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Abstract: A virtual power plant (VPP) is aimed to integrate distributed energy resources (DERs).
To solve the VPP economic dispatch (VPED) problem, the power supply-demand balance, power
transmission constraints, and power output constraints of each DER must be considered. Meanwhile,
the impacts of communication time delays, channel noises, and the time-varying topology on the
communication networks cannot be ignored. In this paper, a VPED model is established and a
distributed primal-dual sub-gradient method (DPDSM) is employed to address the presented
VPED model. Compared with the traditional centralized dispatch, the distributed dispatch has
the advantages of lower communication costs and stronger system robustness, etc. Simulations are
realized in the modified IEEE-34 and IEEE-123 bus test VPP systems and the results indicate that the
VPED strategy via DPDSM has the superiority of better convergence, more economic profits, and
stronger system stability.

Keywords: distributed energy resources (DERs); distributed dispatch; virtual power plant (VPP);
distributed primal-dual sub-gradient method (DPDSM); non-ideal communication network

1. Introduction

Efforts have been made to handle the energy crisis and environmental issues by exploiting
distributed energy resources (DERs) [1,2]. It is acknowledged that DERs possess the characteristics of
cleanliness, renewability, and diversification. DERs mainly contain micro-gas generators (MGGs), wind
generators (WGs), photovoltaic systems (PVs), and batteries (BEs) [2]. Natural conditions (e.g., wind
speeds, light intensity, etc.) will inevitably give rise to the intermittent and randomness of the DERs’
power outputs. In addition, some non-ideal communication network factors may also interfere with
DERs’ scheduling [3]. Communication time delays slow down the speeds of scheduling information
and channel noises fluctuate DERs’ power outputs, which disobey the power system’s requirements
for rapidity and stability. DERs’ over-limit, plug-and-play, and channel faults are the common time
varying topology events that disrupt the normal operation of economic dispatch, and even damage
the system. If these large-scale and small-capacity DERs have access to the power system, they will
pose challenges to the economic dispatch, power quality (e.g., frequency harmonics, voltage flicker,
etc.), and the electricity market. Therefore, to realize the DERs’ organized regulation is an urgent
research task.
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As is known, the micro-grid can coordinate DERs within a self-control and management system [4].
Unlike the micro grid, depending on intelligent software systems and advanced management
techniques, the virtual power plant (VPP) can aggregate DERs and controllable loads into a virtual
whole to participate in the power grid’s operation and electricity market’s transactions [2]. VPP can
also stabilize the fluctuation of DERs’ generation and even provide the power system with auxiliary
services with high reliability, quality, and safety [5,6]. The VPP has fewer region limits and better
market interactivity than the microgrid, which gives it broad application prospects.

VPP economic dispatch (VPED) strategies can adopt centralized dispatch, using centralized
scheduling algorithms (e.g., genetic algorithm [7] and particle swarm optimization [8]), as well as the
distributed dispatch algorithms in [9–11]. The centralized scheduling approaches have encountered a
great number of problems in practical application [9]. The centralized dispatch must obtain all DERs’
information, including the power outputs, profits and costs, and other parameters [12]. Accordingly,
it is essential to establish a dispatch center and broadband communication channels between the
dispatch center and DERs. Then, it may result in higher communication costs and more sophisticated
communication networks, which will exert serious communication time delays, channel noises, and
dimension disasters during the optimization progress [13]. Additionally, to make VPP an open system
in the electricity market, the communication network with high security and stability is required.
However, the centralized dispatch is susceptible to a single point of failure because of its access to each
DER’s information. Owing to the mechanism of limited communication, each DER only needs its own
and adjacent DERs’ information to implement the optimization. Hence, the distributed dispatch can
encourage DER owners to participate in the VPP’s operation actively on the premise of keeping their
private data secret. In summary, the distributed dispatch has a broad application prospect in the VPED
due to the advantages of economy, flexibility, agility, information security, and strong robustness.

