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Abstract: Underground coal gasification (UCG) is a technique to recover coal energy without mining
by converting coal into a valuable gas. Model UCG experiments on a laboratory scale were carried
out under a low flow rate (6~12 L/min) and a high flow rate (15~30 L/min) with a constant oxygen
concentration. During the experiments, the coal temperature was higher and the fracturing events
were more active under the high flow rate. Additionally, the gasification efficiency, which means
the conversion efficiency of the gasified coal to the product gas, was 71.22% in the low flow rate
and 82.42% in the high flow rate. These results suggest that the energy recovery rate with the
UCG process can be improved by the increase of the reaction temperature and the promotion of the
gasification area.
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1. Introduction

Underground coal gasification (UCG) is a technique to extract energy from coal in the form of heat
energy and combustible gases through chemical reactions in the underground gasifier. The product
gas has as a variety of uses: electricity supply with a gas turbine, hydrogen production, and the
other chemical feedstock [1–4]. UCG technology enables us to utilize coal resources that remain
unrecoverable underground due to either technological or economic reasons. The annual consumption
of coal in Japan was 177 million tons in 2014 while the annual domestic coal production is only
1.3 million tons [5]. This fact means that more than 99% of the coal used in Japan depends on
importation from overseas countries. Additionally, 25% of the domestic primary energy supply
consists of coal. Now, Japan has an underground and several surface coal mines in a limited region.
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Actually, the geological conditions of the coal seam in Japan are quite complicated as it has many faults,
foldings, and steep dipping. Accordingly, most coal mines had to be closed because of the difficulty of
mining, high operation costs, and high labor costs. However, abundant unused coal resources remain
underground. Such coal resources are estimated to be 30 billion tons. For that reason, UCG has great
potential to recover vast amounts of energy from these coal resources.

Many benefits are anticipated from this technology: utilizing unused coal, lower capital/operating
costs, no surface disposal ash, and the possibility of the combination of carbon capture and storage.
In the UCG process, the oxidants are injected from an injection well in order to promote the gasification
reactions, and product gas consists of CO, H2, CH4, CO2, and other hydrocarbons are recovered from
a production well. Typical reaction zones during the UCG process can be divided roughly into three
zones [6]: The oxidization zone, the reduction zone, and the drying and pyrolysis zone (Figure 1).
Oxidation is source of heat to promote the gasification process, meaning that the oxidation reaction
makes the temperature of the coal seam rise. Reduction is the main chemical reaction in the UCG
process. In this process, CO2 or H2O(g) are reduced to CO and H2 as the main chemical reactions.
As these reactions are endothermic reactions, the temperature of the coal seam is decreased when
promoting the reduction reactions. On the other hand, these chemical reactions are promoted under
high temperatures. In summary, one of keys to success in an efficient UCG process is to keep a high
temperature in the reaction zone. In the drying and pyrolysis zone, various kinds of gases are formed,
not only CH4, CO, CO2, H2, but also other hydrocarbons.
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The contents of the product gas can be roughly controlled with the temperature and the injection
materials in the surface coal gasification plant. It is, however, difficult to control the quality of the
product gas during the UCG process because the conditions of the underground reactor are constantly
changing due to changes in the temperature field and the expansion of the cavity [7,8]. The composition
of the product gas changes depending on the injected oxidant used, the operating pressure, the coal
quality, and the mass and energy balance of the underground reactor [9]. The calorific value of the
product gas recovered by UCG is usually low (3~4 MJ/Nm3) when air is injected as a gasification
agent, meaning that the usage of the gas is limited because of its low calorific value. On the other hand,
researchers have obtained results to improve the quality of the product gas by using a mixture of air
and oxygen due to an increase of the reaction temperature in the underground reactor [10–12].
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We discuss the development of a co-axial UCG system, which is compact and flexible, that can be
adopted under complicated geological conditions [13–15]. A co-axial UCG system uses only one well
set with a double pipe: oxidants are injected from an inner pipe, and product gases generated in the
coal seam are collected from an outer pipe (Figure 2). This UCG system has superiority in terms of
applicability compared to the conventional one, but the recovered energy from the coal is relatively
low because the gasification area in a co-axial system is limited around a well even though operating
this system saves costs [16,17].

