

N + L + (NO/NC); (7) N + L + (NO/NC) + RT; (8) Loop Topology (LT); (9) N + L + (NO/NC) + LT.

2.7.2. Multi-objective Planning Types by Planning Period/Horizon

The general classification of planning can be divided into: (1) short; (2) medium and (3) long
term basis. Planning process on the basis of the application comprises of: (1) new; and (2) expansion
type considering load growth over the planning period/horizon (PP). A broad classification of DP
problems on PP basis includes: (1) static type (one-step/single stage); (2) dynamic type (multistage).

2.7.3. Multi-objective Planning Types by Planning Components Coordination

The optimization problem type can-be related to the planning components or combination of them
(interdependence) as follows: (1) optimal DG placement (DGP); (2) optimal capacitor, FACTS devices
and PF placement (VPQ); (3) optimal grid component reinforcement, allocation and upgradations
(CRU); (4) network topology and/or reconfiguration (NTR); (5) A + B; (6) A + C; (7) A + D; (8) B + C; (9)
B + D; (10) C + D; (11) A + B + C; (12) A + B + D; (13) A + C + D; (14) B + C + D and (15) A + B + C + D.

2.7.4. Major Constraints

The most important constraints considered on broader scale includes: (a) Bus voltage drop limit;
(b) Power flow equality constraint; (c) Branch/Feeder capacity; (d) Transformer overloading limit;
(e) Harmonics limit; (f) Radial operation constraint; (g) Short circuit current limit; (h) Power-factor
limit for utilities; (i) Reliability limits; (j) Protection limits; (k) Types of load; (l) Load flow constraint;
(m) DG capacity limit; (n) Unique parameter selection limit; (o) DISCO limitation; (p) Cost constraints;
(q) Budget constraint; (r) Standard size of components; (s) Planning periods; (t) Weight factor;
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(u) Number of components (DG, Cap, devices, switches); (v) Thermal limits; (w) Stability limit;
(x) Vector constraint; (y) Real (P) and reactive (Q) power compensation limit; and (z) Future constraints
(incorporating new, ANM and other related constraints).

2.7.5. Classification of Load Variables (Models and Profiles)

• Load Models (LdM): The load (Ld) variables are usually modeled as:

(1) Balanced three-phase loads represented by a single phase load:

(a) Distributed type loads (across the branches).
(b) Concentrated type loads (on the nodes/buses).

i. Constant loads (CLd).
ii. Variable load (VLd). (Time-varying or voltage dependent).
iii. Fuzzy load (FLd).
iv. Probabilistic load (PLd).

(2) Balanced three-phase loads (BL).
(3) Unbalanced three phase loads (UL).
(4) Combined three and single phase loads (UBL).
(5) Controllable (responsive or flexible) loads (CL).
(6) Non-controllable/non-linear loads (NL).

• Load Profiles (LdP): The general load profiles have modeled as:

(1) Single load level (SLL).
(2) Multiple load levels (MLL).
(3) Fuzzy load level (FLL).
(4) Probabilistic load level (PLL).
(5) Time-varying load level (TVLL).
(6) Critical load level (CLL).

2.7.6. Test Distribution System Types

The test distribution system by voltage level includes: (1) primary at MV level (6.6 KV–34.5 KV);
(2) secondary at LV level (110 V–600 V); (3) combination of both (primary and secondary) DNWs.
The test system on application basis may include: (1) real; (2) test DNW, as considered by researchers.

3. Composite Review of MOP Techniques with Taxonomy

In this section, a composite review of related research aiming at PT (individual, integrated and
interdependent) is presented from the perspective of the MOP problem. Furthermore, from the readers’
comfort viewpoint, the information about planning components (in each PT), decision variables, major
constraints, considered objectives, the test DNWs, MO classification, algorithms or methods, planning
periods, online year, load models, profiles and concerned information have arranged in tabular format
throughout the Tables 1–4, respectively. Planning components associated to each PT in reviewed work
are designated with symbols A, B, C, and D, respectively, also shown in an overarching diagram as
in Figure 1. The color coding allocated to each PT in the arrangement order includes green (A) for
DGP [21–52]; orange (B) for VPQ [53–70]; blue (C) for CRU [71–89] and purple (D) for NTR [90–100].
It is important to note that date of publication in each table represents the online date of the article.
In each table, refer to Section 2.7.1 for decision variables (DVs). Major constraints have provided in
Section 2.7.4. The objective classifications with abbreviations are provided in Section 2.5. The MO
classifications are provided in Section 2.6; planning algorithms are discussed in Section 4 and finally
load models in Section 2.7.5.
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Table 1. MO Planning with DGP.

Ref. PT (DV) (L,C, N, T) Major Constraint Objective Function (OF)/Considered
Objectives Test DNW MO Class/Algorithm/Planning

Period (PP)/ Others
Year (Online)/LdM +
LdP/Others/

[21] A. M/(DG) (L + C) a), b), c), f), Cost [Upgradation; purchased energy;
losses; energy not supplied] (↓↓) Real Italian DNW (MO-P)/GA + ε constrained/Dynamic

(20 years)/ May 2005/CLd + PLL/

[22] A. M/(DG) (L + C) a), b), c), e), g), f), [Cost of energy losses; Voltage
deviation; VTHD] (↓↓) 18 Bus Test DNW (MO-P)/GA + ε constrained/Dynamic

(10 years) Jul. 2005/CLd + PLL/

[23] A. M/(DG) (L + C + T) a), b), c), f), l), q), [Power losses (↓↓); Voltage Profile (↑↑)] IEEE 34 Bus DNW (MO-P)/MCS + GA/Static (1 year) Mar. 2007/VLd + TVLL/

[24] A. M/(DG) (L + C) a), b), c), f), h), m) [IELOM, OLSSFrLN, EMP] (↓↓) 9 Bus DNW (MO-P)/NSGA-II +
max-min/Dynamic (30 years) Mar. 2008/FLd + FLL/

[25] A. S/(DG) (L) a), b), c), f), v) Single OF (SOF) with weights: [P-loss;
Q-loss; VD; CRC; 3-ph-SC; 1-ph-G] IEEE 34 Bus DNW (MO+W)/ES/Static (1 yr.)/Wt. (1–6):

[0.33; 0.10; 0.15; 0.07; 0.07; 0.15] Apr. 2008/CLd + TVLL/

[26] A. M/(DG) (L + C) a), b), c), f), m), u), s), k) [P-loss (↓↓); Voltage Deviation (↓↓)] IEEE 34 Bus DNW (MO + W)/Fuzzy goal programming
(FGP) + GA/Dynamic (5 years) Apr. 2008/VLd + MLL

[27] A. M/(DG) (L) a), b), c), f), v) [EEDG2G (↑↑); P-loss (↓↓); SCL (↓↓)] IEEE 34 Bus DNW (MO-P)/NSGA/Static (1 year) Sep. 2008/CLd + TVLL

[28] A. S/(DG) (L + C) a), b), c), f), Multi-objective performance index
(IMO): [P-loss; Q-loss; CCI; VP]

16 Bus.; 37 Bus
Test DNW.

(MO + W)/ES [GA vs.
ES]/Static/Wt.(1–4) [0.40; 0.20;
0.25; 0.15]

Feb. 2009/VLd + MLL/

[29] A. D. M/(DG) (L + C + T) a), b), c), f), g), Single OF (SOF) with weights: FMOI =
[VDI; PLI; QLI; LLI; SCI]

IEEE 33; IEEE 69;
25 Bus Test DNW;

(MO + W)/Fuzzy GA +
WSM/Static/Wt.(1–5) [0.25; 0.40; 0.15;
0.10; 0.10]/

Jul. 2010/CLd + SLL/

[30] A. M/(DG) (L + C + T) a), b), c), f), l), m), p), q), r), SOF for total cost of DG: [IC; MC; OC;
CAC, NLC] IEEE 37 Bus DNW

(MO + W)/GA + MCS, AHP/Chance
constrained programming (CCP)
model/Dynamic (3 years)/Wt.(1–5)
[0.34; 0.34; 0.11; 0.11; 0.10]/PEV

Oct. 2011/PLd + PLL/

[31] A. M/(DG) (L + C) a), b), c), f), l), m), n), v) [P-loss (↓↓); VP(↑↑); VSI(↑↑)] IEEE 33; IEEE 69
Bus DNW;

(MO + W)/Hybrid GA + PSO [GA: DG
(L); PSO: DG (C)]/Static Jan. 2012/CLd + SLL

[32] A. M/(DG) (L + C + T) a), b), c), f), g), GMOI(↓↓): [VDI (↓↓); PLI (↓↓); QLI
(↓↓); LLI (↓↓); SCI (↓↓)]

IEEE 33Bus DNW;
25Bus Test DNW;

(MO + W)/GA + Goal programing
(Goal P)/Static/ Feb. 2012/CLd + SLL/

[33] A. M/(DG) (L + C + T) a), b), c), f), m), Minimize OF: [EL ; VD] (↓↓) 24 Bus rural DNW
(MO + W)/Two-stage (heuristic
iterative method + ES)/Dynamic
(3 years)

Sep. 2012/VLd + TVLL

[34] A M/(DG) (L + C + T) a), b), c), k), l), m),v), y), [OCS (↓↓); DGR (↑↑)] MS * =
Maintenance schedule IEEE 37 bus DNW

(MO-P)/GA + MCOM (Multi-criteria
optimization model)/Dynamic
(20 years)

Jan. 2013/PLd + PLL/

[35] A. M/(DG) (L + C) a), b), c), f), h), i), [P-loss (↓↓); VP (↑↑)] IEEE 33; IEEE 69
Bus DNW; (MO-P)/IMOHS framework/Static Mar. 2013/VLd + TVLL/

[36] A. M/(DG) (L + C + T) a), b), c), m), u) [P-loss (br. & TF); VD; CCT] (↓↓) IEEE 33Bus DNW
(MO-P)/Hybrid PSO-SFL,
FDM/Static/DIgSILENT®/Wt.
0.4–0.9

Jun. 2013/[CLd , VLd
(voltage)] + MLL/

[37] A M/(DG) (L + C) a), b), c), f), h), v),w),y) [P-loss (↓↓); VSI (↑↑); TVV (↓↓)] IEEE 33; IEEE 69
Bus DNW; (MO-P)/PFDE/Static Nov. 2013/CLd + SLL/
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Table 1. Cont.

Ref. PT (DV) (L,C, N, T) Major Constraint Objective Function (OF)/Considered
Objectives Test DNW MO Class/Algorithm/Planning

Period (PP)/ Others
Year (Online)/LdM +
LdP/Others/

[38] A M/(DG) (L + C + T *) a),b),c),f),h),l),
m),p),s),u),z *)

[SCP; GHGE] (↓↓); z * = Plug-in EV
(PEV) and REGs Test 38 bus DNW (MO-P)/MCS + NSGA II

(MINLP)/Dynamic (20 years (Yr.)) Jan. 2014/PLd + PLL/

[39] A M/(DG) (L + C + T) a), b), c), d), f), m), v), [MnC; GHGE] (↓↓); 9 bus Test DNW
(MO-P)/(Augmented ε-constrained +
FCM/MCS) + MINLP
framework/Dynamic (10 years)

Jan. 2014/PLd + PLL/

[40] A M/(DG + DR + SR)
(L + T) a), b), c), l), m), r), z1), z2),

[TOC; GHGE] (↓↓); z1 = DRP *
constraint z2 = spinning reserve (SR)
constraint.

69 Bus DNW
(MO-P)/(AεCM)/Dynamic (24 h (Hr.))
for Short-term planning (STP)/
DRP *: Demand response provider

Mar. 2014/PLd + PLL/

[41] A. M/(DG *) (L + C + T *) a), b), c), f), p), q), u) [ENS (with CVaR); EGC] (↓↓), * DG
types: PV, wind, ST, EV IEEE 13 Bus DNW (MO-P)/Fast NSGA II, MCS-OPF

framework/Static/ Jun. 2014/PLd + TVLL/

[42] A. M/(DG) (L + C) a), b), c), f), m), v) MOF = min(OF1 + PC1 OF2 + PC2
OF3) [P-loss (↓↓); VD(↓↓); VSI (↑↑)]

IEEE 33; IEEE 69;
118 Bus DNW;

(MO-P)/QOTLBO/Static/PC1 = 0.35;
PC2 = 0.65 Jul. 2014/CLd + SLL/

[43] A. M/(DG) (L + C) a), b), c), d), o), p), q)

OF1 = DG owner cost: [DGOI(↑↑);
DGI(↓↓); MC(↓↓); OC(↓↓)] OF2 =
DISCO owner cost: [PBSS (↓↓); PBDG
(↓↓); CIC (ENS) (↓↓)]

IEEE 33Bus DNW;
(MO-P)/MOPSO + FDM /Dynamic (20
years)/Goal1: Cost of DISCO (↓↓);
Goal2: DG owner benefit (↑↑);

Aug. 2014/VLd + TVLL

[44] A M/(DG) (L + C + T) a), b), c), k), l), m) [MnC; GHGE] (↓↓); IEEE 33Bus DNW; (MO-P)/IMOPSO-PS/Static (1 year) Aug. 2014/CL + CLL

[45] A M/(DG) (L + C + T) a), b), c), m), p)
Single OF with weights: [VD; FCF;
NPL; ECE; DEL] DSS *: Distributed
storage system.