A VPP’s distributed scheduling exerts a tremendous fascination for researchers. A distributed
VPP scheduling model composed of WGs and electric vehicles is set up in [14] and solved by linear
programming. However, the advanced industrial control often uses fuzzy-model-based nonlinear
networks [15], which cannot be addressed well by the linear programming. In [12], a distributed
center-free algorithm is developed to coordinately control the power outputs of DERs in a VPP.
Although the algorithm converges fast, introducing auxiliary variables will weaken the stability of the
system. A distributed gradient algorithm is presented in [9], which can be used to deal well with the
equality and inequality constraints under the topology reconstruction situation, but obvious fluctuation
will emerge when the number of DERs is large. In [10], a distributed primal-dual sub-gradient method
(DPDSM) is designed to solve the optimal VPED model. Based on limited information exchange
among DERs, the algorithm can still achieve the global convergence within a less optimization time.
The DPDSM is also used to handle the VPED in [11] and simulation results show that the algorithm
has a good convergence even in solving a more complex model. The DPDSM in [10,11] employs the
negative sub-gradient of the power and the multiplier during the distributed optimization process.
However, it has no engagement with the consensus algorithm and effects of non-ideal communication
conditions on VPED are also neglected.

This paper examines the distributed VPED. The main contributions of this work include the
following: The mathematical model for distributed VPED is presented and an improved DPDSM for
solving the model is proposed. In the distributed optimization, the negative sub-gradient is employed
in the power iteration, meanwhile the positive sub-gradient is used in the multiplier iteration [16],
and the consensus algorithm with a gain function is appropriately embedded in the sub-gradient
algorithm. By introducing the Lagrangian function and projection constraint theory, the constraints are
integrated into the objective function [17,18]. Meanwhile, the influence of non-ideal communication
conditions due to time delays, channel noises, and time-varying topology are considered in the method.
The modified IEEE-34 and IEEE-123 bus test systems are employed to verify the effectiveness of the
distributed strategy. Simulation results from six scheduling scenarios indicate the superiority of the
proposed method.
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The rest of this paper is organized as follows. Section 2 introduces the economic dispatch model
of VPP. The method of DPDSM for solving the VPP economic dispatch model is presented in Section 3.
Section 4 gives the numerical examples. Summaries are drawn in Section 5.

2. Economic Dispatch Model

The VPED model uses the scheduling objectives including minimizing total generation cost of
DERs, maximizing profits of a VPP, and maximizing energy-saving and emission-reduction of a VPP.
Depending on the power outputs of various DERs, an optimal allocation model of the energy storage
system whose objective function includes economy, grid supply, and voltage is constructed in [19].
A VPP’s bidding strategy on the basis of electricity price is developed in [20], which breaks through
the routine that the day-ahead transacted electricity quantity is equal to the forecasting load demand.
Then it establishes a new electricity transaction model under a unified electricity market considering
both the day-ahead and real-time stochastic load demand. Different from [20], a VPP’s three-stage
stochastic bi-level bidding strategy depending on DERs’ the power outputs, loads demands and the
competitor’s history price is developed in [21].

In this paper, a VPED model with a variety of constraints is established. At the point of common
coupling (PCC), the power running through PCC (recorded as Ps), which is the power exchanged
between the VPP and the electricity market (or the main grid). The power collected by VPP can be sold
to power users and VPP’s profit is determined by the power outputs of all DERs, the Ps, the purchase
price from the main grid, and the sale price to the power users.

2.1. Objective Function

PVs and WGs cannot continuously generate power like MGGs, so it is significant to obtain its
available power outputs according to the actual operation [22]. Since this paper is aimed to study
VPP’s distributed dispatch, DERs’ power outputs models will be shown in Appendix A. To stimulate
PVs’ and WGs’ scheduling potential, they may operate in the schedulable model rather than the
maximum power point model [22]. A certain number of MGGs and BEs are used to stabilize the power
output fluctuations of PVs and WGs. BEs can work in the charging or discharging modes.

The operation cost function of each DER can be modeled as:

Ci(PGi)= aiPGi
2 + biPGi + ci, i = 1, · · · , n (1)

where n is the number of DERs and the actual power output of DER i is uniformity recorded as PGi.
The operation costs of DER i at PGi is denoted by Ci(PGi). The cost parameters are signified as ai, bi,
and ci.