From these backgrounds, the objective of this study is to clarify the effect of the injection flow
conditions on the product gas quality including the gasification efficiency, which means the conversion
efficiency of the gasified coal (chemical energy of product gas/chemical energy of gasified coal),
in order to develop a co-axial UCG system with high efficiency.
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2. Materials and Methods

A diagram of model UCG experiment conducted using a coal block is shown in Figure 3. The coal
blocks used in this study were rectangular shape that the range of length and width are 0.15~0.20 m,
and the range of height is 0.20~0.25 m. Coal samples were supplied from Sanbi Mining Co., Ltd.,
Hokkaido, Japan. Typical proximate and ultimate analyses of the coal are shown in Table 1.

The samples were put into a drum can which had 0.28 diameter and 0.36 m height. The space
between them was filled by heat-resistant cement in order to prevent heat release and gas leakage.
A co-axial well which is used for ignition, and production well was prepared with 35 mm diameter.
Ignited charcoals were supplied to the bottom of a co-axial well in an ignition stage, then a mixture of
air and oxygen was supplied continuously as a gasification agent in order to sustain the gasification
process. In this study, the model UCG experiments were carried out under the different flow rate to
estimate the effects of injection flow, the lower flow rate (experiment 1: 6~12 L/min) and the higher
flow rate (experiment 2: 15~30 L/min), on the quality of product gas while the oxygen concentration
was kept as stable (50%) based on the previous experiments [14]. During the gasification process,
the injection flow rate was arranged to keep the optimal thermodynamic conditions for gasification
reactions. Figure 4 shows the injection conditions applied for each experiment. At the end of these
experiments, CO2 or N2 gas which turned down coal temperature was injected to extinguish the
combustion. The total times to inject gasification agents in respective experiments were almost 7 h.
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After the process, a mixture of white cement and gypsum was filled into the post-gasification cavity to
investigate the gasification area by means of a cross-section study.
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Figure 4. Gasification agents during experiments: (a) Experiment 1; (b) Experiment 2.

The flow rate of the product gas was measured using an ultrasonic flowmeter. The compositions
of product gas (O2, N2, CO2, H2, CO, CH4, C2H4, C2H6, C3H6, and C3H8) were monitored every
30 min using a gas chromatograph (Micro GC 3000A; INFICON Co., Ltd., East Syracuse, NY, USA).
Meanwhile, temperature and acoustic emission (AE) were monitored to visualize inner part of the
coal sample and obtain the data about fracturing activities by using type K thermocouples (SUS310S;
Chino Corp., Tokyo, Japan) and piezoelectric acceleration transducers (620 HT; TEAC Corp., Tokyo,
Japan), respectively. The layout of sensors are shown Figure 5.
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AE is a kind of phenomenon to emit low-level elastic wave from solids when they are stressed or
deformed. The number of AE occurrences are commonly increased just before solids is destructed:
the stress of rock reach to uniaxial compressive strength in uniaxial compressive test. AE monitoring
is, therefore, used in the field of rock mechanics, concrete, and mining to predict the damage and the
failure of brittle materials because they reach structural failure by accumulating microfracture [18–22].
As many AE activities can be detected attributable to thermal stress during UCG process [23], it is also
useful to estimate the progress of gasification process and special events such as collapse of coal in
the cavity and extensive propagation of gasification zone. In this study, AE events and AE counts are
calculated by means of data processing of the raw AE signal data, as shown in Figure 6. Both parameters
are counted when AE signal is higher than a threshold. Besides, AE event is not counted until the
signal is damped. The dead time meaning for that period is usually several milliseconds in brittle
materials: rock, concrete, and coal. AE events show the number of cracks initiated inside a coal sample
and AE counts reflect the magnitude of AE event. All AE waveforms from the sensors were recorded
using an oscilloscope (GR-7000; Keyence Corp., Elmwood Park, NJ, USA) with sampling time of 10 µs.
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3. Results and Discussion