IEEE 34 bus DNW
(MO + W)/MISOCP + AHP/Dynamic
(5 years)/Wt. (1–5): [0.0562; 0.0396;
0.2535; 0.6421; 0.0086]/

Sep. 2014/VLd + TVLL/

[46] A. S/M (DG) (L + C) a), b), c), d), f), l), m), v) IMO: [P-loss; Q-loss; VP; RCCI;] IEEE 69; IEEE 123
Bus DNW

(MO + W)/S-BB-BC
algorithm/Static/Wt. (1–4): [0.40; 0.20;
0.15; 0.25]

Nov. 2014/CLd + SLL for
69 bus; UB + TVLL
for 123;

[47] A M/(DG) (L + C) a), b), c), f), v) Single OF with weights: [ILP; ILQ; VSI;
IC; IVD]

Test 38 bus; IEEE
69 bus DNW

(MO + W)/CABC/Static/Wt. (1–5):
[0.35; 0.15; 0.10; 0.25; 0.15] Nov. 2014 /VLd + MLL/

[48] A. M/(DG) (L + C) a), b), c), m), r), z *)
Single objective function: [PBY (↓↓);
P-loss (↓↓); VSL (↑↑)] z * = RES
penetration constraint

28 Bus rural DNW (MO + W)/MOPSO + FDM/Static (1
year)/Focus on DSM. Jan. 2015/VLd + TVLL/

[49] A. S/M (DG) (L + C) a), b), c), f), m) [P-loss; CDG] (↓↓) 15 Bus DNW (MO-P)/SQP + WSM, FDM/Dynamic
(20 years)/ Apr. 2015/CLd + SLL

[50] A M/(DG) (L + C) a), b), c), f), m), v) [P-loss (↓↓); VD (↓↓); VSM (↑↑)]
IEEE 33; Real 292;
Real 588
bus DNW;

(MO-P)/Improved-NSGA-II
(INSGA-II) + FDM/Static (1 year) Apr. 2015/VLd + MLL

[51] A. S/M (DG) (L + C) a), b), c), m), u) [NPL; VD; CDG] (↓↓) IEEE 33Bus
Radial DNW (MO-P)/(MOShBAT)/Static/ Jan. 2016/VLd (Voltage)

+ MLL

[52] A. B. M/(DG + Cap)
(L + C + T) a), b), c), d), f), m), u), y) [EI (↑↑); VSI (↑↑); ANSI (↑↑); ACE (↓↓)] 28 bus rural DNW (MO-P)/MOPSO + FDM/Dynamic

(5 years) Apr. 2016/VLd + MLL/

Notes: PT: in Sections 2.1–2.4; DV: Decision Variables (Location, capacity, numbers and types); Constraints in Section 2.7.4; Objectives in Section 2.5; MO Class in Section 2.6; LdM, LdP in
Section 2.7.5. Also, “*” indicates any additional information about a particular decision variable, constraint and objective, respectively.
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Table 2. MO Planning with VPQ.

Ref. PT (DV) (L, C, N, T) Major Constraint Objective Function/Considered
Objectives Test DNW MO Class/Algorithm/Planning

Period (PP)/Others
Year (Online)/LdM +
LdP/Others/

[53] B. M/(Cap) (L + C) a), b), c), f), [P-loss; CC] (↓↓) Portuguese 94
bus DNW (MO-P)/Tabu Search (TS)/Static May 2005/VLd + MLL/

[54] B. M/(Cap) (L + C + T) a), b, f), [NS (↑↑) (with EL (↓↓)); VD (↓↓)] IEEE 69 Bus DNW MO + W/Fuzzy-GA (MO)
approach/Static/wt(1–2): [0.5;0.5] Aug. 2007/CLd + MLL

[55] B. M/(Cap) (L + C + T) a), b), c), d), f), p), [CCI (↓↓); P-loss (↓↓); VD (↓↓);
CSM (↑↑)]

IEEE 69 Bus
DNW/Two
stage approach

(MO-P)/1). IA; 2). Compromise
programming (TSIAECP)/Static Mar. 2008/CLd + MLL

[56] B. M/(Cap) (L + C + T) a), b), c), f), m), [EL; VD] (↓↓) 12 Bus
DNW Radial

(MO-P)/Hybrid SA-PSO, (IBVT)
approach/Static (1 year) Jan. 2009/CLd + MLL

[57] B. C. [M/(Cap) + S/(AVR)]
(L + T) a), b), c), f), p), u), x), [EL; VD; OCS] (↓↓) IEEE 69 Bus

DNW Radial
(MO-P)/(SPEA2) improved with fuzzy
logic/Static (1 year) Aug. 2010/CLd + MLL

[58] B. M/(Cap) (L+C) a), b), c), f), y), [P-loss; CC] (↓↓) Portuguese 94
bus DNW

(MO-P)/Elitist NSGA-II
(ENSGA-II)/Static/ Jun. 2012/CLd + MLL/

[59] B. C. [M/(Cap) + M/(VR)]
(L+ C + T) a), b), c), f), m), [(CVR/C + OCPL); VD] (↓↓) IEEE 69; Test 136

bus DNW (MO-P)/MILP model / Static (1 year) Jan. 2013/CLd + MLL

[60] B. M/(Cap) (L + C + T) a), b), f), m), [AC (↓↓); P-loss (↓↓); VD (↓↓)] IEEE 9; IEEE 34
Bus DNW (MO-P)/SAMHBMO/Static (1 year) May 2013/PLd + PLL/

[61] B. M/(Cap) (L + C + T) a), b), c), f), h), l), m), y), [P-loss (↓↓); VSI (↑↑); NS (↑↑);] IEEE 34; Test 118
bus DNW (MO + W)/APSO/Static (1 year) May 2013/CLd + SLL: 34

bus CLd + MLL: 118 bus

[62] B. M/(Cap) (L + C + T) a), b), c), f), h), l), m), y), [P-loss (↓↓); VSI (↑↑); NS (↑↑);]
IEEE 34;
Portuguese
94 bus DNW

(MO + W)/ABC/Static (1 year)/ Jul. 2013/CLd + SLL

[63] B. M/(Cap) (L + C + T) a), b), c), f), m), [AC (↓↓); P-loss (↓↓); VD (↓↓)] IEEE 9; 34;
69 bus DNW; (MO-P)/AMHBMO/Static (1 year)/ Aug. 2013/CLd + SLL

[64] A. B. M/[DG +Cap]
(L + C + T) a), b), c), f), k), l), p), q), [CENS; CSAIDI; ELC; ICAll] (↓↓) 115 bus practical

Iranian DNW (MO-P)/IDEA/Static (1 year)/
Dec.–Jan. 2013–14/VLd
[Time and Voltage]
+ TVLL

[65] A. B. M/[DG + Cap] (L + C) a), b), c), f), h), m), [P-loss (↓↓); VSI (↑↑); SCI (↓↓)]
IEEE 33;
Portuguese
94 bus DNW

(MO-P)/Fuzzy MOPSO +
FDM/Dynamic (10 years)/

Dec. 2014/FLd +
FLL/Uncertainty

[66] B. M/(Cap) (L + C + T) a), b), c), f), h), [QIC (↓↓); P-loss (↓↓); CCC(↑↑); MiVL
(↓↓); MaVL (↑↑)]

51 Bus Test; IEEE
69 Bus DNW

(MO + W)/Fuzzy-GA (MO)
approach/Dynamic (20 years)/ Dec. 2015/VLd + MLL

[67] B. M/(Cap) (L + C + T) a), b), c), f), h), l), m), y),
Strategy 1: Minimize cost: [CCP; CCI;
OMC; EL] (↓↓) Strategy 2: Technical:
[P-loss (↓↓); VMP (↑↑); VUBP (↓↓)]

60 bus real
unbalanced
Australian
MV DNW

(MO + W)/MIP problem with BSFS
load flow based PSO method +
WSM/Dynamic (30 years)/

Jan. 2016/UBL + TVLL

[68] A. B. M/[DG+PPF] (L + C) a), b), c), f), l), m), w), [THD; PLHD; ICDGPPF] (↓↓) IEEE 34 Bus DNW (MO + W)/ABFO/Static (1 year)/PPF:
Passive power filter Jan. 2016/NL + MLL

[69] A. B. M/[DG + RA +
D-FACTS](L + C) a), b), c), f), r), [OFVC; CLLI] (↓↓) 54 bus test DNW (MO-P)/MOSOA + max-min

approach/Static (1 year) Apr. 2016/CLd + SLL/

[70] B. C. D. M/Fr.(L + C)+ [RA +
D-FACTS] (L) a), b), c), f), p), s), [OFVC; CLLI] (↓↓) 54 Bus Test DNW

MO-P/MOSOA + max-min
approach/Static (1 year)/ADA:
Advance distributed automation

May 2016/CLd +
SLL/(ADA)

Notes: PT: in Sections 2.1–2.4; DV: Decision Variables (Location, capacity, numbers and types); Constraints in 2.7.4; Objectives in Section 2.5; MO Class in Section 2.6; LdM/LdP in 2.7.5.
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Table 3. MO Planning with CRU.

Ref. PT (DV) (L, C, N, T) Major Constraint Objective Function/Considered
Objectives Test DNW MO Class/Algorithm/Planning Period

(PP)/ Others
Year (Online)/LdM +
LdP/Others/

[71] C. D. M/(SS, Fr.) (L + C + T) a), b), c), m), p), r), [OFVC; ENS] (↓↓) 41 nodes,2 SSs, 73 routes;
Radial and Mesh (10 × RF *);

MO-P/NSGA + SPEA, FCM)/Static/
RF * = Reserve feeders for loop Nov. 2006/CLd + SLL/

[72] B. C. M/[(SS, Fr, SSW)] + [M/(Cap)]
(L + C) a), b), c), f), i), m), n), [IOC; IOBDRA; CIC] (↓↓) Urban electric DNW expansion

planning Radial;

MO + W/ MINLP + GA/Dynamic
(5 years)/Main problem into
three subproblems

Dec. 2008/CLd + SLL

[73] C. M/(SSW) (L) a), b), c), f), m), p), [EENS; COD(SSW)] (↓↓) Rural Billinton; Iranian DNW; MO + W/ACO + FDM/Static (1 year) Jan. 2009/CLd + SLL

[74] A. C. M/(DG + Fr) (L + C + T) a), b), c), f), p), q), [IOC (DG/DER); DSOROC] (↓↓) UKGDS 355 bus Radial DNW; MO-P/Hybrid SPEA2 + OPF/Static
(New DNW) (20 years) Mar. 2009/CLd + TVLL

[75] C. D. M/[SW + PD] (L + T) a), b), c), f), h), i), j), l), [COD; SAIFI and SAIDI] (↓↓) 18 Bus; Practical
51 Section DNW;

MO-P/MACO/Static (1 year) PD *:
Protection devices

Mar. 2009/Dist. Load
(DL) + PLL

[76] A. C. D. M/[(DG + (SS, Fr) + (SSW)] (L +
C + T) a), b), c), r),

Stage I: [(OCS + TOC); CLLI] (↓↓);
Stage II: [{(OCS + TOC); CLLI};
P-loss (↓↓); DGPL (↑↑)]

21 bus; 100 bus DNW; MO-P/MOPSO/Static (1 year) Aug. 2010/CLd + SLL

[77] C. M/(SS + TF + Fr + Br +
SSWs)(L + C) a), b), c), f), p), q), s), u), [EOI; CENS] (↓↓) DNW with 180 load buses:

49 exists, 131 added;
MO-P/MINLP + MORTS + GA/Static
(1 year)/RTS: Reactive Tabu Search Jun. 2011/VLd + MLL

[78] C. D. M/(A&M SWs *) (L) a), b), c), f), i), p), [CIC; SPMC] (↓↓) A&M SWs *:
Auto and manual SWs IEEE 123 bus DNW; (MO + W)/MSFLA + Fuzzy

approach/Static (1 year)/ Oct. 2011/VLd + TVLL

[79] A. C. D. M/(DG + SWs + Br.) (L + C + T) a), b), c), d), f), n), r), [CEL; NDE; IRC; EIG] (↓↓) IEEE 33; Actual 177 bus system; (MO-P)/MOGA/Dynamic (5 years) Dec. 2011–12/VLd + MLL

[80] C. D. M/(Fr + SWs + TL *) (L + C) a), b), c), f), j), i), p), q), [OCS; CLLI] (↓↓)TL *: Tie-Line 21 Bus; 54 Bus; 100 Bus DNW; MO-P/S1: SPEA2-MOPSO; S2:
SPEA2-BMOPSO/Static (1 year) Dec. 2011–12/CLd + SLL

[81] A. C. [M/(SS + Fr + DG] (L + C) a), b), c), f), i), m), n), p), q), [IOC; CIC] (↓↓) Urban DNW 30000 Consumers; MO + W/IGDSEP model as SCMINLP
AGA & IAGA / Dynamic (5 years)

Mar. 2012/VLd +
TVLL/Wt.: 19

[82] A. C. M/(DG + Br) (L + C) a), b), c), d), f), m), [IOC; ENS] (↓↓) Actual DNW 2-SS, 16 LP, 24 Br; (MO-P)/Hybrid PSO-SFL/Dynamic
(4 years)/ Aug. 2012/CLd + MLL/

[83] C. M/(Fr + Br) (L + C) a), b), c), f), r), t), [IOC; IntC] (↓↓) 21 Bus; 54 Bus; 100 Bus DNW; MO + W/Dynamic Programming
(DynP)/Static (1 year)

Nov. 2012/CLd (BL)
+ MLL

[84] C. M/[SS+SWs + Fr + Br] (L + C) a), b), c), d), f), m), n), r), [COD; NSEC(as AIC)] (↓↓) 54 Bus DNW; MO-P/MO Tabu search
(MOTS)/Dynamic (15 years)/ Jun. 2013/VLd + MLL

[85] C. D. M/Fr(L + C)] +M/(RA)(L) a), b), c), f), r), [OCS; CLLI; P-loss; VD] (↓↓) 54 Bus DNW; 100 Bus DNW; MO + W/MOSOA/Static (1 year)/ADA Jun. 2014/CLd + SLL/

[86] C. D. M/[RA + SW] (L + C) a), b), c), p), s), [OCS; CLLI] (↓↓) 54 Bus DNW; MO-P/MOSOA + Fuzzy cardinal
priority ranking/Static (10 year)/ADA Apr. 2015/CLd + SLL/

[87] C. M/(SWD) (L + C) a), b), c), f), t),
[1.EC; 2.SAIDI and SAIFI;
3.DGUI] (↓↓) A1: Min [1 + 2 + 3];
A2: Min [1 + (2 + 3)]

94 Bus Portuguese DNW; MO-P/NSGA-II/Static (1
year)/Approach 2 (A2) > (A1)/ Sep. 2015/CLd + SLL

[88] A. C. M/(DG + FCL) (L + C + T) a), b), c), d), f), g), j), r), [FCLLDG; VSgL; EC(FCL *)] (↓↓)
FCL *: Fault current limiters

Canadian benchmark test;
IEEE 69 bus DNW; (MO-P)/PSO + NLP/Static Nov. 2015/CLd + SLL/

[89] A. C. S/DG [L + C] + S/OLTC(L) a), b), c), f), i), z), [VEPB; QPD; VLDG] (↓↓)
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Note: “*” indicates any additional information about a particular decision variable, constraint and objective, respectively.
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Table 4. MO Planning with NTR.