According to VPP’s operation mode, we can get the optimization target of VPED as follows:

max
PGi ,Ps

f = −θPs + β
m

∑
j=1

PDj −
n

∑
i=1

Ci(PGi) (2)

where PDj is the power demand by consumer j and the consumers’ number is m. θ, β are the purchase
price and the sale price, respectively. If Ps is negative, the power will flow from VPP into the main grid.
Ps is calculated by:

Ps =
m

∑
j=1

PDj −
n

∑
i=1

PGi (3)

2.2. Constraints

Power output constraints of DERs: Capacity constraints of all types of DERs can be formulated as
inequality constraints:

Pmin
Gi ≤ PGi ≤ Pmax

Gi , i = 1, · · · , n (4)
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where Pmin
Gi is the minimum power output of unit i and Pmax

Gi is the maximum one. Here, PVs’ and
WGs’ maximum power outputs are their power outputs at the maximum power point.

Transmission constraints of power lines: These constraints satisfy a set of global inequality
constraints:

− Pl ≤
O

∑
o=1

ηol(PGi − PDj)
i,j→o ≤ Pl , l = 1, · · · , L (5)

where Pl means the power transmission limit of line l, L represents the power lines’ number and O is
the number of nodes. The power transmission coefficient of node o and its geographically adjacent line
l is expressed as ηol. The symbol of i, j→ o describes that unit i or consumer j may convey power and
energy through the node o.

Formula (5) is also equivalent to:

O

∑
o=1

ηol(PGi − PDj)
i,j→o ≤ Pl , l = 1, · · · , L (6)

−
O

∑
o=1

ηol(PGi − PDj)
i,j→o ≤ Pl , l = 1, · · · , L (7)

2.3. Mathematical Reformulation

The VPED is chiefly influenced by the power output of each DER and the Ps. Some proper
reformation can be done to make the optimization problem into a general economic dispatch problem.
The Ps can be eliminated by Formulas (2) and (3) and the objective function can be formulated
as follows:

max
PGi

f = (β− θ)
m

∑
j=1

PDj −
n

∑
i=1

[Ci(PGi)− θPGi] (8)

In this paper, β, θ, and the total loads are constant and are not dependent on the decision variables.
Based on the principle of dual problem [16,18], the objective function can be reformulated as:

min
n

∑
i=1

[Ci(PGi)− θPGi] (9)

If power output is written as xi, the sub-objective function will be denoted as fi, so the VPED
model is equivalent to:

min f (x) =
n
∑

i=1
fi(x)

s. t. hs(x) ≤ 0 , x ∈ X, s = 1, · · · , q.
(10)

where hs represents the global inequality constraints as shown in (6) and (7). X is the set of all x, indicates
the local constraint of each DER in Equation (4) and q is the number of constraints. The Lagrange
multiplier λ can be introduced to structure the Lagrange function:

Li(x, λ) = fi(x) + λTh(x) (11)

Now, the optimization problem can be written as:

L(x, λ) =
n

∑
i=1

Li(x, λ) =
n

∑
i=1

fi(x) + λTnh(x) (12)

3. Distributed Primal-Dual Sub-Gradient Method (DPDSM)

According to the principle of Lagrange multiplier method [16], the optimal solution L(x*, λ*)
in Equation (12) is also the optimal solution x* in the original optimization problem (Equation (2)).
In order to obtain the optimal solution quickly, the method of DPDSM is adopted in this paper.
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3.1. Under Ideal Communication Network Conditions

During the DPDSM iteration, the primary variables (with the symbol “ˆ”) and secondary (with
the symbol “-”) variables are derived from the original variables xi, λi:

x̂i[k] =
n

∑
j=1

[W∆]ijxj[k], λ̂i[k] =
n

∑
j=1

[W∆]ijλj[k] (13)

x̂i[0] = xi[0], x̂i[∆ + N] = x̂i[∆]
λ̂i[0] = λi[0], λ̂i[∆ + N] = λ̂i[∆]

(14)

xi[k + 1] =
n

∑
j=1

[W∆]ij x̂j[k], λi[k + 1] =
n

∑
j=1

[W∆]ijλ̂j[k] (15)

where k ≥ 0 is the iteration number; ∆ is the derivation times and N is the number of iteration
conducted by the original variables. That is, setting the value of ∆ can adjust the engagement of
consensus algorithm in the distributed optimization. Wn×n is the n order communication matrix and
its element Wij is calculated by the following formula:

Wij =


1/n, j ∈ Γ(i)
1−∑j∈Γ(i) Wij, i = j
0 , j /∈ Γ(i), j 6= i

(16)

where n is the number of DERs which are connected with DER i by communication links. Γ(i) is the set
of DERs which are connected with DER i by communication links.