3.1. Temperature and AE

Temperature profiles for each experiment are plotted against the elapsed time in Figure 7.
The trend of the temperature increment was almost the same in both experiments. The temperatures
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in T11 and T12 located in the lower part of the co-axial well increased in the initial stage of the
experiment. Subsequently, the temperatures increased in T13, T21, and T22. These results indicate that
the gasification area moved in an upward direction along the co-axial well and expanded to the wider
area. Regarding the temperature increment quantity, the maximum coal temperature in experiment 2
reached over 1200 ◦C, much higher than that in experiment 1. Besides, the high temperature area
expanded quickly in experiment 2. These results can be explained by the promotion of the oxidation
reaction with the increase of the oxygen inflow because the coal temperature increased with the
oxidation reaction and reacted with the coal and oxygen. This finding leads to a possibility to create
a larger gasification area with a higher temperature for a short period of time due to the promotion of
the oxidation reaction.
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Figure 8 shows the results of AE activities for each experiment. From the results of the AE event,
it increased with the elapsed time in both experiments, meaning that the number of the fracturing
events increased. Based on the results of the temperature profile, we can consider that the fracturing
events are generated in a wide range due to the expansion of the gasification zone in the later stage of
the experiments. Additionally, AE events in the initial stage of experiment 2 were higher than those
of experiment 1 and the AE counts were the highest in the initial stage of experiment 2, when the
temperature changed drastically. This means that the fracturing events caused by the thermal stress
were activated in experiment 2 after the ignition of the coal. The activation of fracturing events creates
a large number of cracks; as a result, chemical reactions are promoted and are attributable to increasing
the reaction-specific surface area. Therefore, the reaction area of coal gasification can be expanded by
utilizing thermal stress leading to activated fracture events under the high temperature.
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3.2. Product Gas Quality and Gasification Efficiency

Figure 9 shows the monitoring results of the main compositions and the calorific value of the
product gas, which can be calculated with the concentration of the combustible gas contents such as
CO, CH4, H2, and other hydrocarbons [24]. The calorific value of the product gas in experiment 2
decreased dramatically with a decrease of the combustible gas contents after 2 h elapsed, while that of
experiment 1 decreased slightly. These differences are attributed to the inhibition of the gasification
reaction with the heat-resistant cement around a coal block based on the results of a cross-section study
after the experiment (Figure 10), meaning that the gasification area expanded rapidly in the initial
stage due to the excess oxygen inflow in experiment 2. Additionally, the calorific value in the end
phase of experiment 1 was relatively lower than that in the beginning of experiment 2 even though the
injection flow rate was somewhat similar. Molten slag was generated during the gasification process
due to the ash contents of the coal. Therefore, the slag formation may prevent the promotion of the
gasification reaction because of the limitation of the gas-solid contact. From these considerations,
the effect of the injection flow rate on the quality of the product gas and the gasification efficiency,
which means the energy recovery rate from coal, is discussed by using a part of the data which were
not affected by the heat-resistant cement and the slag formation. The range of data processing was
0.5~3.0 h for experiment 1, and 0.5~1.5 h for experiment 2. The flow rate in these ranges for both
experiments was stable (6 L/min for experiment 1, 15 L/min for experiment 2). Additionally, the total
amount of oxygen inflow was almost the same in these ranges.
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The typical product gas data in the range of data processing are listed in Table 2. The average
calorific value and the total production flow of the product gas in experiment 2 were higher than those
in experiment 1. These differences can be explained by the promotion of the reduction reaction in
which combustible gas contents were produced during the UCG process because the concentrations
of H2 and CO were higher, and that of CO2 was lower in experiment 2. This fact indicates that the
gasification reactions are promoted under high temperature in the gasification regions as a result of
the increase of the oxygen inflow to activate the oxidation reaction.

Table 2. Typical product gas data (0.5~3.0 h for experiment 1, 0.5~1.5 h for experiment 2).

Average Calorific
Value (MJ/Nm3)

Total Product
Flow (m3)

N2, O2 Free

H2 (%) CH4 (%) CO (%) CO2 (%)

Experiment 1 6.39 1.57 29.34 5.40 38.20 22.11
Experiment 2 8.11 2.26 33.65 5.19 45.23 17.61

Balance computation is a useful method to discuss the amount of coal reacted in the UCG
process [25]. The amount of gasified coal is calculable by the balance of the C element, as shown in
Table 3. The amount of carbon content in a tar is not included in the balance sheet. The amounts of C
reacted in experiments 1 and 2, respectively, were 0.37 kg and 0.57 kg, meaning that 0.50 kg and 0.76 kg
of coal are expected to have been gasified based on the ultimate analyses of the coal. Considering that
the coal calorific value was 31.48 MJ/kg, the gasification efficiency, the energy recovery rate from coal,
is calculable using Equation (1).