Ref. PT (DV) (L, C, N, T) Major Constraint Objective Function/Considered
Objectives Test DNW MO Class/Algorithm/Planning

Period (PP)/Others
Year (Online)/LdM +
LdP/Others/

[90] D. M/(SW St.) (L + T) a), b), c), f), j), m), v) [P-loss; Reliability indices: (SAIFI,
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Civanlar 17 bus;
Baran 33 bus; Real
172 bus DNW

MO-P/Micro-GA (mGA)/Static/ Apr. 2009/CLd + SLL

[91] D. M/(SW St.) (L + T) a), b), c), f), i), [P-loss; CILL] (↓↓)
Actual Medium
DNW, 96 Br,
28 SWs.

(MO-P)/Fuzzy MCDM in “Proof of
concept” tool/ Static (1 year) May 2009/CLd + MLL/

[92] C. D. M/(Fr + SW St. *) (L + T) a), b), c), f), y) [CIC; NLC; SWC] (↓↓)
SW St.*: Switch Status

3 Fr, 16 bus;
8 Fr DNW.

MO + W/ Binary PSO (BPSO)/Static
(1 year)/ May 2009/VLd + TVLL/

[93] D. M/(SW St.) (L + T) a), b), c), d), f), v) [NLC; ENS] (↓↓) IEEE 33; IEEE
123 Bus DNW; MO-P/BPSO/Static (1 year)/ Apr. 2012/PLd + PLL

[94] A. C. D. M/[DG (L+C)] + M/Fr
(L)] + TL a), b), c), h), w) [VD; P-loss; CEDGP] (↓↓)

TL *: Tie-Line
Sample DNW
(3 Fr)

MO + W/GA + MCDA
weight/Static/DER control Nov. 2012/CLd + SLL

[95] D. M/(SW St.) (L + T) a), b), c), d), f), i), m), v) [P-loss; SAIFI] (↓↓) 33 bus;
67 bus TPC; MO-P/NSGA-II/Static (1 year) Mar. 2013/CL + BL

[96] A. C. D. M/[DG + Br + SW)]
(L + C + T)

a), b), c), f), j), l), m), n), r),
s), u)

NPV (↓↓) OF1: [SUC (lines); CPL; NRC;
O&M; CDG]; NPV (↓↓) OF2: [CDGG;
GHGDG]

Test 38; Test
119 Bus DNW; (MO-P)/(NSGA)/Dynamic (20 year)/ Aug. 2013/PLd + TVLL

[97] C. D. M/(Tie-SW + RA) (L + T) a), b), c), f), j), v) [P-loss; ENS; IC (Tie-SWs & new
devices)] (↓↓)

IEEE 69 Bus
Radial DNW

MO-P/NSGA-II+ non dominated
MCS/Static (1 year)/ Oct. 2013/VLd + MLL

[98] A. D. M/[DG + SW St. *]
(L + C + T) a), b), c), f), v) [P-loss; OCS; IC; SAIFI; AENS] (↓↓) SW

St. *: Switch Status
Baran & Wu 32
bus test DNW MO-P/SAMBA/Static (1 year) Jan. 2014/PLd + PLL
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S/[DG + FACTS] +
M/[(TL + SW St. *)];
(L + C + T) *

a), b), c), f), v) [VP(↑↑); P-loss(↓↓); LB(↑↑)] SW St. *:
Switch Status

IEEE 33 Bus; TPC
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[100] A. D. M/(DG + SW St.]
(L + C + T) a), b), c), f), h), m), v), w) [P-loss(Br and TFs); OC (SS + DG);
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DNW Radial MO-P/EGSA + FDM/Static/ Mar. 2016/
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Notes: PT: in Sections 2.1–2.4; DV: Decision Variables (Location, capacity, numbers and types); Constraints in Section 2.7.4; Objectives in Section 2.5; MO Class in Section 2.6; LdM, LDP in
Section 2.7.5. Also, “*” indicates any additional information about a particular decision variable, constraint and objective, respectively.
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Table 5. The contribution of MODGP-based planning methods and related works. (PTC: Components in planning techniques; MODGP: MO based DG placement).

Ref. Year MO PTC A B C D Contribution of MODGP-Based Planning

[21] 2005 4 1
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[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
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that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 
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[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM (DISCO).

[22] 2005 3 1

Energies 2017, 10, 208 16 of 44 

 

Table 5. The contribution of MODGP-based planning methods and related works. (PTC: Components in planning techniques; MODGP: MO based DG placement). 

Ref. Year MO PTC A B C D Contribution of MODGP-based Planning

[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative.

[23] 2007 2 1

Energies 2017, 10, 208 16 of 44 

 

Table 5. The contribution of MODGP-based planning methods and related works. (PTC: Components in planning techniques; MODGP: MO based DG placement). 

Ref. Year MO PTC A B C D Contribution of MODGP-based Planning

[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution.

[24] 2008 3 1

Energies 2017, 10, 208 16 of 44 

 

Table 5. The contribution of MODGP-based planning methods and related works. (PTC: Components in planning techniques; MODGP: MO based DG placement). 

Ref. Year MO PTC A B C D Contribution of MODGP-based Planning

[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management

[25] 2008 6 1

Energies 2017, 10, 208 16 of 44 

 

Table 5. The contribution of MODGP-based planning methods and related works. (PTC: Components in planning techniques; MODGP: MO based DG placement). 

Ref. Year MO PTC A B C D Contribution of MODGP-based Planning

[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of DGP
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[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints.

[27] 2008 3 1
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to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 
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The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 
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[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 
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- - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives.

[28] 2009 4 1
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[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
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[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
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[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
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- - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions. GA is also used for
comparison of results and advocated for large DNW systems even with suboptimal solutions.

[29] 2010 5 2
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[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
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[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 
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[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
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[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
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[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
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to find time varying voltage magnitude and loss sensitivity factor at each node. 
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[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
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A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP.

[30] 2011 5 1
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to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 
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locations. 

- - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs.

[31] 2012 3 1
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[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively.
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- - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective
function, which is further solved by GA to ensure optimal DG (wind) planning.
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[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).

[38] 2014 2 1
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[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which an
NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC).

[39] 2014 2 1
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[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - -
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) that
aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with FDM has
utilized for best compromise solution among the set of Pareto optimal solutions.

[40] 2014 2 1

Energies 2017, 10, 208 16 of 44 

 

Table 5. The contribution of MODGP-based planning methods and related works. (PTC: Components in planning techniques; MODGP: MO based DG placement). 

Ref. Year MO PTC A B C D Contribution of MODGP-based Planning

[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  
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[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
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[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 
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- - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.
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[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
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[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
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- - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW.
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[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding optimal
location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW.
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FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in
addition to finding optimal generated electricity prices in a competitive electrical market.

[44] 2014 2 1
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[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and locations.
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[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - Mixed integer second order cone programming (MISOCP) formulation of DGP problem is proposed aiming at optimally allocating dispersed
energy storage systems (DSSs) into ADN followed by AHP for DM among multiple objectives.

[46] 2014 4 1
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[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - A supervised BB-BC method evaluates minimization of IMO for finding optimal location and capacity of one/more voltage-controlled DG(s).
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[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - Chaotic artificial bee colony (CABC) solves MODGP problem regarding the multi-objective performance index for finding the optimal location
of real power DG units and their capacities.
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[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
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[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
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[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - An MOPSO based algorithm is presented to find best trade-off solution through multiple objectives under various operational constraints and
demand side management (DSM) is justified in DG planning. FDM is used to identify an optimal non-dominated solution.
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[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - Sequential quadratic programming (SQP) for a set of Pareto front solutions for to find optimal DG sizing and placing. WSM generates a set of
acceptable trade-off solutions among contrasting objectives. Fuzzy decision making (FDM) method provides best compromise solutions.

[50] 2015 3 1
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Table 5. The contribution of MODGP-based planning methods and related works. (PTC: Components in planning techniques; MODGP: MO based DG placement). 

Ref. Year MO PTC A B C D Contribution of MODGP-based Planning

[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - A mathematical model of MODGP problem solved by the proposed improved NSGA (INSGA-II). The best solution obtained with FDM.

[51] 2016 3 1
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[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - - Multi-objective Shuffled Bat algorithm (MOShBAT), a variant of bat algorithm (BA) proposed for the planning of DGs considering various
contrasting objectives and showed better results than NSGA-II.

[52] 2016 4 2
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[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 
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[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 
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[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - A MOO model for mix penetration (PV and wind-based REGs) and capacitors planning, where MOPSO algorithm produces set of potential
solutions after considering all possible trade-offs among distinct objectives and followed by FDM to identify the best non-dominated solution.

Table 6. The contribution of MOVPQ-based planning methods and related works. (MOVPQ: MOP based on VAR compensation and power quality).

Ref. Year MO PTC A B C D Contribution of MOVPQ-Based Planning

[53] 2005 2 1 -
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[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - Tabu Search (TS) based approach computes non-dominated solutions to provide decision support for capacitor location problem.

[54] 2007 2 1 -
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[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - GA based fuzzy multi-objective approach is presented for optimal capacitor placement.

[55] 2008 4 1 -
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DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - A two-stage immune algorithm (IA) embedding compromise programming solves the multi-objective capacitor placement problem.

[56] 2009 2 1 -
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The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
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[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
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[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
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- - Hybrid SA–PSO and IBVT based approach addresses; fixed and switched type capacitor placement, besides finding a valuable trade-off solution.

[57] 2010 3 2 -
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- Strength Pareto evolutionary algorithm (SPEA2) incremented by fuzzy logic solves MO combinatorial optimization problem to address Volt/Var
control for distribution systems regarding switched capacitors and automatic voltage regulators (AVR) placement.

[58] 2012 2 1 -
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- - Elitist NSGA II merged with local search finds best nodes and compensation values of the installed capacitors in MO VAR planning problem.

[59] 2013 2 2 -

Energies 2017, 10, 208 16 of 44 

 

Table 5. The contribution of MODGP-based planning methods and related works. (PTC: Components in planning techniques; MODGP: MO based DG placement). 

Ref. Year MO PTC A B C D Contribution of MODGP-based Planning

[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

Energies 2017, 10, 208 16 of 44 

 

Table 5. The contribution of MODGP-based planning methods and related works. (PTC: Components in planning techniques; MODGP: MO based DG placement). 

Ref. Year MO PTC A B C D Contribution of MODGP-based Planning

[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- MILP model is proposed to solve the VR and VRC allocation problem and to obtain Pareto front satisfying multiple objectives.

[60] 2013 3 1 -
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Ref. Year MO PTC A B C D Contribution of MODGP-based Planning

[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - MO capacitor placement problem solved with self-adaptive modified honey bee mating optimization (SAMHBMO), proposed to find Pareto optimal
solutions satisfying maximum objectives. Probabilistic load flow (point estimate method or PEM) address associated uncertainties.

[61] 2013 3 1 -
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[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
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[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
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[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - Accelerated PSO (APSO) based optimization approach solves capacitor planning problem regarding sizing, location, and type.

[62] 2013 3 1 -
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[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - Capacitor (allocation) planning problem for optimal sizing and location is solved by ABC based approach to maximize the required objectives.

[63] 2013 3 1 -
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[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
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[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - Two-stage modification method with AMHBMO based approach is proposed to solve the multi-objective capacitor planning problem.

[64] 2014 4 2
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[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  
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[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
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[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 
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[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- - MOF is formulated for simultaneous DG's and capacitor placement and solved by investigated differential evolutionary algorithm (IDEA).
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Ref. Year MO PTC A B C D Contribution of MOVPQ-Based Planning

[65] 2014 3 2
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[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
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[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 
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[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
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[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 
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simultaneously with load uncertainty considered as fuzzy data theory. The optimum solution extracted with FDM.

[66] 2015 5 1 -
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[67] 2016 5,3 1 -
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[68] 2016 3 2
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[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
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[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 
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[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
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[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
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[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  
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[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 
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MOSOA proposed for planning strategy including distribution automation devices like automatic reclosers (RAs) for reliability and FACTS devices
like DSTATCOM; for VAR compensation in ADN. “Max–min” approach is applied to select the final trade-off solution.

Table 7. The contribution of MOCRU-based planning methods. (MOCRU: MOP based on MOP based on VAR compensation and power quality.).

Ref. Year MO PTC A B C D Contribution of MOCRU-Based Planning

[71] 2006 2 1 - -
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- MOO methods like non-dominated sorting genetic algorithm (NSGA) and strength Pareto evolutionary algorithm (SPEA) with fuzzy c-means
(FCM) solve grid reinforcement planning problem with high/low-reliability solutions for urban/rural cases respectively.

[72] 2008 3 2 -
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[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
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[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
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[73] 2009 2 1 - -
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[74] 2009 2 2
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[75] 2009 2 2 - -
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optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 
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Multi-objective PSO-based planning is proposed based on two stages. In the first stage, Pareto-optimality principle is used to obtain tradeoff
analysis among two conflicting objectives (total cost and CLLI). In the second stage, all four objectives have optimized. Each solution represents DG
(number, location, size, and type), branches (conductor size), sectionalizing switches (number and locations) and network topology.

[77] 2011 2 1 - -
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model for grid reinforcements along with sectionalizing switches (SSWs) placement to minimize costs due to energy not supplied.