Li
x(xi[k + 1], λi[k]) = S fi

(xi[k + 1]) +
q
∑

s=1
Shs(xi[k + 1])λi[k]

Li
λ(xi[k], λi[k]) = h(xi[k])

(17)

where Lx
i(xi[k], λi[k]) is the partial derivatives of xi[k] at (xi[k], λi[k]) and Lλ

i(xi[k], λi[k]) is the partial
derivatives of λi[k] at the same point. The sub-gradient value of fi and hs at xi[k] are Sfi (xi[k]) and Shs
(xi[k]), respectively:

xi[k + 1] = PX
[
xi[k + 1]− αLi

x(xi[k + 1], λi[k])
]

λi[k + 1] = P̂
[
λi[k + 1] + αLi

λ

(
xi[k], λi[k + 1]

)] (18)

where
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3.2. Under Non-Ideal Communication Network Conditions

As mentioned in the introduction, the non-ideal communication network conditions consist of
communication time delays, channel noises, DERs’ power output over-limit, DERs’ plug-and-play,
and channel faults. The primary and secondary variables introduced in the proposed method are
all auxiliary variables. All of the non-ideal communication network conditions will exist and be
addressed in the primary variables, and the time varying topology events are mainly addressed in the
secondary variables:

x̂i[k] = xi[k]− c[k]
n
∑

j=1
lij[k](xj[k− τij(k)] + ηij[k])

λ̂i[k] = λi[k]− c[k]
n
∑

j=1
lij[k](λj[k− τij(k)] + ηij[k])

(19)
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xi[k + 1] =
n

∑
j=1

[W∆]ij x̂j[k], λi[k + 1] =
n

∑
j=1

[W∆]ijλ̂j[k] (20)

where k ≥ 0 is the iteration number; τij(k) and ηij[k] are the time delays and channel noises from
agent j to i at iteration k, respectively. c[k] is the gain function [3] and its details are described in the
Appendix A.

aij[k] =

{
1, i is connected to j

0, otherwise
(21)

The adjacency matrix based on the communication topology has the element of aij. If there exists a
communication link between i and j, the value of aij will be 1; otherwise, the value of aij will be 0. lij
represents the Laplacian matrix element in the network topology and it is relevant to the adjacency
matrix element aij. {

lij = −aij[k]
lii = ∑j∈Γ(i) aij[k]

(22)

Wn×n can be designed as a dynamic matrix under the non-ideal network conditions and the Wij is
calculated by a new formula:

Wij =


1/∑j∈Γ(i) aij, j ∈ Γ(i)
1−∑j∈Γ(i) Wij, i = j
0 , j /∈ Γ(i), j 6= i

(23)

where n is the number of DERs which are connected with DER i by communication links. Γ(i) is the set
of DERs which are connected with DER i by communication links.Energies 2017, 10, 235 7 of 19 
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In this paper, to verify the validity of the proposed VPED strategy, two VPP systems are built 
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conditions in the Appendix A. The algebraic sum of power flowing through PCC is Ps and the total 
loads are recorded as PD. The purchase price θ is 0.076$/kWh and the sale price β is 0.072$/kWh. 
The parameters and the capacity limits of DERs are listed in Table 1 and Table 2, respectively. 

The simulation implemented on the modified IEEE-34 bus test system is mainly designed to 
study the impact of communication time delays and channel noises on the distributed dispatch and 
the influence of changing Δ over the distributed dispatch algorithm. The modified IEEE-123 bus test 
system is aimed to investigate the adaptability of the distributed VPED algorithm under a large 
scale non-ideal communication network. It primarily discusses the time varying communication 
topology conditions arising from channel faults of communication links, DERs’ over-limit, and 
DERs’ plug-and-play. 

Table 1. Parameters of DERs. 