Rg =
ET/Wg

Qc
× 100, (1)

where Rg is the gasification efficiency (%), ET means the total energy (MJ), Wg represents the gasified
coal (kg), and Qc stands for the coal calorific value (MJ/kg).
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Table 3. Calculation of C balance (0.5~3.0 h for experiment 1, 0.5~1.5 h for experiment 2).

Component

Experiment 1 Experiment 2

Total Amount
of Product Gas

Balance of
C Element

Total Amount
of Product Gas

Balance of
C Element

mol mol kg mol mol kg

CH4 2.32 2.32 0.03 3.64 3.64 0.04
CO 15.87 15.87 0.19 30.11 30.11 0.36
CO2 11.45 11.45 0.14 11.82 11.82 0.14
C2H4 0.49 0.98 0.01 0.84 1.68 0.02
C2H6 0.12 0.24 0 0.15 0.30 0.00
C3H6 0.06 0.18 0 0.00 0.00 0.00
C3H8 0.02 0.06 0 0.00 0.00 0.00

Total 30.33 31.1 0.37 46.56 47.55 0.57

Table 4 presents the calculation results for the gasification efficiency. The energy of the product gas
can be calculated with the product flow rate and the calorific value of the product gas. The values for
the gasification efficiency in experiments 1 and 2, respectively, are 71.22% and 82.42%. A comparison of
the results shows that the UCG process with the higher oxygen inflow has a higher efficiency for energy
recovery from coal than that with the lower oxygen inflow, attributable to increasing the combustible
contents in the product gas. The product gas quality depends on the reduction reaction during the
UCG process, meaning that the temperature field is strongly affected. Therefore, it might be possible to
estimate the gasification efficiency by creating a proper numerical model. Additionally, it is pointed out
that the recovered energy from coal can be improved with the increase of the reaction temperature and
the expansion of the gasification area during the UCG process. In summary, an increase of the oxygen
inflow makes the temperature of the coal increase by the promotion of the oxidation reaction; then the
fracture events are activated. As a result, the quality of the product gas is improved, attributable to
expanding the gasification area with a high temperature.

Table 4. Calculation of gasification efficiency (0.5~3.0 h for experiment 1, 0.5~1.5 h for experiment 2).

Coal Calorific
Value (MJ/kg)

Energy of
Product Gas (MJ)

Amount of C
Element (kg)

Gasified
Coal (kg)

Gasification
Efficiency (%)

Experiment 1
31.48

11.21 0.37 0.50 71.22
Experiment 2 19.72 0.57 0.76 82.42

The product gas recovered with the UCG process is variable depending on the type of UCG
operation, the coal quality, and the underground conditions. According to the results of this study,
a key factor to improve the quality of the product gas is to expand the gasification reaction area with
an increase of the reaction temperature. The reaction temperature can be improved by the promotion
of the oxidation reaction while the expansion of the reaction area depends on the coal characteristics.
It means that not only injection conditions but also the improvement of the gasifier conditions to
promote the expansion of reaction area should be discussed to develop a highly efficient UCG system.

4. Conclusions

The injection condition is one of the key parameters to control the product gas quality in the UCG
process. This paper discussed the effect of the injection flow rate on the product gas quality by means
of model UCG experiments on a laboratory scale. The results showed that the gasification efficiency
can be improved with the increase of the reaction temperature and the expansion of the gasification
area by increasing the oxygen inflow. This finding suggests that a key issue for the improvement of the
gasification efficiency is to control the gasifier conditions. The proper injection conditions promote
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the oxidation reaction which increases the coal temperature, leading to activation of fracturing events
caused by thermal stress. Therefore, the control of fracturing events is another option that can be
considered for the improvement of the overall process.

To develop a more efficient UCG system, the improvement techniques to expand the gasification
area with a high temperature, such as the improvement of coal permeability and the effects of the
reactor pressure, are necessary to investigate in future studies.
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