[78] 2011 2 2 - -
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A fuzzy multi-objective model presented with modified shuffled frog leaping (MSFLA) algorithm as optimizing tool for planning number and
placement of sectionalizing switches in distribution automation system (DASs).

[79] 2011/12 4 3
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[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 
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Methodology for active distribution networks (ADN) dynamic expansion planning based on MOGA. Proposed strategy aims at multistage
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reconfiguration and rewiring. The solution obtained from proposed method satisfies multiple objectives.

[80] 2011/12 2 2 - -
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A two-step planning strategy is proposed to optimize feeders’ allocation (numbers and their routes), sectionalizing switches (number and locations)
and tie-lines (number) in DNW. The solution strategy in step 1 consists of SPEA2–MOPSO for SSW allocation and step 2 caters with
SPEA2–BMOPSO (binary MOPSO) for tie-line placement.
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[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

-
Model for MO Integrated Generation and Primary–Secondary Distribution System Expansion Planning (IGDSEP) in the presence of wholesale and
retail markets as MINLP problem is divided into six sub-problems and solved with scenario Driven MINLP method with adaptive GA (AGA) and
integrated AGA (IAGA).

[82] 2012 2 2
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The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
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[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
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[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
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Shuffled Frog Leaping (SFL) algorithm to find Pareto optimal solutions satisfying multiple objectives.

[83] 2012 2 1 - -
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[84] 2013 2 1 - -
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[85] 2014 4 2 - -
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FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

Multi-objective seeker optimization algorithm (MOSOA) is proposed for DSP problem with the simultaneous placement of automatic reclosers
(RAs) with solution satisfy maximum conflicting multiple objectives.

[86] 2015 2 2 - -
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[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
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[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 
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[88] 2015/16 3 2
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[89] 2016 3 2
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[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

- Optimal coordinated voltage control (OCVC) is proposed to solve MOP using Pareto optimization to find the optimal values of voltage of the
generators and OLTC, addressing various technical aspects.

Table 8. The contribution of MONTR-based planning methods. (MONTR: MOP based on distribution network reconfigration.).

Ref. Year MO PTC A B C D Contribution of MONTR-Based Planning

[90] 2009 5 1 - - -
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[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 
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optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
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A multi-objective approach based on a micro-genetic algorithm (mGA) aims at trade-offs among reliability indices and power losses (from Pareto front solutions) to obtain radial
topologies (reconfiguration) from planning perspective.

[91] 2009 2 1 - - -
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[39] 2014 2 1 ✓ - - - 
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that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
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Fuzzy multi-criteria decision making (MCDM) algorithm is proposed to process information of sources availability at DNW regarding network reconfiguration from the perspective of
operational distribution planning.

[92] 2009 3 2 - -
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to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
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framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 
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This paper addresses multi-objective feeder operation optimization problem considering the calculation of interruption costs and impacts of seasonal time variation effects in annual
distribution feeders operation planning. The problem is solved with binary PSO (BPSO) to find feeder switching schedule.

[93] 2012 2 1 - - -
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to find time varying voltage magnitude and loss sensitivity factor at each node. 
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dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 
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[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
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Reconfiguration problem in an MO framework has solved by BPSO-based search algorithm aim at finding the optimal status of the switches to satisfy objectives (reliability and
power loss).

[94] 2012 3 3
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[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
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[95] 2013 2 1 - -
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[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
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[99] 2015 3 4

Energies 2017, 10, 208 16 of 44 

 

Table 5. The contribution of MODGP-based planning methods and related works. (PTC: Components in planning techniques; MODGP: MO based DG placement). 

Ref. Year MO PTC A B C D Contribution of MODGP-based Planning

[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

Energies 2017, 10, 208 16 of 44 

 

Table 5. The contribution of MODGP-based planning methods and related works. (PTC: Components in planning techniques; MODGP: MO based DG placement). 

Ref. Year MO PTC A B C D Contribution of MODGP-based Planning

[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 

Energies 2017, 10, 208 16 of 44 

 

Table 5. The contribution of MODGP-based planning methods and related works. (PTC: Components in planning techniques; MODGP: MO based DG placement). 

Ref. Year MO PTC A B C D Contribution of MODGP-based Planning

[21] 2005 4 1 ✓ - - - MODGP formulation based on GA and ε constrained method is proposed to solve the best compromise (tradeoff) solution for DM 
(DISCO). 

[22] 2005 3 1 ✓ - - - Similarly, with the same formulation (GA and ε constrained method), a double tradeoff method is presented to find the best alternative. 
[23] 2007 2 1 ✓ - - - MCS embedded in GA planning methodology is proposed to improve the accuracy for stochastic DG integration with tradeoff solution. 
[24] 2008 3 1 ✓ - - - NSGA-II along with max-min approach solves MODGP problem considering future load uncertainties and risk management  

[25] 2008 6 1 ✓ - - - EA is employed to solve IMO considering both time-varying generation and demand behavior aiming at various technical impacts of 
DGP 

[26] 2008 2 1 ✓ - - - GA with goal programming methodology finds a solution with associated uncertainties among MO and constraints. 
[27] 2008 3 1 ✓ - - - The proposed NSGA algorithm finds arrangements for wind-based DGs regarding compromise solution among contrasting objectives. 

[28] 2009 4 1 ✓ - - - An exhaustive search analysis (ES) has presented with IMO for MODGP problem under variable load conditions.  
GA is also used for comparison of results and advocated for large DNW systems even with suboptimal solutions.  

[29] 2010 5 2 ✓ - - ✓ A fuzzy embedded GA is employed to solve fuzzy weighted single objective function employing fuzzy set theory for MODGP. 
[30] 2011 5 1 ✓ - - - MCS-embedded GA is presented to solve chance constrained programming framework considering future uncertainties of loads/DGs. 
[31] 2012 3 1 ✓ - - - A hybrid GA-PSO is proposed to solve MODGP problem regarding DG location (with GA) and capacity (with PSO) respectively. 

[32] 2012 5 1 ✓ - - - A goal attainment method (GoA) has presented, where goal programming transforms multiple objective functions into a single objective 
function, which is further solved by GA to ensure optimal DG (wind) planning.  

[33] 2012 2 1 ✓ - - - MODGP problem is solved by two stage heuristic iterative method including clustering (outer) and EA (inner) optimizations respectively, 
to find time varying voltage magnitude and loss sensitivity factor at each node. 

[34] 2013 2 1 ✓ - - - The multi-criteria planning model aims to achieve contrasting objectives (cost and reliability) for DGP. GA further finds a set of non-
dominant solutions for wind-based DG units sizing, siting, and maintenance schedules. 

[35] 2013 2 1 ✓ - - - An MO planning framework has developed, namely improved multi-objective harmony search (IMOHS), which can evaluate the DGP. 

[36] 2013 3 1 ✓ - - - An MO optimization problem for multiple micro-turbines (DG) placement and sizes is solved by hybrid PSO and SFL algorithms based 
framework, followed by fuzzy decision-making tool to select the most preferred Pareto optimal solution satisfying competing objectives.  

[37] 2013 3 1 ✓ - - - The methodology based on Pareto frontier differential evolution (PFDE) algorithm is proposed for optimal MODGP (sizing and location).  

[38] 2014 2 1 ✓ - - - The DGP problem for location, size, and type (REG and PEV) is defined as MO mixed integer nonlinear programming (MINLP), in which 
an NSGA-II is used to obtain compromise (Pareto frontier) solution for a local distribution company (LDC). 

[39] 2014 2 1 ✓ - - - 
The MO probabilistic (mathematical programming) framework has proposed for various DER planning (six DG types, size, and location) 
that aims at DISCOs contribution in the competitive electricity market. Moreover modified augmented ε-constrained method along with 
FDM has utilized for best compromise solution among the set of Pareto optimal solutions. 

[40] 2014 2 1 ✓ - - - MO augmented ε constrained method proposed for DGP planning on short term basis for future DNWs with ANM functionalities.  

[41] 2014 2 1 ✓ - - - The MOO planning framework based on non-dominated sorting genetic algorithm II (NSGA-II) along with MCS (for uncertain operation 
scenarios) and OPF, addresses DGP problem of REG and storage integration within DNW. 

[42] 2014 3 1 ✓ - - - Quasi-oppositional teaching learning-based optimization (QOTLBO) methodology, a variant of TLBO proposed as MOO regarding 
optimal location and sizing of DGP for solving multi-objective optimal power flow (OPF) problem for radial DNW. 

[43] 2014 4,3 1 ✓ - - - MOPSO algorithm has been used for MODGP problem satisfying objectives (minimize DISCO cost and maximize DG owner profit) in 
addition to finding optimal generated electricity prices in a competitive electrical market. 

[44] 2014 2 1 ✓ - - - An improved MOPSO with preference strategy (IMPSO-PS) is proposed for MODGP with the aim to achieve optimal capacity and 
locations. 
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4.1. Numerical Methods

(1) The ε-constrained method: In this technique, a specific objective function selects as master and
others as slaves. Moreover, the slave objective functions considered as new constraints

• Benefits: The technique efficiently generates a set of Pareto optimal or non-inferior solutions
in MO-based problems.

• Demerits: High computation required for greater number of objective functions.
• Preference: Enables decision maker select a solution on preference basis.
• MOPT Ref : DGP (A) [21,22,39,40].

(2) Monte Carlo Simulation (MCS): The iterative techniques based on use of random numbers.

• Benefits: Efficient for problems with less iteration, resulting in efficient processing time.
• Demerits: More the complex problem, more iteration and more processing time.
• Preference: Mainly deterministic and probabilistic types by behavior and outcome of the

random process. Also used as inner optimizations in MO problems.
• MOPT Ref : DGP (A) [23,41].

(3) Goal programming (Goal P): Suitable for MO formulations aiming at a tradeoff solutions.

• Benefits: Simple to implement and aims at a tradeoff solution.
• Demerits: Requires very high computation and practically time consuming.
• Preference: Several applications in literature.
• MOPT Ref : DGP (A) [26,32].

(4) Exhaustive Search (ES): Simple problem solving method aims at finding all possible solutions.

• Benefits: Simple to implement and determine optimal global solution (of small problems).
• Demerits: Requires very high computation and not efficient for large distribution systems.
• Preference: ES based optimum solutions compared with the other algorithm and performance

is found by relative deviation among two solutions.
• MOPT Ref : DGP (A) [25,28,33].

(5) Optimum power flow (OPF): The conventional method is used to solve complex planning problems,
aiming at optimal performance of power systems.

• Benefits: Better computation efficiency, high precision and use as inner optimizations.
• Demerits: Rigid problem formulation and few variants can be inclusion in the calculations.
• Preference: Several applications in literature (for high precision optimization problems).
• MOPT Ref : DGP (A) [41]; CRU (C) [74].

(6) Cone programming (Cone P): The technique addresses nonlinear convex problems. It aims at
minimization of linear objective function over intersection of affine linear manifold intersection
and product of (second order quadratic) cones.

• Benefits: Efficient computation efficiency and better precision for convex optimizations.
• Demerits: May cause inaccurate solutions for real time problem.
• Preference: Several applications in literature (for convex optimization problems).
• MOPT Ref : DGP (A) [45].

(7) Sequential quadratic programming (SQP): The iterative method is proficient at solving nonlinear
formulation with inequality constraints. The procedure involves.
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• Benefits: Considered as the fastest method to solve nonlinear programming (NLP) problems.
• Demerits: Complexity increases with multiple quadratic subproblems at each iteration.
• Preference: Few applications in literature (mostly used for DGP optimization problems).
• MOPT Ref : DGP (A) [49].

(8) Mixed integer linear programming (MILP): The conventional technique is appropriate to solve
problems with linear objective functions, abiding associated constraints.

• Benefits: The approach shows excellent convergence properties.
• Demerits: The more realistic model experiences more difficulty in finding solutions.
• Preference: Applicable to discrete and continuous variables (linear optimization problems).
• MOPT Ref: VPQ (B) [59].

(9) Mixed integer nonlinear programming (MINLP): The conventional numerical technique is a
combination of linear programming (LP), mixed integer programming (MIP) and nonlinear
programming (NLP), respectively.

• Benefits: This approach demonstrates better computation efficiency and accuracy.
• Demerits: Difficult to implement nonlinear objective functions and with much iteration.
• Preference: Appropriate to address discrete, continuous variables, nonlinear power flow.

Also, provides accurate, reliable and efficient solution for MOP formulation.
• MOPT Ref : DGP (A) [38–40]; CRU (C) [72,77,81].

(10) Dynamic Programming: (DynP): This is is sequential optimization technique based on multiple
stages. The technique is capable to address main problems by breaking into sub-problems.

• Benefits: The approach addresses concerned problem in efficient and reliable manner.
• Demerits: Difficult to implement for large number of objectives.
• Preference: Capable to address RT complex problems with less time for optimum solution.
• MOPT Ref : CRU (C) [83].

4.2. Meta-Heuristics (MH) Methods

(1) Genetic algorithms (GA): A kind of adaptive heuristic search algorithm, based on the concept of
natural selection and genetics.

• Benefits: Simple, easy to understand, does not depend on the initial solution.
• Demerits: More computational time is needed and can converge at local optima due to

intensification of parameters in search process.
• Preference: Numerous applications, since it does not require complex mathematical

knowledge in the implementation of required solution.
• MOPT Ref : DGP (A) [21–23]; VPQ (B) [66]; CRU (C) [79,81,88],[89]]; NTR (D) [90,94].

(2) Particle swarm optimization (PSO): In this method, a set of arbitrarily (randomly) activated solutions
moves in the search process, aiming at best solution over some iterations.

• Benefits: Easy to code, efficient computation time and better convergence than GA.
• Demerits: When the problem dimensions increase, the algorithm loses robustness.
• Preference: Considerable preference is given in the literature, aiming at large-scale DNs, with

modifications in code and efficient tuning with the controller parameters.
• MOPT Ref : DGP (A) [43,44,48,52]; VPQ (B) [61,65],[67]]; CRU (C) [76,88]; NTR (D) [92,93].