DERs Types 
2( )i Gi i Gi i Gi iC P a P b P c= + +  ($/kWh) 

PGi[0] (kW) 
ai (10−6) bi (10−3) ci 

P1 1.182 1.498 0.0914 120 
P2 1.793 1.342 0.0945 120 
P3 1.884 1.262 0.0968 120 
P4 1.916 1.328 0.0953 120 
P5 1.922 1.347 0.0938 120 
W1 1.353 1.433 0.0840 120 
W2 1.171 1.517 0.0803 120 
W3 1.073 1.484 0.0865 120 

Figure 1. Flowchart of DPDSM.

According to [3,9], the changes of Laplacian matrix and communication matrix can reflect the
situation of the time varying topology. The flowchart of DPDSM, considering the non-ideal network
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conditions, is shown in Figure 1. The left part of Figure 1 displays the basic progress of the proposed
algorithm; the right part provides details about how non-ideal network conditions influence the
distributed dispatch. When time varying topology occurs, the value of aij will be updated according to
the actual communication topology. Then, the Laplacian matrix and communication matrix will be
updated along with aij. If there are time delays and channel noises in the communication lines, the
dispatch will also be affected.

4. Numerical Examples

In this paper, to verify the validity of the proposed VPED strategy, two VPP systems are built by
modifying the IEEE-34 bus test system and the IEEE-123 bus test system, respectively. In this work,
the power error tolerance ε in Figure 1 is 0.05 kW and the iteration step α is set to 0.002 s. For the
convenience of simulation, the gain function c[k] is 0.5[1 + ln(k + 1)]/(k + 1) which can meet the
conditions in the Appendix A. The algebraic sum of power flowing through PCC is Ps and the total
loads are recorded as PD. The purchase price θ is 0.076$/kWh and the sale price β is 0.072$/kWh.
The parameters and the capacity limits of DERs are listed in Tables 1 and 2, respectively.

Table 1. Parameters of DERs.

DERs Types Ci(PGi) = aiP2
Gi + biPGi + ci ($/kWh) PGi[0] (kW)

ai (10−6) bi (10−3) ci

P1 1.182 1.498 0.0914 120
P2 1.793 1.342 0.0945 120
P3 1.884 1.262 0.0968 120
P4 1.916 1.328 0.0953 120
P5 1.922 1.347 0.0938 120
W1 1.353 1.433 0.0840 120
W2 1.171 1.517 0.0803 120
W3 1.073 1.484 0.0865 120
W4 1.612 1.356 0.0889 120
W5 1.405 1.388 0.0840 120
M1 6.145 0.187 0.1011 150
M2 6.932 0.045 0.1003 150
M3 6.642 0.128 0.1063 150
M4 6.503 0.582 0.1006 150
M5 6.605 0.199 0.1023 150
E1 2.503 1.645 0.0703 0
E2 2.549 1.598 0.0747 0
E3 2.607 1.731 0.0720 0
E4 2.720 1.694 0.0786 0
E5 2.240 1.812 0.0765 0

Table 2. Capacity limits of DERs.

DERs Types PGi (kW) DERs Types PGi (kW) Capacity (kWh)
Min Max Min Max

P1–P5 80 140 (charging) 0 40 100 kWh
W1–W5 80 140 E1–E5 —– —– ——
M1–M5 80 160 (discharging) 0 60 100 kWh

The simulation implemented on the modified IEEE-34 bus test system is mainly designed to study
the impact of communication time delays and channel noises on the distributed dispatch and the
influence of changing ∆ over the distributed dispatch algorithm. The modified IEEE-123 bus test system
is aimed to investigate the adaptability of the distributed VPED algorithm under a large scale non-ideal
communication network. It primarily discusses the time varying communication topology conditions
arising from channel faults of communication links, DERs’ over-limit, and DERs’ plug-and-play.
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4.1. The Modified IEEE-34 Bus Test System

As shown in Figure 2, there are twenty schedulable DERs in the modified IEEE-34 bus test system.
For the sake of making better use of renewable energies, PVs, and WGs will operate at their maximum
power output. BEs can work in both charging and discharging modes and the MGGs may reduce their
outputs to cut the fuel expenditure. BEs and MGGs are also able to adjust their outputs to deal with
some unexpected events, which is aimed to maintain the system power balance. In comparison, Table 3
offers the results optimized by using the centralized dispatch under the same operation condition and
Table 4 shows VPP’s average profits made by the two dispatch strategies. Three scheduling scenarios
are provided as follows: (A) a distributed dispatch under the ideal communication network; (B) a
distributed dispatch considering time delays and channel noises in communication network; and (C) a
distributed dispatch with a different ∆.
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Table 3. Optimal dispatch results under the centralized dispatch.

DERs Types Scenarios

a b c

P1 111.103 114.669 111.103
P2 115.680 119.308 115.680
P3 132.903 136.246 132.903
P4 113.546 116.424 113.546
P5 106.496 115.105 106.496
W1 120.632 126.149 120.632
W2 103.116 103.114 103.116
W3 128.165 128.749 128.165
W4 126.303 128.884 126.303
W5 132.594 135.245 132.594
M1 128.314 137.949 128.314
M2 123.691 131.12 123.691
M3 123.509 130.143 123.509
M4 89.1574 104.548 89.1574
M5 118.528 127.819 118.528
E1 23.2306 11.4967 23.2306
E2 31.7175 19.5987 31.7175
E3 5.24299 −3.4207 5.24299
E4 11.9249 −0.7296 11.9249
E5 −13.1192 −19.7492 −13.1192
Ps 167.259 137.325 167.259
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Table 4. VPP’s average profits made by the two dispatch strategies.

Scenarios The Centralized Dispatch The Distributed Dispatch

a 0.0649 ($/kWh) 0.0649 ($/kWh)
b 0.0645 ($/kWh) 0.0645 ($/kWh)
c 0.0649 ($/kWh) 0.0649 ($/kWh)

(1) Scenario A: Distributed Dispatch under Ideal Communication

Figure 3 indicates the optimal scheduling results of each DER and Figure 4 provides the variation
of Ps during the distributed optimization process. From Figure 3 and Table 3, we can find that the
distributed dispatch proposed in this paper achieves the same scheduling scheme as the centralized
dispatch does, which shows the effectiveness of the distributed dispatch strategy. From the viewpoint
of profits, it is not difficult to find in Table 4 that the distributed dispatch is the same with the centralized
one. Figure 4 illustrates that the VPP can sell electric energy to the main grid when its overall power
is higher than load demands, but if the overall power is lower than the total loads, VPP will absorb
power from the main grid to maintain the supply-demand balance.
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(2) Scenario B: Distributed Dispatch Considering Communication Time Delays and Channel Noises

In practice, it is necessary to consider communication time delays and channel noises. When
implementing the optimization, the delays are randomly distributed between 0 and 3; meanwhile,
the noises are randomly distributed between 0 and 5 kW. Figure 5 shows the optimization curves of
this scenario. Figure 6 provides the variation of Ps and the power imbalance during the optimization.
Since the transmission of the iteration information is postponed by time delays, curves for showing the
variation of Ps and the power imbalance will appear in cross-sections, such as M1 in Figure 5c. Channel
noises will cause the oscillation of power outputs; for example, M4 from the 16th to the 25th iterations.
The more serious the delays and noises are, the rougher the curves will be. By the aid of the main
grid, VPP can shrink the whole fluctuation and keep the system power balance (see Figure 6). In the
centralized scheduling, prediction of communication time delays and channel noises is needed and
it will increase the scheduling burden. Based on the local communication mechanism, the proposed
method can still reach the same result, but in a way of real-time scheduling, meaning that the proposed
method is useful to improve the system noise immunity. The simulation shows the effectiveness of the
distributed scheduling strategy in handling time delays and channel noises.
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(3) Scenario C: Distributed Dispatch with a Different ∆

Changing the value of ∆ means adjusting the consensus parameters in the distributed dispatch. ∆
is set at 3 in scenario a while ∆ is set at 10 in this scenario. Contrasting Figures 7 and 8 with Figures 3
and 4, it is clear that the larger the value is, the faster the convergence speed, but the larger the
oscillation that will be occurred in the optimization.
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4.2. The Modified IEEE-123 Bus Test System

The modified IEEE-123 bus test system is shown in Figure 9. In this example, forty DERs are
dispersed in four areas in this test system. The operation parameters are the same with the previous
test system. Three simulation scenarios are implemented as follows: (D) a distributed dispatch under
the condition of the DERs’ over-limit; (E) a distributed dispatch under the condition of channel faults;
and (F) a distributed dispatch under the condition of DERs’ play-and-plug.
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Figure 9. The modified IEEE-123 bus test system in Scenario D. 
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(1) Scenario D: Distributed Dispatch under the Condition of DERs’ Over-Limit