(3) Harmony search algorithm (HS): The metaheuristic is based on the concept of decision variable
(musician) generates (plays) a value (note) for searching a best global optimum (harmony).
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• Benefits: Easy to implement and offers near optimum solutions in some problems.
• Demerits: The standard HS suffers drawbacks (inaccuracy) in finding optimum solutions.
• Preference: The drawbacks have been addressed with improved variants, namely improved

HS (IHS) and novel global HS (NGHS) respectively.
• MOPT Ref : DGP (A) [35].

(4) Teacher learning algorithm (TLA): The method is motivated by the concept of teacher’s impact on
the results achieved by students in a class and aims a student towards the best qualification.

• Benefits: Short simulation times and no parameters are required for the algorithm to work.
• Demerits: Nonlinearities and increased iterations for global optima of large scale real DN.
• Preference: Capable of finding global or near global optimum solution.
• MOPT Ref : DGP (A) [42].

(5) Big bang big crunch (BB-BC): The nature inspired standard BB-BC algorithm consists of two steps.
First, the formation of initial candidate solutions spread randomly across the search space. Second,
a concurrence operator groups all solutions at only one solution, called “center of mass.”

• Benefits: Excellent convergence property with less computation time.
• Demerits: The improper tuning of system parameters may increase the complexity.
• Preference: Applied to nonlinear multidimensional functions, power flow problems

(with continuous/discrete control variables) and DGP with good convergence speed.
• MOPT Ref : DGP (A) [46].

(6) Artificial bee colony (ABC): An algorithm based on the concept of foraging behavior of honey bees
and considers the fact that the food source represents a feasible explanation of the problem. great
amount of a food source resembles the characteristics of a converged solution.

• Benefits: The approach uses a lesser number of control parameters, better capability
to deal with complex multidimensional optimization problems and exhibits good
convergence properties.

• Demerits: The convergence rate is poor for constrained optimization problems.
• Preference: Modified versions of ABC algorithms are proposed for solving real world

optimization problems. However, the approach has still not been considered in depth
by the researchers.

• MOPT Ref : DGP (A) [47]; VPQ (B) [62].

(7) Tabu search (TS): This meta-heuristic optimization technique utilizes adaptive memory to produce
the most flexible search behavior. The algorithm operates in sequential way, starting from
searching from an initial point and then selecting a new point in the search space as the next
current point.

• Benefits: Fast convergence properties and easy tuning of the controller parameters.
• Demerits: It requires a suitable initial solution. Also, finding an optimal global solution in

complex and multi-dimensional problems is not guaranteed.
• Preference: The approach is suitable for simple and comparatively less complex problems.
• MOPT Ref : VPQ (B) [53]; CRU (C) [77,84].

(8) Immune algorithm (IA): The immune (system) algorithm belongs to the class of AI based
meta-heuristics and is based on the concept of human body’s defense process against viruses.
It starts with a randomly generated population with solutions reproduced at different rates. Later,
suitable solutions are duplicated at high rates, followed by mutation at various rates. Finally,
a selection operator is applied to produce suitable solutions.
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• Benefits: The method does not depend on initial solution and is capable of obtaining a global
optimum in complex problems with more accuracy than GA.

• Demerits: It requires more computation time than GA and PSO. The tuning of the system
parameters is a tedious task for real world (MOP) problems.

• Preference: The approach utilized in various planning problems in literature.
• MOPT Ref : VPQ (B) [55].

(9) Simulated annealing (SA): A stochastic search algorithm motivated by the similarity between the
solid annealing procedure and optimization problems. The first metropolis process refers to
jumping property that deals with a worse solution having the probability to be accepted as a
new solution. Later, a cooling schedule slows down the probability of the worst solution in the
search space.

• Benefits: Robustness is comparatively high. It does not depend on the initial solution.
The algorithm is capable of finding a global optimum solution in combinational and complex
(large scale) problems.

• Demerits: It requires more computation time than TS. The appropriate tuning of the system
parameters is difficult for real world problems, particularly; it is not suitable for multiple
planning candidates in large power systems.

• Preference: The approach utilized in various asset planning problems in literature.
• MOPT Ref : VPQ (B) [56].

(10) Honey bee mating (HBMO): A metaheuristic optimization algorithm inspired by the mating process
of honey bees. The method aims at reproducing the mating process between a queen and drones,
until new broods are generated, to find the most suitable solution. If the best brood among the
brood population is better than the queen, it replaces the queen.

• Benefits: It shows suitable performance to solve various complex planning problems.
• Demerits: High dependence on adjusting initial parameters and premature convergence

resulting in tracking local optimal solution.
• Preference: Modified versions of HBMO are utilized to address abovementioned demerits.
• MOPT Ref : VPQ (B) [60,63].

(11) Bacterial foraging (BFO): The algorithm is inspired by E. coli bacterias’ foraging properties, by an
activity called “chemotaxis”. Simply, the algorithm deals with mimicking the chemotactic
movement of (virtual) bacteria in the search space of the problem (food search).

• Benefits: Improved BFO variants are developed to improve optimization performance.
• Demerits: Poor convergence and decrease in search performance, with increase in search

space and problem complexity respectively.
• Preference: A few models have developed for solving practical planning problems.
• MOPT Ref : VPQ (B) [68].

(12) Ant colony optimization (ACO): This AI method is based on the probabilistic searching behavior of
real ants in pursuit of food to find the shortest paths from their nest to a food source (solution).

• Benefits: It is easy to understand, simple to code and needs less computation time.
• Demerits: Poor convergence, difficult tuning of controller parameters and uncertainty in

achieving global optima for simple/complex DN planning problems.
• Preference: The technique is utilized in several DN (expansion) planning problems.

The deficiency in standard ACO is met with efficient variants, such as mix-max ACO and
ant colony search algorithms (ACS), respectively. These variants have better convergence,
however, the computation time increases.
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• MOPT Ref : CRU (C) [73,75]; NTR (D) [99].

(13) Bat algorithm (BA): This population-based meta-heuristic algorithm mimics a group of bats,
searching for the location exhibiting maximum availability of prey. The echo solutions of micro
bats represent the most feasible solution.

• Benefits: High robustness and better convergence in comparison with GA, PSO, and HS.
• Demerits: Difficult tuning of controller parameters and may give inaccurate solutions for real

time problems.
• Preference: The different variants of technique, notably shuffled-bat algorithm (ShBAT),

are used by researchers to solve various planning problems.
• MOPT Ref : DGP (A) [51]; NTR (D) [98].

(14) Evolutionary algorithm (EA): This metaheuristic (AI) algorithm is inspired by the concept of
biological evolution with operators (reproduction, mutation, recombination, and selection) and
implemented by assigning fitnesses to each possible solution.

• Benefits: Efficient and robust process to find near-optimal overall solution.
• Demerits: Premature convergence, low precision, and possibility of finding local optima.
• Preference: The technique has many applications in literature, to solve various planning

optimization problems involving integer variables. The variants of this technique
predominately include DE, TLA, SOA, GSA, SPEA, SPEA 2, NSGA, NSGA-II, and SFL.

• MOPT Ref : VPQ (B) [64].

(15) Differential evolution (DE): An artificial intelligence (AI)-based meta-heuristic based on a
population technique (mutation, crossover, and selection) for finding global optimal solutions.

• Benefits: Its main features include the ability to solve complex optimization problems.
• Demerits: Prone to premature convergence and possibility of falling into local optima.
• Preference: Few applications in literature.
• MOPT Ref: DGP (A) [37]; VPQ (B) [64].

(16) Seeker optimization algorithm (SOA): This (meta-heuristic) EA is based on the notion of simulating
an individual human’s (seeker) searching behavior among a population (seekers), for intelligent
solution they search with their memory, experience (learning) and uncertainty reasoning.

• Benefits: High robustness and better convergence in comparison with GA and PSO.
• Demerits: Requires initial solution and high computation for complex problems.
• Preference: The technique has been employed by researchers to solve various planning problems.
• MOPT Ref : VPQ (B) [69,70]; CRU (C) [85,86].

(17) Gravitational search algorithm (GSA): This algorithm is based on the law of gravity, where agents’
(objects’) performance is measured by their masses. Thus, heavier masses show better solutions.

• Benefits: Promising results for complex and high dimensional search space problems
regarding robustness and convergence, in comparison with GA and PSO.

• Demerits: Requires efficient initialization of G-parameter to control search accuracy.
• Preference: The technique is not treated in depth to solve various planning problems.
• MOPT Ref : NTR (D) [100].

(18) Strength Pareto EA (SPEA): This aims at implementation of elitism, by maintaining an external
set of non-dominated (higher fitness) populations (set of solutions), found during the whole
iteration loop. The fitness of solutions within a population depends on the best solution in the
external set.
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• Benefits: Well developed to address complex nature and stochastic planning problems.
• Demerits: High computation requirements; more time required and need to reduce external

number of solutions to a specific population size.
• Preference: The method has been considered in various planning problems of complex nature.
• MOPT Ref : CRU (C) [71].

(19) Strength Pareto EA 2 (SPEA 2): The algorithm (second generation) addresses the limitations in
SPEA 2 (first generation).

• Benefits: Improved fitness assignment scheme, precise guidance of the search process and
preservation of boundary solutions, better than SPEA.

• Demerits: Convergence performance reduces as the search space increases.
• Preference: The technique is used to find non-dominated solutions for complex and

stochastic-based planning problems.
• MOPT Ref : VPQ (B) [57].

(20) Non-dominated GA (NSGA): The algorithm (first generation) aims at employing the notion
of selection method, based on classes of dominance of all solutions. The algorithm, in each
generation (iteration), indicates individuals (non-dominated solutions) within the population,
to form non-dominated solution sets (Pareto front).

• Benefits: Well developed to address multi-objective based planning problems.
• Demerits: High computational complexity, lack of elitism, need to specify sharing parameters

and slow non-dominated sorting procedure.
• Preference: To find non-dominated solutions in design, test and planning problems.
• MOPT Ref: DGP (A) [27]; NTR (D) [96].

(21) Non-dominated GA II (NSGA-II): The algorithm (second generation) addresses the limitations in
NSGA (first generation), to allow efficient application to constrained planning problems.

• Benefits: Efficient constraint management, elitism, parameter-less approach and fast
non-dominated sorting procedure, batter than NSGA.

• Demerits: Performance of convergence reduces with as the search space increases.
• Preference: The technique is employed by researchers to solve complex nature planning

problems, aiming at accurate, diverse and well-spread Pareto fronts.
• MOPT Ref : DGP (A) [24,38,41]; VPQ (B) [58]; CRU (C) [87]; NTR (D) [95].

(22) Shuffled frog leaping (SFL): This population-based meta-heuristic method is inspired by the concept
of mimetic evolution of a group, aiming at the quality of the meme (of an individual) and
improves the performance (individual frog) towards a goal (highest food availability).

• Benefits: Efficient and better computing performance with global search ability.
• Demerits: More computation and premature convergence due to the DN size complexity.
• Preference: Several applications in literature and needs to be investigated as a potential

candidate for combinational problems, aiming at future distribution concepts.
• MOPT Ref : DGP (A) [36]; CRU (C) [78,82].



Energies 2017, 10, 208 26 of 44

4.3. Hybrid Methods

The hybrid techniques are developed to address the limitations in the previous techniques.
The efficient development of hybrid methods helps to find global optimization solutions. Moreover,
these techniques can manage complex (stochastic- and uncertainty-based) optimization problems.
However, such methods are comparatively hard to code and have relatively limited example is
literature. The prominent MOP-based hybrid methods are the following:

(1) Hybrid GA: These methods aim at solving combinational type problems, accommodating inner
optimizations and implementing decision making processes to sort out feasible solutions.

• Benefits: Better convergence, more precision, and improved performance since high fitness/
value chromosomes are used to produce the next generation.

• Demerits: Requires more computation time (global optima cannot be reached in a limited
time). The linear change of decision variables can result in suboptimal solutions.

• Preference: The techniques have employed for optimal solution with maximum objectives.
• MOPT Ref : DGP (A): The ε-constrained method [21,22]; MCS [23]; goal programming [26,32];

fuzzy, WSM [29]; MCS, AHP [30]; PSO [31] and multi-criteria stochastic programming model
(MSPM) [34]; VPQ (B): GA based fuzzy multi-objective method [54,60].

(2) Hybrid PSO: These methods aim at modifications that address the limitations in simple PSO.

• Benefits: Better convergence, more precision, and improved optimization than PSO.
• Demerits: Requires efficient tuning of several control parameters and the method can suffer

from partial optimism.
• Preference: These methods results in better performance than standard PSO.
• MOPT Ref: DGP (A): SFL [36]; VPQ (B): SA [56] and mixed integer programming (MIP) [67];

CRU (C): SPEA 2 [80], SFL [82] and nonlinear programming (NLP) [87]; NTR (D): MCDA [94]

(3) Hybrid EA: These techniques are employed in the literature to address optimal solutions with
decision making in multi-objective planning problems.

• Benefits: Highly efficient, robust and quick convergence to find optimal solutions.
More suitable for multi-objective planning and decision making problems.

• Demerits: The inertia weights are randomly adjusted in the Pareto front. The weighted
methods require more knowledge for decision making.

• Preference: These methods show promising aspects to address active DP, including storage,
REGs, EV, DSM, and DR, stochastic generation, uncertain demands and controllable loads.

• MOPT Ref : DGP (A): Two-stage heuristic (ES + clustering techniques) [33] NSGA-II +
MINLP [38]; CRU (C): NSGA + SPEA + FDM [71] and SPEA 2 + OPF [74]; NTR (D): NSGA
II + MCS-OPF based approach [97].