In order to ensure the safe operation of the VPP, it is essential to consider the capacity limits of
DERs. Suppose a few MGGs’ and BEs’ power outputs have reached the limits during the optimization.
Figure 10 shows that the over-limit DERs will run at the power limit and no longer iterate in the
optimization, but continue to deliver data to their neighbors. Based on this local communication
mechanism, the over-limit DERs may only affect the adjacent DERs rather than the whole. Figure 11
indicates that, with regard to DERs’ over-limit events, the distributed method can still maintain the
system power balance constraint.Energies 2017, 10, 235 14 of 19 
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Figure 11. The simulation of power balance in Scenario D. (a) Power at PCC; and (b) The variation 
of power imbalance. 

(2) Scenario E: Distributed Dispatch under the Condition of Channel Faults 

Channel faults will lead to the change of the communication topology. After the wrong 
channels are removed, the system recovers its power balance by reconstructing a new 
communication topology. The damaged channels are shown in Figure 9 and the dispatch progress 
is displayed in Figures 12 and 13. The channel faults can disturb DERs’ normal operation. Then, the 
system will build a new stable state by distributed VPED optimization.  
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output of MGG; and (d) Power output of BE.
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(2) Scenario E: Distributed Dispatch under the Condition of Channel Faults

Channel faults will lead to the change of the communication topology. After the wrong channels
are removed, the system recovers its power balance by reconstructing a new communication topology.
The damaged channels are shown in Figure 9 and the dispatch progress is displayed in Figures 12
and 13. The channel faults can disturb DERs’ normal operation. Then, the system will build a new
stable state by distributed VPED optimization.Energies 2017, 10, 235 15 of 19 
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Figure 13. The simulation of power balance in Scenario E. (a) Power at PCC; and (b) The variation 
of power imbalance. 

(3) Scenario F: Distributed Dispatch with DERs’ Plug and Play 

Compared with non-ideal communication conditions, DERs’ plug-and-play is most likely to 
occur under an actual large-scale VPP system. There are two DERs that temporarily plug-and-play 
during the distributed scheduling in this scenario. From Figure 14, we can see that a PV plug off at 
about the 45th iteration for some reasons, but plug on at about the 50th iteration. However, by 
adjusting the power of MGGs, Bes, and Ps, the VPP system immediately realizes a new 
supply-demand power balance (see Figure 15). When this event happens again on a WG, the VPP 
system still restores its stability within a short time. Faced with the DER plug-and-play conditions, 
the system employing the proposed method in this paper shows a strong robustness. 

Figure 12. Dispatch results in Scenario E. (a) Power output of PV; (b) Power output of WG; (c) Power
output of MGG; and (d) Power output of BE.
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(3) Scenario F: Distributed Dispatch with DERs’ Plug and Play

Compared with non-ideal communication conditions, DERs’ plug-and-play is most likely to occur
under an actual large-scale VPP system. There are two DERs that temporarily plug-and-play during
the distributed scheduling in this scenario. From Figure 14, we can see that a PV plug off at about
the 45th iteration for some reasons, but plug on at about the 50th iteration. However, by adjusting
the power of MGGs, Bes, and Ps, the VPP system immediately realizes a new supply-demand power
balance (see Figure 15). When this event happens again on a WG, the VPP system still restores its
stability within a short time. Faced with the DER plug-and-play conditions, the system employing the
proposed method in this paper shows a strong robustness.Energies 2017, 10, 235 16 of 19 
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Figure 15. The simulation of power balance in Scenario F. (a) Power at PCC; and (b) The variation 
of power imbalance. 

5. Summary 

The VPP is often adopted to manage large-scale DERs but there are non-ideal conditions of the 
communication network during its economy dispatch. With the consideration of various 
constraints, communication time delays, channel noises, and time varying topology, this paper 
establishes a VPP dispatch model and proposes a DPDSM to solve it. Compared with the 
centralized method under the same simulation scenarios, it can be found that the VPP can integrate 
DERs effectively and economically. Simulation results show that the larger communication time 
delays and channel noises are, the more unstable the system is. The frequent-and-diverse time 
varying topology events can also disturb its steady operation. The DPDSM can converge fast in the 
scheduling process and respond quickly to these non-ideal communication conditions. Simulations 
analysis illustrates the validity and superiority of the proposed method. Some issues, such as the 
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5. Summary

The VPP is often adopted to manage large-scale DERs but there are non-ideal conditions of the
communication network during its economy dispatch. With the consideration of various constraints,
communication time delays, channel noises, and time varying topology, this paper establishes a
VPP dispatch model and proposes a DPDSM to solve it. Compared with the centralized method
under the same simulation scenarios, it can be found that the VPP can integrate DERs effectively and
economically. Simulation results show that the larger communication time delays and channel noises
are, the more unstable the system is. The frequent-and-diverse time varying topology events can also
disturb its steady operation. The DPDSM can converge fast in the scheduling process and respond
quickly to these non-ideal communication conditions. Simulations analysis illustrates the validity and
superiority of the proposed method. Some issues, such as the sensitivity of the results to parameters,
VPP’s multi-period dispatch, etc., still need further exploration.
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Appendix A

The output models of WGs, PVs, and BEs can be formulated as follows:

(a) Wind generators [23]. The power outputs of WGs are mainly affected by the wind speed and
they can be described by the linear model:

Pw =


0 v < vci, v ≥ vco

v−vci
vr−vci

· Pr vci < v < vr

Pr vr ≤ v ≤ vco

(A1)
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where Pw is the maximum available power output and Pr is the rated power output of WGs. v,
vci, vco, and vr are wind speeds, cut-in wind speeds, cut-out wind speeds, and the rated wind
speeds, respectively.

(b) Photovoltaic systems [24]. The PVs’ power outputs are mainly affected by the light intensity and
temperature, and the model can be expressed as:

PPV = Pmax
PV

GC
GCmax

[1 + K(Tc − Tr)] (A2)

where PPV is the maximum available power output of PVs, and Pmax
PV represents the maximum

output under standard test conditions. GC means the actual light intensity; GCmax is the reference
one under standard test conditions. The conversion coefficient of temperature to power is
depicted by K. Tc, Tr is the environment temperature and the reference temperature under
standard test conditions, respectively.

(c) Storage batteries [10]. In this model, the constraints are mainly considered:{
PBE ≤ Pdchmax

BE , PBE ≥ 0,
−PBE ≤ Pchmax

BE , PBE ≤ 0
(A3)

where PBE ≥ 0 states the actual power output in the discharging and Pdchmax
BE represents the

maximum power output. Consequently, PBE ≤ 0 and Pchmax
BE can be the same one with the

charging state. The state-of-charge (SOC) is also an important constraint. The charging efficiency
of BE will be very low if the SOC come to a critical value. To solve the problem, the following
formulas are given as:

PBE =


Pdch

BE , SOC ≥ SOCup

Pdch
BE or Pch

BE, SOCup ≥ SOC ≥ SOCdown
Pch

BE, SOCdown ≥ SOC
(A4)

where SOCup and SOCdown are the lower bound and upper bound of BE. This study investigates
the transient process of the distributed scheduling, so BEs can work at the two states during this
period.

We mainly study DERs’ economy scheduling and some parameters of DERs’ outputs models will
be listed in Table A1.

In order to ensure the convergence of the algorithm, the c[k] needs to meet the following necessary
conditions [25]: 

∞
∑

k=0
c[k] = +∞

∞
∑

k=0
c2[k] < +∞

(A5)

According to reference [3], the c[k] is designed as:

c[k] = 0.5[1 + ln(∂k + 1)]/(∂k + 1) (A6)

where ∂ ≥ 0 is the delay coefficient. Xu et al. [3] concluded that the optimization will become faster as
the coefficient value gets smaller.
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Table A1. Parameters of DERs’ outputs models.

Parameters Values

Cut-in wind speeds vci 3.0 m/s
Cut-out wind speeds vco 25 m/s
The rated wind speeds vr 15 m/s

The rated power output Pr 200 kW
The capacity of BE 100 kWh

SOCup 80%
SOCdown 20%
PPV

max 200 kW
GCmax 1 kW/m2

The coefficient Kin (25) −0.45%
Tr 25 ◦C
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