4.4. Decision Making and Other Methods

The decision-making methods are crucial for finding trade-off solution among a set of solutions
in MOP formulations. Notable features are as follows:

• Benefits: The method enables decision maker to sort out best possible solution.
• Demerits: The weights (weight methods) require extensive knowledge. Also, the results can be

specifically weight dependent (in case of IMO).
• Preference: FDM is among one of the widely used approaches.
• MOPT Ref : DGP (A): WSM [29,49]; AHP [45]; FDM [36,39,49,52]; VPQ (B): Max-min Approach [69,70];

CRU (C): FDM in [71,73,78,86]; NTR (D): FDM in [100] and fuzzy multi-criteria decision making
(MCDM) algorithm implemented in “proof of concept” in [91].
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4.5. Impact of Load Flow Method

Load flow (LF) or power flow is an important and vital tool for analysis, planning and operation
of DNW in steady-state conditions. LF indicates the system variables, which exceed the respective
constraints limits. The necessary action must be followed to bring back the system in stable operation
zone. In addition, LF and AC based OPF (ACOPF) constitutes an integral part of MOPT problem,
as inner optimization. The associated LF (and ACOPF) based solution techniques can be defined
by formulation type, solver and initialization. On the basis of literature review, the load flows can
be safely classified on the basis of formulation (F), solver (S), and initialization (I), as indicated
by (F,S,I). Moreover, interaction among (F,S,I) and impacts of LF (and ACOPF) methods as inner
optimization [101] in MOP, has also presented in this sub-section as follows.

4.5.1. Load Flow Formulation (F)

The branch LF models (BLFM) constitute the largest portion of LF formulations. Being inner
optimization, LF methods formulates constraints in the main optimization (MOP) problem. The LF
methods with usually flat initialization values, solve BLFM formulations, which indicate equality
constraints or power/load balance. The prominent technical inequality constraints include voltage
limits (between maximum and minimum allowable limits) and branch thermal limits (must be less
than the maximum admissible apparent power of the line). LF methods are responsible for operating
and retaining the test DNW system within technical inequality constraints.

The ACOPF tool (to solve complex and nonlinear power flow problems) formulates any set of
constraints through three types of major formulations, namely polar power–voltage power flow (PSV),
rectangular power-voltage power flow (RSV) and rectangular current injection (RIV), respectively [101].
These formulations (which indicate equality constraints) and associated technical constraints are
usually solved with MCS, modified LF methods and commercial solvers. Ample details regarding
inequality constraints have provided in Section 2.7.4.

4.5.2. Load Flow Solution Methods (S)

The LF solution methods or simple solvers depend on the application of planning problem and
type of loads addressed. For load profiles, refer to Tables 1–4, respectively. The solvers can be broadly
classified as follows:

(1) Traditional LF solvers: The traditional LF solution methods, aiming at solving equality and
inequality constraints, predominately include:

• Newton Raphson (NR) as in [48,52,68,79,94].
• Gauss-Seidel (GS) [82].
• Fast decoupling (FDLF) [31].
• Backward/forward sweep (BSFS) LF as in [24,59,63–65,69–71,73,74,77,83–86,91].

(2) Modified LF solvers: The modified LF solution methods, aiming at solving equality and inequality
constraints, mainly include:

• 3-Phase (Φ)-4-wire BSFS LF as in [23,25,27–29,46,47,72,96].
• Simple (iterative and algebraic) LF as in [50,54,57,58,93,99].
• Numerical based LF as goal attainment method (GoA) in [32], SQP in [49] and MCS

in [23], [30,38,39,41,81,97].
• Meta-heuristics (MH) based LF as in [35,55,67,75,76,95].
• Probabilistic LF (PLF) as in simple PLF in [21,22] and 2 m point estimation method (2 m-PEM)

as in [60,98].
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• Other LF methods and frameworks as in [33,42–44,51,53,66,80,90,92]; in addition to LF
frameworks as multi-criteria stochastic planning model (MCSPM) with central limit theorem
(CLT) [34] and IBVT in [56].

(3) Software-based commercial solver packages: The commercial solvers, aiming at solving nonlinear
equality and inequality constraints, notably include:

• Load model synthesis (LOADSYN) [26].
• DIgSILENT® for balanced/unbalanced LF (B/U LF) [36] and static/dynamic modelling [100];
• Voltage stability and optimization (VS&OP) Tool [61,62].
• General algebraic modeling system (GAMS) for modeling mathematical programming

models as in [37]. CONOPT solver of GAMS solves the nonlinear optimization problem
(NLP) as in [39]. The DICOPT solver of GAMS solves MINLP problem as in [40].

• GUROBI commercial optimization solver; solves linear (LP), quadratic (QP) and quadratic
constrained programming (QCP) respectively, as in [45].

• OpenDSS (open electrical power distribution system simulator) software [89].

4.5.3. Initialization (I)

The convergence of solutions depends on an effective initialization method. The initialization
methods can be broadly classified on the basis of three prominent types of initializations (or starts)
reported in the literature [21–101]. Further details are given later in this section.

• Flat/Normal/Base/Random Start: These methods constitute the largest part of initialization methods
in the reported literature. Either the load flow initiates flat or starts in BLFM, where the starting
voltage is equal to the root (standard/substation/slack bus) voltage. Also, candidate solutions
are generated randomly and loads are normally distributed (in the case of PLF). However,
these methods have high computation costs.

• Btheta (Bθ) Start: This method is a natural extension of the current injection method (CIM) normally
considered for optimal dispatch. This method, like flat starts, can require high computation cost.

• Hot Start: The initial optimal solution is determined for effective and efficient generation of
candidate solutions. The time computation cost can be significantly reduced. Also, more realistic
solutions including uncertainty in problems, are addressed in much reduced time.

At each start point, power flow constraints are solved to initialize BLFM, PSV, RSV and RIV
formulations. The initialization methods are important in a way that they remain feasible for both
equality (formulations) and inequality constraints.

4.5.4. LF Impact with Interaction in MOP Problems

The general LF technique is the arrangement of test problem (DNW size), formulation (F), solver
(S) and initialization (I). Moreover, interaction among (F,S,I) and considered test problem (T) as inner
optimization (T,F,S,I) [101] needs to be considered in the context of MOP problems. MOP problems
mostly consist of inner and outer optimization methods. In MOPT planning problems, efficient LF
solutions (with interaction of T,F,S,I) support the main algorithm (outer algorithm) and are followed
by a decision-making method. A comprehensive comparison of the impact of LF, on the basis of
interactions in MOP problems; is presented in Table 9. The interaction his arranged according
to problem types (DGP, VPQ, CRU and NTR), DNW size (T), formulation (F), solver (S) as inner
optimization, initialization I (for both inner and outer optimization), main algorithm and DM.
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Table 9. Power/Load Flow method impact by interaction in overall MOPT planning problem.

Problem
Type

Test Problem
(DNW Size)

Formulation
(Form)

Solver/Inner Algorithm
Method/(LF Method)

Initialization
Inner/Main

Main (Outer)
Algorithm

Decision
Making

[21] Real Italian BLFM Simple PLF (Heuristic) Normalized GA + ε
constrained -

[22] 18 Bus BLFM Simple PLF (Heuristic) Normalized GA + ε
constrained -

[23] 34 Bus BLFM 3-Phase-4 wire LF/ Flat/Random GA + MCS -

[24] 9 Bus BLFM BSFS LF with FLd Flat/Random NSGA-II Max-min

[25] 34 Bus BLFM 3-Phase-4 wire LF (BSFS) Flat Start ES Weight

[26] 34 Bus BLFM LOADSYN / FGP Flat/Random GA Weight

[27] 34 Bus BLFM 3-Phase-4 wire LF (BSFS) Flat/Random NSGA -

[28] 16; 37 Bus BLFM 3-Phase-4 wire LF (BSFS) Flat/Random ES, GA Weight

[29] 33; 69 Bus BLFM 3-Phase-4 wire LF (BSFS) Flat/Random Fuzzy GA WSM

[30] 37 Bus PSV MCS/CCP Hot(MCS)/
R MCS-GA AHP

[31] 33; 69 Bus BLFM Fast decoupled LF (FDLF) Hot/Random GA + PSO Penalty

[32] 25; 33 Bus BLFM Goal attainment method Base/R GA + Goal P Weight

[33] 24 Bus BLFM Classical LF and LSF Hot(LSF)/R 2-Stage (MH +ES) -

[34] 37 Bus MCPM MCSPM with CLT Bθ/Hot GA + MCOM -

[35] 33; 69 Bus BLFM IMOHS Framework Random (R) NGHS-II Max-min

[36] 33 Bus BLFM B/U LF in DIgSILENT® Base/Hot PSO + SFL FDM

[37] 33; 69 Bus BLFM GAMS Model as MINLP Bθ/Random PFDE Algorithm -

[38] 38 Bus PSV MCS Random (R) NSGA-II (MINLP) -

[39] 9 Bus RSV/GAMS CONOPT/MCS Normalized AεCM FDM

[40] 69 Bus PSV/GAMS DICOPT Bθ /Normal AεCM -

[41] 13 Bus PSV MCS Bθ/Normal Fast NSGA-II -

[42] 69 Bus BLFM BIBC and BCBV based LF Base/Hot QOTLBO -

[43] 33 Bus PSV Modified branch based LF Hot (weight) MOPSO FDM

[44] 33 Bus PSV B/F updated DistFlow LF Bθ/Hot IMOPSO-PS -

[45] 34 Bus BLFM GUROBI Base/Linear MISOCP AHP

[46] 69; 123 Bus BLFM 3-Phase(Φ)-BSFS LF Flat/Random S-BB-BC Weight

[47] 38; 69 Bus BLFM 3-Φ B/F propagation LF Flat/Random CABC Weight

[48] 28 Bus BLFM Newton Raphson (NR) Flat/Hot MOPSO FDM

[49] 15 Bus BLFM SQP (Taylor expansion) Bθ SQP + WSM FDM

[50] 33; 292; 588 Bus PSV L-Index based LF Bθ/Random INSGA-II FDM

[51] 33 Bus RIV 3-Φ Current injection LF Flat/Hot MOShBAT -

[52] 28 Bus BLFM Newton Raphson (NR) Flat/Hot MOPSO FDM

[53] 94 Bus BLFM Forward sweeping LF Flat/Hot TS -

[54] 69 Bus BLFM Simple algebraic LF Flat/Random Fuzzy-GA Weight

[55] 69 Bus BLFM SA based LF Base/R IA -

[56] 12 Bus BLFM IBVT Random SA + PSO -

[57] 69 Bus BLFM Algebraic iterative LF Flat/Hot SPEA 2 -

[58] 94 Bus BLFM Iterative branch based LF Flat/Random ENSGA-II -

[59] 69; 136 Bus BLFM BSFS LF Flat/Linear MILP Model -

[60] 9; 34 Bus BLFM 2 m-PEM Bθ/Hot SAMHBMO -

[61] 34; 118 Bus BLFM VS&OP Flat/Hot APSO Weight

[62] 34; 94 Bus BLFM VS&OP Flat/Hot ABC Weight

[63] 9; 34; 69 Bus BLFM BSFS LF Bθ/Random AMHBMO -

[64] 115 Bus BLFM BSFS LF Flat/Random IDEA -

[65] 33; 94 Bus BLFM BSFS LF (Harmonics) Flat/Random Fuzzy MOPSO FDM

[66] 51; 69 Bus BLFM Compensated line LF Flat/Hot Fuzzy-GA Weight

[67] 60 Bus BLFM Improved BSFS (PSO) Flat/Hot PSO WSM

[68] 34 Bus BLFM NR Bθ/Uniform ABFO Weight

[69] 54 Bus PSV BSFS LF Flat/Uniform MOSOA Max-min

[70] 54 Bus PSV BSFS LF Flat/Hot MOSOA Max-min
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Table 9. Cont.

Problem
Type

Test Problem
(DNW Size)

Formulation
(Form)

Solver/Inner Algorithm
Method/(LF Method)

Initialization
Inner/Main

Main (Outer)
Algorithm

Decision
Making

[71] 41 Bus BLFM BSFS LF Flat/Uniform NSGA + SPEA FCM

[72] Urban DNW BLFM 3-Φ-4 wire LF (BSFS) Flat/Random GA + MINLP Weight

[73] Rural; Urban BLFM Compensated BSFS Flat/Random ACO FDM

[74] 355 Bus BLFM BSFS LF Flat/Random SPEA 2 -

[75] 18; 51 Bus TGM Simple GA based LF Flat/Random MACO -

[76] 21; 100 Bus BLFM Penalty factor (GA) Flat/Random MOPSO -

[77] 180 Bus BLFM Compensated BSFS Flat/Random MORTS -

[79] 33; 177 Bus BLFM NR (Branch exchange) Flat/Uniform MOGA -

[80] 21; 54; 100 Bus BLFM Conventional LF Flat/Random SPEA2-B/MOPSO -

[81] Urban DNW PSV MCS Random (R) IGDSEP (AGA;
IAGA) Weight

[82] Actual DNW BLFM Gauss Approach Random (R) PSO + SFL -

[83] 21; 54; 100 Bus BLFM BSFS LF Bθ/Hot DynP Weight

[84] 54 Bus BLFM Compensated BSFS Bθ/Hot MOTS -

[85] 54; 100 Bus BLFM BSFS LF Flat/Hot MOSOA Weight

[86] 54 Bus BLFM BSFS LF Flat/Hot MOSOA FDM

[89] 13; 34 Bus BLFM OpenDSS Flat/Uniform MOGA Weight

[90] 17; 33; 172 Bus BLFM Power summation LF Flat/Uniform Micro-GA -

[91] Actual DNW BLFM BSFS LF Flat/Uniform MCDM -

[92] 16 Bus BLFM DistFlow B/F update Flat/Uniform BPSO Weight

[93] 33; 123 Bus BLFM Simple iterative LF Flat/Random BPSO -

[94] Sample DNW BLFM NR Flat/Uniform GA Weight

[95] 33; 67 Bus BLFM Branch exchange MH Flat/Hot NSGA-II -

[96] 38; 119 Bus BLFM 3-Phase-4 wire (BSFS) Flat/Uniform NSGA -

[97] 69 Bus BLFM Non-dominated MCS Random NSGA-II -

[98] 32 Bus BLFM 2m-PEM Random SAMBA -

[99] 33; 67 Bus BLFM Simple iterative LF Flat/Hot Fuzzy-ACO Weight

[100] 33 Bus BLFM DIgSILENT® (DPL) Random ESGA FDM

5. Contribution of the Review Work

5.1. Reviewed Work Contributions

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each PT
category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively.

5.2. Assessments of Multi-objective Planning Methods

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to
facilitate high precision, stochastic, efficient time computation and uncertain operation situations.
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum
solution, however they have not advocated for large distribution systems. Likewise, a major drawback
of MCS (being inner optimization) is the high computation time. In comparison, MINLP, SQP, and
dynamic programming are the most efficient numerical methods.

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural way
of addressing complex MOP problems. However, the high computational requirements and possibility
of premature convergence towards local optimal solutions need to be addressed with more efficient
methods. The simple MH methods require more computation time. Also, more number of functions is
required to achieve nearly high quality results. Also, constrained and unconstrained multi-objective
problems are difficult to optimize. Similarly, GA and PSO provide near optimal solutions for large
distribution systems.
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Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid
optimization methods can be consider as promising ways to deal with complex MOP problems
more efficiently from a future perspective. The hybrid metaheuristic techniques show robustness
(high quality solutions), promises powerful global optimization methods and have ability to address
constrained real time planning problems. Furthermore, decision-making methods also need to be
considered, aiming at finding optimal weights, for FDNs.

The modified LF methods and software-based LF platforms provide better performance aiming
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they provide
generation of various scenarios under all load models, which were limited in conventional methods.
The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a big picture,
has presented in Table 9. The overall performance comparison of the addressed MOP techniques has
been presented in Table 10.

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems.

Algorithm/Methods Classification/Execution Compute Cost
Problem/Solution

Quality
(Optimization)

Parameter
Depend

Application in
Planning Problems

Others
Features

ε-constd. N/Easy High
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possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
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constrained real time planning problems. Furthermore, decision-making methods also need to be 
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solution, however they have not advocated for large distribution systems. Likewise, a major 
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SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
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of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
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quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 
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efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
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constrained real time planning problems. Furthermore, decision-making methods also need to be 
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constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
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of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
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optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
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multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
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optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 
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ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
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PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 
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programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 
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ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 
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HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 
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programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 
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Classification/
Execution 
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Problem/Solution  
Quality (Optimization) 
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Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 
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Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
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HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Inner Opt.
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programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 
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ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
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❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 
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Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
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programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  
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However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 
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ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
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SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Convex
SQP N/Difficult High
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5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 
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Execution 
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Problem/Solution  
Quality (Optimization) 
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Depend 
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ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/better
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

No Simple

Energies 2017, 10, 208 31 of 44 

 

[98] 32 Bus BLFM 2m-PEM Random SAMBA - 
[99] 33; 67 Bus BLFM Simple iterative LF Flat/Hot Fuzzy-ACO Weight 
[100] 33 Bus BLFM DIgSILENT® (DPL) Random ESGA FDM 

5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

/Complex
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Fast
MILP N/Difficult High
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Linear/ Excellent
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

No Simple
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Linear
MINLP N/Difficult High
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/better
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 
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❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 
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of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
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techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
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5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 
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of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
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Non linear
DynP N/Difficult High
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programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 
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ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
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Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 
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solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
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of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 
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However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 
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ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
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Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
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DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
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5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 
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Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  
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MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
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GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Real Time
GA MH/Easy High
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programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
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Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
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solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
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constrained real time planning problems. Furthermore, decision-making methods also need to be 
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The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

/Complex

Energies 2017, 10, 208 31 of 44 

 

[98] 32 Bus BLFM 2m-PEM Random SAMBA - 
[99] 33; 67 Bus BLFM Simple iterative LF Flat/Hot Fuzzy-ACO Weight 
[100] 33 Bus BLFM DIgSILENT® (DPL) Random ESGA FDM 

5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Variant/AI
HS MH/Easy Average
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/Average
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

- Simple
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

/Complex
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Variant/AI
TLA MH/Average Low
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/Average
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

No Complex real world
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Nonlinear
BB-BC MH/Average Low
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/Average
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Yes Complex
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Nonlinear
ABC MH/Average Average
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/Average
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Yes Complex
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Nonlinear
TS MH/Average Average
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Linear/ Excellent
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Yes Simple
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PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

/Complex
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PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Linear
IA MH/Difficult High
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5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/Average
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

No/Yes Simple
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Variant/AI
SA MH/Difficult High
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/ Excellent
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5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

No/Yes Complex real world
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Tuning
HBMO MH/Average Average
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/Average
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Yes Simple
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

/Complex
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Local Opt.
BFO MH/Average Average
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/Poor
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
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Problem/Solution  
Quality (Optimization) 

Parameter 
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Application in  
Planning Problems 

Others  
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ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
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possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
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multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 
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at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
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ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
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drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
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way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
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of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 
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Classification/
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Problem/Solution  
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Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
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Complex
ACO/ACS MH/Easy High
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solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 
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Problem/Solution  
Quality (Optimization) 
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ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 
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PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 
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programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 
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ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 
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programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 
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ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
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5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
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MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Variant
BA MH/Average Average
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programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 
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OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/Average
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Yes Complex real world
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PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

>PSO, HS
EA MH/Average Average
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PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/Average
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5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 
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5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 
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DE MH/Average Average
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5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 
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Execution 

Compute 
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Problem/Solution  
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Depend 
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Planning Problems 
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ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/Average
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

- Simple
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

/Complex
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Local (AI)
SOA MH/Difficult High

Energies 2017, 10, 208 31 of 44 

 

[98] 32 Bus BLFM 2m-PEM Random SAMBA - 
[99] 33; 67 Bus BLFM Simple iterative LF Flat/Hot Fuzzy-ACO Weight 
[100] 33 Bus BLFM DIgSILENT® (DPL) Random ESGA FDM 

5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/Average
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Yes Simple
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

/Complex
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

>PSO, GA
GSA MH/Average Average
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/Average
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Yes Complex real world
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

>PSO, GA
SPEA/2 MH/Difficult High
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/ Excellent
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

- Simple
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

/Complex
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Variant
NSGA/-II MH/Difficult High
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5. Contribution of the Review Work 

5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
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constrained real time planning problems. Furthermore, decision-making methods also need to be 
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solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
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quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
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Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Variant
Hybrids Hyb/Difficult High
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PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/ Excellent
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PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Yes Simple
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5.1. Reviewed Work Contributions 
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PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

/Complex
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5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex
DM DM/Average Average
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5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

Complex/ Excellent
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5.1. Reviewed Work Contributions 

The contributions of reviewed work are shown chronologically in Tables 5–8; addressing each 
PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
DynP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Real Time 
GA MH/Easy High ✘ Complex/better ❉ No/Yes Simple ✮/Complex ❉ Variant/AI 

PSO MH/Easy Average 
❉ Complex/better ❉ Yes Simple ✮/Complex ❉ Variant/AI 

HS MH/Easy Average 
❉ Complex/Average ❉ - Simple ✮/Complex ✘ Variant/AI 

- Simple
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PT category under the MOP framework as MODGP, MOVPQ, MOCRU, and MONTR, respectively. 

5.2. Assessments of Multi-objective Planning Methods 

Among numerical methods, OPF is commonly exploited as an inner optimization algorithm to 
facilitate high precision, stochastic, efficient time computation and uncertain operation situations. 
However, the problem formulation is very rigid, and few variations can be incorporated. Dynamic 
programming (DynP) and exhaustive search (ES) although they promise to find a global optimum 
solution, however they have not advocated for large distribution systems. Likewise, a major 
drawback of MCS (being inner optimization) is the high computation time. In comparison, MINLP, 
SQP, and dynamic programming are the most efficient numerical methods. 

Metaheuristic (MH) methods like evolutionary algorithms have been considered as a natural 
way of addressing complex MOP problems. However, the high computational requirements and 
possibility of premature convergence towards local optimal solutions need to be addressed with 
more efficient methods. The simple MH methods require more computation time. Also, more number 
of functions is required to achieve nearly high quality results. Also, constrained and unconstrained 
multi-objective problems are difficult to optimize. Similarly, GA and PSO provide near optimal 
solutions for large distribution systems.  

Artificial intelligence (AI)-based metaheuristics (for example ACS, ABC, etc.) and hybrid 
optimization methods can be consider as promising ways to deal with complex MOP problems more 
efficiently from a future perspective. The hybrid metaheuristic techniques show robustness (high 
quality solutions), promises powerful global optimization methods and have ability to address 
constrained real time planning problems. Furthermore, decision-making methods also need to be 
considered, aiming at finding optimal weights, for FDNs. 

The modified LF methods and software-based LF platforms provide better performance aiming 
at uncertainty of load and REG generation, in comparison to traditional LF models. Also, they 
provide generation of various scenarios under all load models, which were limited in conventional 
methods. The LF impact on the basis of interactions, aiming at MOPT problems have arranged as a 
big picture, has presented in Table 9. The overall performance comparison of the addressed MOP 
techniques has been presented in Table 10. 

Table 10. Performance comparison of algorithms, applied in multi-objective planning problems. 

Algorithm/ 
Methods 

Classification/
Execution 

Compute 
Cost 

Problem/Solution  
Quality (Optimization) 

Parameter 
Depend 

Application in  
Planning Problems 

Others  
Features 

ε-constd. N/Easy High ✘ Linear/better ❉ No Simple ✮ Inner Opt. 
MCS N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✮ Inner Opt. 

Goal P N/Difficult High ✘ Linear/better ❉ No Simple ✮/Complex ❉ IMO 
ES N/Easy High ✘ Linear/Excellent ✮ No Simple ✮ Inner Opt. 

OPF N/Difficult High ✘ Complex/ Excellent ✮ No Simple ✮/Complex ❉ Inner Opt. 
Cone P N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ✘ Convex  

SQP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Fast  
MILP N/Difficult High ✘ Linear/ Excellent ✮ No Simple ✮ Linear 

MINLP N/Difficult High ✘ Complex/better ❉ No Simple ✮/Complex ❉ Non linear 
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6. Requirements for Future Work and Research Directions

The paper presents four planning techniques based on the MO framework with associated
classifications, methods, and key information from the viewpoint of their usefulness in MDP.
Furthermore, other classifications include four extensive objective categorization, updated decision
variables, constraints, and models. Also, fifteen PTC-based problems including interlinked
(interdependent) types have illustrated. However, the literature review reveals that there are still
several potential research areas from the planning perspective of MO-based frameworks that are
research worthy.

6.1. Distribution Network Topology

The topology mostly considered in reviewed works is radial in nature, and other configurations
(loop and mesh) have usually been neglected due to cost issues despite their reliable nature.
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Furthermore, futuristic distribution mechanisms are expected to be more interconnected in both
nature and operation. Hence other configurations must also be evaluated for reliability and other
technical perspectives to avoid missing reliable solutions on a cost basis only. The optimal weight
allocation in decision making can provide a feasible solution.

6.2. Future Distribution Networks (FDN)

Future/Smart distribution concepts and management models must also be considered from the
MOP perspective. The key FDN concepts have been divided along the lines of utility and consumer
paradigms. Major FDN concepts on the utility side include looped DNWs, meshed DNWs, micro-grid
(MG), clustered or multi MG (MMG), virtual power plants (VPP) and smart cities (SCs), whereas smart
homes (SHs) and buildings (SBs) represent FDN models on the consumers’ end. Despite classification,
designing and planning of FDNs to meet future load demands from the smart grids’ perspective needs
to be further explored. MOP can be use as a promising tool to exploit this potential research area of
FDN from multiple stakeholders’ viewpoints. This issue will be addressed in future publications.

6.3. Multi-Obejctive Planning with Optimization Parameters Settings

Since MOP may need large scale problem formulation, a possible way is to efficiently decompose
a large problem into sub-problems on the lines of spatial (DNW’s size) and time (PP). The inner
optimizations parameters (if heuristic methods have been used) can be optimally set by either the
planner or adaptively improved with the support of SG technologies (SGTs). Key enabling SGTs may
include advanced metering infrastructure (AMI), secure communication link, sensors and demand
side management (DSM), favoring both service provider and consumer regarding their decisions and
anticipated incentives.

6.4. Prioritization of Weights for Objectives in Future Distribution Networks

Since most of the models and frameworks utilize heuristic methods for evaluation that is
time-consuming and associated subjective weighting methods are liable to the deviation. Hence
for a quick trade-off solution, planners and researchers must coordinate to find relevant weights from
the perspective of requirements and other distribution planning-related issues. SG pilot projects and
test beds can provide an opportunity to find accurate weights for each objective in MO problem.
Moreover, efforts must be made to improve the speed of optimization processes.

6.5. Active Network Management and Smart Distribution Management System (SDMS)

The active network management (ANM) enables active operation of DNW with support provided
with communication, information and automation enable changing of protection settings, topology,
and power-flow dynamically. Efforts are required for proposig new methods, aiming at achieving
multiple objectives like high REG penetration, power quality, reliability while reducing overall cost
and power losses, respectively.

Since DERs are expected to be increased in ADNs and are required to be control by a smart
distribution management system (SDMS), since such a system with AMI will allow real-time
communication among decision makers for the transaction of useful information and prices makes it
naturally a MOP problem in the ADN context. However, an increasing number of DER and loads over
a planning horizon respectively adds complexity to SDMS control functionalities. There are several
issues of SDMS that needs to be addressed in MOP problems.

A compromise between control issues can be a potential area since central control has high
computation requirements and decentralized control requires time-consuming synchronization among
local agents to find a compromise solution. Also, addressing complications in load flows with small
scale DGs on utility/consumer ends and avoiding delays in command signal propagations; are worthy
research areas, in particular, system parameters synchronization (grid, DGs) and contingency analysis
under normal and emergency scenarios respectively.
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6.6. Islanded Operation with Multi-Type Distributed Generation Units and Modified Topology

Current utility practices discourage islanded operation and recommend indiscriminate
disconnection of all DGs connected to a network. Such actions are neither suitable nor preferred
in a deregulated and competitive multi-stakeholder electricity markets. Further, islanding with
multiple types of DGs in DNW and other concepts (MG, MMG, VPP) must also be evaluated with a
change of topology, since interconnected topologies (loop, weakly mesh) are more reliable and serves
more consumers in a better way during main grid blackouts.

6.7. Advance Protection System (APS)

The traditional protection systems are more specific towards cost effective solutions like
relay-recloser-fuse coordination. However, when the DG penetration exceeds a certain limit, the
traditional protection is not technically viable. The protection up gradation is also necessary for
future distribution (interconnected) systems having complex power flows. Hence, a suitable trade-off
between complexity and economy for any future protection strategy has desired for the distribution
mechanism incorporating high DG/DER penetration.

6.8. Dynamic Planning with REGs and High Nonlinear Load Models

The MOP and related planning issues with increasing REG penetration and nonlinear load by
high percentage need to be addressed over the multi-stage planning horizon, mainly in the context of
FDNs. The major concerns are ensuring system reliability, stability and power quality. Reason being,
the simple load models, will not remain technically viable to access the actual benefits.

6.9. Incentive Prioritization for Owner, Investor and Consumer Based Future Market Scenarios

The FDNs in a smart grid environment are expected to have competitive market scenarios and
needs maximum stakeholders’ participation. Hence incentive-based approaches are required to
prioritize facility (DG, devices) owners, investors, and consumers; instead of overall system-wide
benefits, to ensure their participation in FDN planning processes.

6.10. Exploiting Real Options

The utilization of real multiple options makes an active research area for the futuristic
planning [102]. Prominently, risk-based planning under uncertainty needs to be addressed in MO
framework to attain suitable investment strategy under the extreme scenario, from a futuristic point
of view.

6.11. Need for Integrated Planning

The literature review reveals that most of researchers have considered planning and (resource)
scheduling as separate problems. However, a real-world planning problem needs to be addressed
with deeper, wider and aggregated planning approach. The futuristic planning needs to be integrated
from startup stage (over planning horizon of several years) aiming at achieving multiple objectives.
Followed by efficient resource utilization (days to seasons in a year). Finally, ensure real-time stable
operation with anticipated smart technologies (on the time scale of 15 min to one day). Such approach
is expected to guarantee optimal planning solution of FDN on long term basis.

6.12. Need for Improved Load Flows

The FDN of future is expected to be interconnected in nature. Hence, there is still room to
proposed LF models, which addresses interconnected nature of DNW. Also, new LF models need to be
developed considering various types of load models, from the viewpoint of uncertainty (generation
and load) and interconnected nature of FDN. The proper formulation, new solvers and hot (improved)
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initialization of network load/power flows must benefit MOPT in terms of less computation cost and
efficient solutions.

7. Conclusions

The MDP has been motivated by various factors and features (ANM, RES, EV, ST, ADA, DR,
DSM, etc.), which were limited in traditional planning. The real world planning problems are
multi-objective (MO) in nature and involve a large number of stakeholders. MO planning tools
can provide compromise solutions among contradictory objectives, satisfy multiple stakeholders,
yet address the concerned issues. This paper presents a review of four planning techniques (PT)
aim to address MOP problems with associated models and optimization methods under MDP
paradigm. The primary aim of this paper is to provide a back ground for FDN planning on the
basis of limitations in available works and from the perspectives of MO achievement. The reviewed
works consists of 80 recent standard planning papers from various aspects and are organize on the
basis of decision variables, attained objectives, abiding constraints, MOP formulations, test systems,
load models and year of publications (Section 2). The promising MOPT have classified as DGP,
VPQ, CRU, and NTR (Tables 1–4). The MOP planning methods have reviewed into five categories,
namely; numerical, meta-heuristic, hybrid, decision-making and load flow methods respectively.
Also, classification and interdependence of planning components from four MOPT perspectives, have
arranged in (Tables 5–8) with associated contributions from each related work. The LF impact on
the basis of interactions, aiming at MOPT problems have arranged as a big picture, has presented in
Table 9. The overall performance comparison of techniques (methods) applied for MOP problems
have been presented in Table 10. Furthermore, potential future directions in MDP from a MOP
perspective have also highlighted. In the future, MOP has several grey research areas in accessing
maximum benefits from interconnected network topology, FDN and associated concepts. However,
more investigation is needed to carry out realistic (MO) planning by upgrading conventional to smart
DNWs or redesign from the beginning. Also, optimal settings of optimization parameters, optimum
objectives weights in FDNs, ANM techniques, smart distribution management system (SDMS) and
islanded operation with multi-type DGs focusing modified topology need further research attention.
In addition, advanced protection schemes (for bidirectional power flows), dynamic planning with
high penetration of REGs and nonlinear load models will play an important part in futuristic planning
problems. Moreover, maximum incentive-based prioritization given to stakeholders (facility owners,
investors, and consumers) needs to be addressed to ensure maximum participation in FDN planning
processes. The employment of real investment options concept in MO framework for suitable approach
under extreme (worst case scenario) from the futuristic viewpoint is research worthy. Finally, efforts
need to be made to proposed integrated planning approaches and new power flow models. Works
regarding designing and planning of FDNs, from multiple aspects under MO framework, will be
presented in future studies.
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Abbreviations

The following abbreviations have used in this paper:

A Classification of planning techniques related to DG placement
B Classification of planning techniques related to VAR and power quality
C Classification of PT related to component reinforcements/allocations and upgradations
D Classification of planning techniques related to network topology change or reconfiguration
P Active power
Q Reactive power
ABC Artificial bee colony
ABFO Adaptive bacterial foraging optimization
AC Annual cost
ACO Ant colony optimization
ACS Ant colony search algorithms
ADA Advanced distribution automation
AHP Analytical hierarchal process
AI Artificial Intelligence
ANM Active network management
ANSI Average network security index
AMHBMO Adaptive modified honey bee mating
APS Advance protection system
AεCM Augmented ε constrained method
BA Bat algorithm
BFO Bacterial foraging algorithm
BL Balanced load
BLFM Branch load flow model
BSFS Backward/forward sweep load flow
Cap Capacitor
CABC Chaotic artificial bee colony
CAC Capacity adequacy cost
CCC Current carrying capacity (of branches or feeders)
CCI Current carrying index (of branches or feeders)
CCT Critical clearing time
CEDGP Capacity enhancement with distributed generation penetration
CEL Cost of energy losses
CENS Cost of energy not supplied
CIC / CILL Customer interruption cost/Customer interruption level
CL Controllable/responsive/flexible load
CLd Constant load
CLT Central limit theorem
CLL Critical load level
CLLI Contingency load loss index (overall)
CNU Cost of network upgrading
CVaR Conditional value at risk
CVR/C Cost of voltage regulators and variable capacitors
COD Cost of overall (new and old) devices
Cone P Cone programming
CPE Cost of purchased energy (from grid)
CPL Cost of power losses
CRU Component reinforcements/allocations and upgradations
CSAIDI Cost of system average interruption frequency index
CSI Customer service interruptions
CSM Capacity security margin (of transformers and feeders)
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DE Differential evolution
DEL Distributed storage system’s energy losses
DER Distributed energy resources
DISCO Distribution company
DM Decision making
DG Distributed generation penetration level
DGOI Distributed generation unit’s owner income
DGP Distributed generation unit placement
DGPL Distributed generation
DGR Distributed generation unit’s reliability
DGUI Distributed generation unit unavailability index
DNW Distribution network
DP Distribution planning
DPL DIgSILENT programming language
DR Demand response
DSM Demand side management
DSS Distributed storage system
DRP Demand response provider
DSM Demand side management
DV Decision variable
DynP Dynamic Programming
EA Evolutionary algorithm
EC Equipment cost
ECE External cost of energy (from grid)
EEDG2G Energy export from DG (REG) to grid
EI Economic index
EIG Energy imported from grid
EL Energy losses
ELC Energy loss reduction of DG units and capacitors
EMP Electricity market price (risk based)
ENS Energy not supplied
EOI Expansion, operation and maintenance costs
ES Exhaustive search
ESGA Enhanced gravitational search algorithm
FACTS Flexible alternating current transmission system
FCF Feeder current flow
FDLF Fast decoupling load flow
FDN Future distribution network
FGP Fuzzy goal programming
FCM Fuzzy clustering method
FCL Fault current limiter
FCLL Fault current level
FCLLDG Fault current level due to distributed generation unit
FDM Fuzzy decision making
FLd Fuzzy load
FLL Fuzzy load level
Fr. Feeders (of distribution network)
GA Genetic algorithm
GAMS General algebraic modeling system
GP Goal programming
GS Gauss-Seidel
GHG/ACE Greenhouse gases/Average (annual) greenhouse gases
GHGE Greenhouse gases emissions
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GHGG Greenhouse gases emissions from grid
GHGDG Greenhouse gases emissions from distributed generation units
GSA Gravitational search algorithm
GRC Grid reinforcement components
GUC Grid upgradations with devices/components
HBMO Honey bee mating algorithm
HS Harmony search algorithm
hr. Hours
IA Immune algorithm
IBVT Interactive bi-objective programming with the valuable trade off
IC I (current) line flow limit index
ICAll Investment in distributed generation units and capacitors
ICDGPPF Investment in distributed generation units and passive power filters
IELOM Investment in energy losses, operations and maintenance
ILP Index for active power loss (P-loss index)
ILQ Index for reactive power loss (Q-loss index)
IMO Index for multi-objective performance
IMOHS Improved multi-objective harmony search
IMOPSO-PS Improved Multi-objective particle swarm optimization with preference strategy
InvC Investment cost
IntC Interruption cost
IOC Investment and operation cost
IRC Investments in reinforcement cost
ItC Installation cost of project
IVD Index for voltage deviation
LB Load balancing
Ld Load
LdP Load profile
LdM Load model
LF Load flow
LLI Line loading index
LOADSYN Load model synthesis
LV Low voltage
MaVL Maximum voltage level limit
MCDA Multi-criteria decision analysis
MCDM Multi-criteria decision making
MCS Monte Carlo Simulations
MCSPM Multi-criteria stochastic planning model
MDP Modern distribution planning
MH Meta-heuristics
MILP Mixed integer linear programming
MINLP Mixed integer nonlinear programming
MISOCP Mixed integer second order cone programming
MiVL Minimum voltage level limit
MLL Multiple load level
MnC Monetary (risk) cost
MODGP Multi-objective based distributed generation unit placement
MO/MOO Multi-objective/Multi-objective optimizations
MOP Multi-objective planning (or Multi-objective based planning)
MOPT Multi-objective planning techniques
MOshBAT Multi-objective shuffled bat algorithm
MOSOA Multi-objective seeker optimization algorithm
MV Medium voltage
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NC Normally closed switches
NDE Non-distributed energy
NL Non-linear/Non-controllable load
NO Normally open switches
NPL Network power losses
NPV Net present value (of components, system and project)
NR Newton Raphson load flow
NS Net savings
NSGA Non-dominated genetic algorithm
NTR Network (distribution) reconfiguration
OCPL Overall cost of power losses (during operation)
OCS Overall complete system cost (including installations, O&M, power losses and reliability)
OF Objective function
OFVC Overall fixed and variable costs
OLTC Online tap changer
OLSSFrLN Overload (OL) at substation (SS), feeders (Fr) and loads nodes (LN)
OMC Operation and maintenance cost
OPF Optimum power flow
PBDG Power buying from DG owner
PBSS Power buying from substation (grid)
PBY Payback years
PC Penalty coefficient
PEM Point estimation method
PF Power filter
PFDE Pareto frontier differential evolution
ph Phase
PLd Probabilistic load
PLF Probabilistic load flow
PLHD P (active) power loss based harmonic distortions
PLL Probabilistic load level
P-loss Real/resistive power losses
PQ Power quality
PP Planning period (horizon)
PSO Particle swarm optimization
PT Planning techniques
QCP Quadratic constrained programming
QIC Q (reactive) current (I) component
Q-loss Reactive/inductive power losses
QOTLBO Quasi oppositional teaching learning-based optimization
QPD Q (reactive) power deviation
RA Reclosers-automatic (or Automatic reclosers)
RCC Reserve capacity of conductor
RCCI Reserve conductor capacity (RCC) index
REG Renewable energy generation
SA Simulated annealing
SAMHBMO Self-adaptive modified honey bee mating
SAIDI System average interruption duration index
SAIFI System average interruption frequency index
SAIUI System average interruption unavailability index
S-BB-BC Supervised Big Bang–Big Crunch
SC Short circuit
SCI Short circuit index
SCL Short circuit level
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SDMS Smart distribution management system
SFL Shuffled frog leaping algorithm
SLL Single load level
SOA Seeker optimization algorithm
SOF Single objective function
SPEA Strength Pareto evolutionary algorithm
SPMC Switch purchasing and maintenance cost
SQP Sequential quadratic programming
SSW Sectionalizing switches
ST Storage
STATCOM Static synchronous compensator
STP Short term planning
SUC System upgrade costs
SVC Static Volt-ampere reactive power (VAR) compensator
SWC Switching costs
SWD Switching devices
TDP Traditional distribution planning
THD Total harmonic distortions
TLA Teaching learning algorithm
TLBO Teaching learning-based optimization
TOC Total operation cost
TS Tabu search algorithm
TSIAECP Two stage immune algorithm embedding compromise programming
TSW Tie-switches
TVLL Time-varying load level
TVV Total voltage variation
UB Unbalanced combined single and three phase loads
UL Unbalanced three phase load
VAR Volt-ampere reactive power
VD Voltage deviation/drop
VEPB Voltage error at power buses
VLd Variable load
VLDG Voltage level at distributed generation unit
VMP Voltage magnitude profile
VPI Voltage profile index
VPQ Volt-ampere reactive power compensation and power quality
VR Voltage regulator
VRC Variable capacitors
VS Voltage stability
VSI Voltage stability index
VSL Voltage stability limit
VSgL Voltage sag level
VSM Voltage stability (load-ability) margin
VS&OP Voltage stability and optimization (tool)
VTHD Voltage based total harmonic distortions
VUBP Voltage unbalance profile
WSM Weighted sum method
Yr. Years
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